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Abstract -- In many practical applications, learning
from imbalanced data poses a significant challenge that
is increasingly faced by the machine learning
community. The class imbalance problem raises issues
that are either nonexistent or less severe compared to
balanced class cases. This paper presents a new method
for imbalanced data classification. The proposed
method is based on support vector machine classifiers
and backward pruning technique. The experimental
results obtained on two data sets demonstrate the
effectiveness of the new algorithm.

I. INTRODUCTION

Imbalanced data classification refers to a two class
learning problem when the number of samples in one class
(typically, class of interest) is much smaller than that in the
other class. Learning for imbalanced class problems is
encountered in a large number of practical applications of
machine learning, for example, information retrieval and
filtering [1], in-flight helicopter gearbox fault monitoring
[2], the detection of oil spills in satellite radar images [3],
the detection of credit card fraud [4], and genomic data
classification [5].

While the majority of learning methods are designed
for well-balanced training data, data imbalance presents a
unique challenge problem to classifier design. The class
imbalance problem could hinder the performance of
standard machine learning methods. For example, it is
highly possible to achieve the high classification accuracy
by simply classifying all samples as the class with majority
samples. The problem is even severe when the
misclassification costs for the two classes are different
(i.e., cost-sensitive classification) and accordingly the
overall classification rate is not appropriate to evaluate the
performance. The practical applications of cost-sensitive
classification arise frequently, for example, in medical
diagnosis [6], in agricultural product inspection [7], in
industrial production processes [8], and in automatic target
detection [9]. Analyzing the imbalanced data thus requires
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new and more adaptive methods than those used in the
past.

There have been a number of methods proposed to
address class imbalance problems. The majority of existing
methods can be grouped into two categories: sampling and
weighting. In sampling-based approaches, one can either
over-sample examples of the small class [10, 11] or under-
sample examples of the large class [3] till the numbers of
samples in both classes are approximately equal. In
weighting methods, the misclassification costs of the two
classes are adjusted to achieve a better performance [12,
13, 14]. Japkowicz and Stephen [15] present a thorough
survey and conducted a comparative study on these
methods for imbalanced data classification problems. They
concluded that in most cases they studied, the weighting
methods (cost-modifying) outperformed the sampling
methods. The effects of data imbalance on classification
systems were also evaluated in [15]. Among the three
classifiers studied (C5.0 decision trees, multi-layer
perceptrons (MLPs) and support vector machines
(SVMs)), SVMs have been shown to be the least sensitive
to the class imbalance problems [15].

In this paper, we propose a novel classification
method for imbalance data problems. This method is based
on support vector machines and a pruning scheme. We
compare the proposed method to the SVM-based
weighting method on two real world datasets. The
experimental results show that the novel method yields
better performance. '

The paper is organized into four sections. Section II
describes the SVM-based weighting method and proposed
method. In Section III, we give the experimental results.
Finally, conclusions are drawn in Section IV.

II. METHODS

In this session, we briefly introduce support vector
machines and the cost-modifying methods for imbalanced
data classification. This is followed by the proposed
pruning method.



A. SUPPORT VECTOR MACHINES AND COST-
MODIFYING CLASSIFICATION

Consider a two-class classification problem, where

the training set is described as
n

(yl,x,),m,(ym,xm),x,.eR ,yie{—l,+1} are

class labels. We define a hyperplane by the

equationw-x +b =0, where w is the n-dimensional
vector perpendicular to the hyperplane and b is the bias.
SVMs find an optimal hyperplane that separates training
samples and maximizes the margin (a margin is defined as
the minimum distance between the decision surface and

training samples and is shown to be 2/ ||w|| ) [16]. This is

equivalent to minimizing the weight norm ||w|| , subject to

the following constraint

yiw-x; +b)-120. ¢))
In general, a soft margin classifier is considered by
introducing non-negative slack variables &, to allow some

training errors, as this will improve overall classification
performance. The optimization problem becomes to be

[17]
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The error tolerance for the classifier can be tuned by
changing the value of C. The higher the value of C the
more errors will be allowed during training.

For the imbalanced data classification problems, a
practical method is to put different penalty factors to
different classes, i.e., the optimization problem in (2)
becomes to be
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This is referred to as cost-modifying methods.
Finding best C, and C, is crucial for the performance of

SVM in imbalanced data classification problems. A rule
of thumb is to satisfy the ratio
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which indicates a heavier penalty on errors associated with
the class of small samples. A similar formula was
proposed in [18] that considers the imbalance of data and
different cost of misclassification.

B. PRUNING SUPPORT VECTORS FOR
IMBALANCED DATA CLASSIFICATION

We herein describe a new method for classifying
imbalanced data. This method is based on training
classifiers on subsets of the support vectors found for the
class with majority samples. The general idea is to
improve the classification rate of one class, while
minimally sacrificing the rate for the other class. This is
achieved by employing a pruning method to iteratively
search for a subset of support vectors (from the class with
larger samples) which is used to build the classification
model.

For the class with larger samples, the number of
support vectors is normally a small portion of the entire
data. Each support vector can be considered as a
representative member of a subclass, since it lies on the
margin and is closest to the separating hyperplane
(decision boundary) between the two classes. In fact, a
number of samples may be clustered “behind” a given
support vector, but it is the particular support vector which
influences the decision boundary. Training a SVM
classifier on the set of all support vectors only should
produce the same decision boundary (hyperplane) as that
yielded by using all the training samples. Removing each
support vector, and then training a new classifier on the
remaining support vectors, has the effect of changing the
shape of the separating hyperplane, since there are less
support vectors influencing that part of the decision
surface. Correspondingly, removing particular support
vectors of one class will cause more samples of that class
to be misclassified, and in turn classify more samples as
belonging to the other class.

This effect allows us to intentionally distort the
decision plane by removing the influence of some groups
of samples through the exclusion of their representative
support vectors. Clearly, different subsets of support
vectors will have different impact on the decision
boundary. In conjunction with pruning methods, we can
essentially find the best subset of support vectors to
remove from one class (normally, the class with larger
samples), which distorts the decision plane such that the
classification rate for the other class improves without
significantly reducing the classification rate for this class.
New classifiers can be trained on a new training set, which



includes all of the original class 1 samples (the class of
small samples), and the selected subset of the class 2
support vectors (the class of large samples) taken from the
original SVM model.

The pruning method used in this paper is backward
selection. Other search strategies such as floating forward
selection and branch and bound algorithms can also be
used. We choose backward selection as it runs fast.
Generally speaking, backward selection starts with all the
support vectors (SV) and successively deletes one SV at a
time. A SV is removed in an attempt to improve the
classification performance for class 1 (of small samples)
with minimally reduced classification rates for class 2 (of
large samples). The members being removed are discarded
permanently, in the order from the worst to the best, until
an optimal set is found.

The proposed algorithm proceeds as follows:

(1) Training SVM classifies on all training
samples. The support vectors of class 2 are denoted

asS; =[SV,,8V,,---,SV,], where m is the

number of class 2 support vectors (the class with
larger samples). Seti=0.
(2) Setn=m—1.
Fork=1ton
e Exclude the k™ support vector from S; to
form a new set S;’.
e Training SVM classifiers using S;” and all
the samples in class 1 as the training set.
e Calculate the criterion function
J(k) = (class 1 accuracy)/(class 2 error).
End {for}
(3) Find g such that J(g) has the smallest value
among J(k), k=1, ..., n.
(4) Remove the g™ SV from ;.
(5) Seti=i+1.
(6) Repeat steps 2 to 5 till the desired performance
is achieved.

The process allows us to identify a subset of support
vectors of class 2 which, when combined with class 1
samples, will minimize the criterion function J, i.e., by
removing some support vectors of class 2, classification
rate for class 1 will be improved, while the error rate of
class 2 will not increase significantly.

We next apply the pruning methods for two real-
world data to evaluate its performance for imbalanced data
classifications.

1II. EXPERIMENTAL RESULTS

The proposed method is applied to two real world
datasets: Yeast dataset [19] and hyperspectral/polarimetric
target detection dataset [20]. The class imbalance of Yeast
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dataset (about 3.5:1) is less severe than that of target
detection dataset (about 25:1). Our goal is to improve the
classification rate of the class with smaller samples while
the error rate of the other class is not significantly
increased. To evaluate the performance of the two methods
(Cost-modifying and support-vector pruning), we use the
confusion matrix.

A. RESULTS FOR YEAST SEQUENCE DATASET

The yeast sequence dataset consists of 1484 samples
collected from SWISS-PROT using the annotations from
YPD [19]. In the original dataset, proteins from yeast are
classified into 10 classes, with the largest class having 463
samples and the smallest class having only 5 samples. We
choose two protein classes in our experiment: membrane
proteins with no N-terminal signal (ME3) and cytoskeletal
(CYT). There are a total of 163 ME3 samples and 463
CYT samples, each with eight attributes. We divide the
data into two sets: training and test. The training data
consist of 75 ME3 and 250 CYT samples; the test data
consist of 88 ME3 and 213 CYT samples.

We first train SVM classifiers using cost-modifying
methods by varying weight ratios C,/C, of class 1 (ME3)
to class 2 (CYT) as defined in Eq. (5). Tables 2 and 3 show
the confusion matrix for C,/C, = 3/1 (as suggested in Eq.
6, close to the sample ratio) and 5/1, respectively. The
results for C,/C, = 4/1 is similar with these for C,/C, = 3/1
and thus are not listed here. It is clear that by putting more
emphasis on the errors of small class, the classification rate
of ME3 is improved: when the ratio is increased from 3/1
to 4/1, seven more ME3 samples (test results) are correctly
classified (this is desired) and 17 more CYT samples are
misclassified.

TABLE 1: CONFUSION MATRIX FOR COST-MODIFYING METHODS WITH

C/C,=3/1
Training Test
ME3 CYT ME3 CYT
ME3 68 7 80 8
CYT 8 242 7 206

TABLE 2: CONFUSION MATRIX FOR COST-MODIFYING METHODS WITH

C\/C,=5/1
Training Test
ME3 CYT ME3 CYT
ME3 73 2 87 1
CYT 33 217 24 189

We then run the SV-pruning method on the data. All
the training samples are used to train the SVM classifier.
22 support vectors are identified for CYT class. We then



iteratively remove one SV at a time. A new SVM classifier
is trained based on the ME3 training samples and the
remaining CYT support vectors. Tables 3 and 4 show the
results for the cases when three and nine SVs are removed,
respectively. As can be seen from Table 3, to correctly
classify 79 ME3 samples (test), only four CYT samples are
misclassified. In order to classify 87 ME3 samples, only 13
CYT samples are misclassified (see Table 4). This is better
than cost-modifying methods where 24 CYT samples are
misclassified (Table 2).

TABLE 3: CONFUSION MATRIX FOR SV-PRUNING METHODS WITH THREE

SVS REMOVED
Training Test
ME3 CYT ME3 CYT
ME3 69 6 79 9
CYT 3 247 4 209

TABLE 4: CONFUSION MATRIX FOR SV-PRUNING METHODS WITH NINE
SVS REMOVED

Training Test
ME3 CYT ME3 CYT
ME3 73 2 87 1
CYT 14 236 13 200
Figure 1 shows the Receiver Operating

Characteristic (ROC) curve [21] for test samples, where x-
axis is the false positive rate (the ratio between the number
of CYT samples that are misclassified as ME3 samples
and the total number of CYT samples) and y-axis is the
true positive rate (the percentage of ME3 samples that are
correctly classified) . As can be seen, SV-pruning methods
consistently outperform cost-modifying methods: to
correctly identify all the ME3 samples, the error rates of
the CYT class are about 47% and 26% for cost-modifying
methods and SV-pruning methods, respectively; on the
other hand, to correctly identify all the CYT samples,
cost-modifying methods can recognize about 45% ME3
samples only and SV-pruning methods can correctly
classify 70% ME3 samples. The ROC curve allows us to
determine appropriate operating point in terms of the
classification performance of the two classes.
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Figure 1. ROC curves for the yeast data.

B. RESULTS FOR TARGET DETECTION DATASET

The target detection dataset used here contains
images with 480 by 640 pixels taken at spectral range 460
— 1000 nm with 20 nm steps at 4 different polarizations
(0°, 45°, 90°, and 135°). Each scene contains one military
vehicle in a vegetation background. The objective is to
locate the military vehicles in the scenes. Typically, most
of the pixels in the images are background pixels. We
randomly extract 200 target pixels and 5000 background
pixels in the hyperspectral and polarimetric set of vehicle
images (HMMWYV, personnel carrier, etc.). These samples
are divided into two equally sized groups, one as training
sample sets and the other as test set. In this paper, we
report results on these training and test pixel data. The
features used are the combination of HS and polarization
difference image based features, as detailed in [20].

First, the SVM classifier is trained based on all the
training samples. There are 83 support vectors for the
background class. Table 5 shows the cost-modifying
results for C,/C,= 25:1, which is the ratio of class samples.
Table 6 lists the results for SV-pruning methods by
removing 48 support vectors (to achieve comparable
classification rate of the target class). Using cost-
modifying methods to identify 92 target samples correctly
(test results), 63 background samples will be misclassified;
while using SV-pruning methods, only 43 background
samples are misclassified. Another interesting result is that
for cost-modifying methods, if the ratio is larger than
128:1, the confusion matrix remains the same, as shown in
Table 7, i.e., no further improvement can be made. Thus,
the best the cost-modifying methods can do in this case is
to identify 92 test samples (target) with 105 errors of
background samples. For the SV-pruning methods, we can
keep identifying more target samples by removing more
support vectors.



TABLE 5: CONFUSION MATRIX FOR COST-MODIFYING METHODS WITH

C\/C,=25/1
Training Test
Target Bkg* Target  Bkg
Target 99 1 92 8
Bkg 76 2424 63 2437

TABLE 6: CONFUSION MATRIX FOR SV-PRUNING METHODS WITH 48 SVS

REMOVED
Training Test
Target  Bkg Target Bkg
Target 100 0 93 7
Bkg 33 2467 43 2457

TABLE 7: CONFUSION MATRIX FOR COST-MODIFYING METHODS WITH

Cy/C,=128/1
Training Test
Target Bkg | Target Bkg
Target 100 0 92 8
Bkg 107 2393 107 2393
*Bkg: Background
Figure 2 shows the Receiver Operating

Characteristic curves of test samples for the HS target
detection data, where x-axis is the false positive rate (the
ratio between the number of background samples that are
misclassified as target samples and the total number of
background samples) and y-axis is the true positive rate
(the percentage of target samples that are correctly
classified). As can be seen, SV-pruning methods
consistently outperform cost-modifying methods: to
correctly identify all the target samples, about 23%
background samples will be misclassified as target samples
for SV-pruning methods, while cost-modifying methods
can not reach 100% classification rate for the target
samples (test data); on the other hand, to correctly identify
all the background samples, cost-modifying methods can
recognize about 20% ME3 samples only and SV-pruning
methods can correctly classify 75% ME3 samples. It is
worth noting that cost-modifying methods can achieve
100% classification rate of the target class for training
samples, but not for test data (for test data, the best rate for
the target class is 92%).
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Figure 2. ROC curves for the target detection data.

IV. CONCLUSIONS

In this paper, a new method for imbalanced data
classification is presented. This method is based on
pruning support vectors of the class with larger samples. In
support vector classifiers, support vectors are the only
samples that decide the decision boundary. We first reduce
the training samples of the dominant class to all the
support vectors (using the support vector set and all the
training samples will yield the same learning model and
decision boundary). Then, by iteratively removing these
support vectors that will improve the classification rate for
the class with smaller samples, while minimize the effects
on the class with larger samples, we can achieve a desired
performance for the two classes. The method is evaluated
on two real-world datasets with different levels of class
imbalances and has been shown that it outperforms the
cost weighting based methods. Further improvement is
possible by employing other pruning approaches such as
branch and bound algorithms.
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