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Abstract- The class imbalance problem has been said to
challenge the performance of concept learning systems.
Learning systems tend to be biased towards the major-
ity class, and thus have poor generalization for the mi-
nority class instances. We analyze the class imbalance
problem in learning classifier systems based on genetic
algorithms. In particular we study UCS, a rule-based
classifier system which learns under a supervised learn-
ing scheme. We analyze UCS on an artificial domain
with varying imbalance levels. We find UCS fairly sen-
sitive to high levels of class imbalance, to the degree that
UCS tends to evolve a simple model of the feature space
classified according to the majority class. We analyze
strategies for dealing with class imbalances, and find fit-
ness adaptation based on class-sensitive accuracy a use-
ful tool for alleviating the effects of class imbalances.

1 Introduction

In the last decades, research in genetic algorithms (GAs)
and evolutionary computation (EC) has paid increasing at-
tention to machine learning and data mining applications.
Particularly, classification has been one of the primary in-
terests of researchers working in data mining applications
of genetic algorithms. Classification can be defined as the
process of assigning a class label to a given example, given
a set of examples previously classified. Many approaches
exist, such as decision trees, instance-based learners, neural
networks, and others.

Evolutionary learning classifier systems (LCSs) have
demonstrated to be highly competitive with respect to other
classifier schemes in a varied range of domains. Since the
first proposal, developed by Holland [Hol75, Hol76], the
field has benefited from numerous research and develop-
ment, being XCS [Wil95, Wil98] one of the best repre-
sentatives. At the current stage of maturity, researchers
have started to analyze the domain of competence of LCSs
[BHO5], and tested LCSs on challenging real-world classi-
fication problems [Ber02, BLG02, BB04, But04].

Research on real-world domains has identified several
sources of complexity for classifier schemes, such as the
geometry of class boundaries, sparsity of the available train-
ing dataset, presence of noise, and class imbalances, among
others [KKO01, BHOS]. Class imbalances correspond to the
case where one class is represented by a larger number of in-
stances than other classes. The issue is of great importance
since it appears in many real-world domains, such as fraud
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detection [FP97], text classification [LR94] and medical di-
agnosis such as thyroid diseases [BM98]. Many classifier
schemes work under the assumption of balanced classes and
may suffer from biases towards the majority class when the
assumption does not hold.

The aim of the present work is to analyze the effects of
the class imbalance problem on LCSs. Our analysis is cen-
tered on UCS classifier system [BGO3], a learning classi-
fier system based on XCS specifically designed for super-
vised classification problems. Due to the similarities be-
tween both systems, we expect to extend the learning be-
havior and results to XCS.

To isolate the class imbalance issue from other factors
of complexity of LCSs, we design an artificial domain and
study UCS on different levels of class imbalance. We iden-
tify a bias towards the majority class for high class imbal-
ance levels. In the literature, some methods, working at the
sampling level or at the classifier level [JS02], have been
proposed to alleviate this effect. Since we attribute the bias
towards the majority class examples to the generalization
pressure of the genetic algorithm, which is guided by the
accuracy-based fitness, we analyze strategies working at the
classifier level. Particularly, we adapt fitness computation
so that we include class-sensitive accuracy. The aim of this
proposal is to avoid UCS’s bias towards the majority class
on unbalanced datasets, while keeping the original UCS’s
behavior in well-balanced datasets.

The remainder of this paper is organized as follows.
Section 2 describes the UCS classifier system. Section 3
gives the details on the domain generation. Next, we train
UCS with varying levels of class imbalance and identify the
sources of difficulty for UCS. Section 5 revises strategies
for dealing with class imbalances, and centers the frame-
work for fitness adaptation in UCS. Section 6 shows the
results when training UCS with fitness adaptation, finally
tuning the approach in section 7 to achieve better coverage
of the feature space. Finally, section 8 summarizes the main
conclusions and provides directions for further work.

2 Description of UCS

UCS (sUpervised Classifier System) [Ber02, BGO3] is
a learning classifier system derived from XCS [Wil95,
Wil98]. UCS is specifically designed for supervised learn-
ing problems, while XCS follows a reinforcement learning
scheme. In the following we give a brief description of
UCS. For a more detailed description, the reader is referred



to [Ber02, BGO3].

2.1 Representation

UCS evolves a population [P] of individuals. Each individ-
ual is called classifier, and consists of a rule and a set of
parameters estimating the quality of the rule. A rule has the
structure: condition — class. The condition specifies the
set of examples that will be classified with the class codified
in the rule.

The representation of the condition depends on the types
of attributes. Within the scope of this paper, all attributes
are continuous, for which-we use the hyperrectangle rep-
resentation. Thus, the condition part is a set of intervals
[l;, u;]™, where n is the length of the input. An input in-
stance © = (z1,...,%,) satisfies the condition of a rule if
Vi l; < x; < u;. The class is usually codified as an integer.

The main parameters associated to a rule are: a) the ac-
curacy acc, b) the fitness F', c) the experience exp, d) the
niche size ns, e) the last GA application time ¢s and f) nu-
merosity num. Their use is described in the following.

2.2 Performance Component

UCS learns incrementally according to a supervised learn-
ing scheme. During training, examples coming from the
training set are provided to UCS. Each example is codified
by a set of attributes x = (z1, ..., ) and the given class c.
Then, UCS forms a match set [M] consisting of those clas-
sifiers whose conditions match the attributes of the input ex-
ample. From [M], the classifiers that correctly predict class
¢ form the correct set [C]. If [C] is empty, covering is trig-
gered, creating new classifiers with a condition matching the
example attributes and the same class as the example. Then,
the parameters of classifiers are updated and eventually, the
GA is applied (as described later).

In test mode, an input z is given, and UCS predicts its as-
sociated class. For each class, the system sums the fitness of
all classifiers predicting this class. The class with the high-
est value is chosen as the predicted class for input z. Under
test mode, parameter updates and the GA are disabled.

2.3 Parameter Updates

The parameters of classifiers belonging to [M] are updated.
First, the experience (exp) is increased. It corresponds
to the number of examples that the classifier has covered.
Next, the classifier’s accuracy is updated:

number of correct classi fications
acc = - €))]
experience

Finally, fitness is computed as a function of accuracy:
F = (acc)” @

where v is a parameter set by the user. A typical value is 10.

The niche set size ns stores the average number of classi-
fiers in [C]. This is updated whenever the classifier belongs
to a correct set.
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2.4 Genetic Algorithm

The genetic algorithm is used as the search mechanism. It
has a multimodal task: to co-evolve simultaneously a set of
rules which jointly represent the target concept.

The GA is applied locally to the current [C]. This favors
niching [Wil98]. The GA is triggered if the time elapsed
since the last application of the GA in the current set (com-
puted from the average ts of classifiers in [C]) exceeds a
threshold 65 4. If GA triggers, then it selects two parents
from [C] with probability proportional to fitness and copies
them. Then, the copies undergo crossover and mutation
with probabilities x and p respectively.

The resulting offspring are introduced into the popula-
tion. First, each offspring is checked for subsumption with
each parent. If one of the parents is accurate and more gen-
eral than the offspring, then the offspring is not introduced
and its parent’s numerosity is increased. Otherwise, the off-
spring is introduced into the population.

Inserting new classifiers into the population makes other
classifiers to be deleted, if the population is full. The dele-
tion probability of a classifier is proportional to the param-
eter ns. Additionally, if the classifier is sufficiently experi-
enced and its fitness is low, its probability to be deleted is
inversely proportional to its fitness. Thus, the deletion vote
of each classifier is:

F

ns . _—

dv = { F
ns

where F is the average fitness of all the population, and §
and 6,4, are parameters set by the user. The probability of
being deleted is:

if exp > 0gey and F < 6F
otherwise

3)

dv
Pdel = 7 C)]
Z j=1 dv]
where N is the population size.
This leads the search towards highly fit classifiers, and
at the same time balances the allocation of classifiers in the
different niches.

3 Dataset Design

To analyze the class imbalance problem on UCS, we de-
signed an artificial domain which allowed us to isolate the
class imbalance factor from other complexity factors iden-
tified in LCS [BG03]. The domain has two real attributes
ranging in the interval [0,1], and two classes distributed in
alternating squares drawing a checkerboard in the feature
space. The problem is denoted as chk.

Similarly to [JS02], the complexity of the problem can
be tuned along three different dimensions: the dataset size
(s), the concept complexity (c), and the imbalance level
between two classes (7). Dataset size is the size of the
completely-balanced training set. The concept complexity
defines the number of boundaries between the two classes,
which is identified as one of the most critical complexity
factors in LCSs [BHO5]. The imbalance level determines
the ratio of the number of examples between the minority
class and the majority class.
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The domain generation process creates a well-balanced
dataset, and then proceeds to unbalance it by removing
some of the minority class instances. The original balanced
dataset is defined by s instances and concept complexity c,
which corresponds to c? alternating squares. We randomly
draw s points in the feature space so that each checkerboard
square receives s/c? instances. Since the original dataset
does not present any imbalance, 7 is set to zero.

The unbalanced datasets are generated by removing pro-
gressively half of the examples of the minority class. For
1 = 1, half of the minority class instances are removed from
the well-balanced dataset. In general, the dataset at imbal-
ance level 7 > 0 is generated by randomly removing half
of the examples of the minority class from the dataset ob-
tained at imbalance level (¢ — 1). This means that given an
imbalance level ¢ > 0, the dataset generated contains s/ 2
instances in each majority class square, and s/(2¢ - ¢?) in-
stances in each square of the minority class. Thus, fori > 0,
the ratio between the minority class instances and majority
class instances is 1/2°.

In our experiments, we set s = 4096 and ¢ = 4, and
only varied the imbalance level from 7 = 0 to 7z = 7. Figure
1 shows the resulting training datasets. Note that minority
class instances are progressively removed from the previous
level. The highest unbalanced dataset, shown in figure 1(h),
has only two instances into each minority class square.

Class boundaries are lineal, which fits perfectly with the
hyperrectangle codification used in UCS. This means that
the problem topology would not cause any main difficulty
to UCS’s learning process, as long as each square of the
checkerboard can be codified with only one rule. In fact, a
dataset can be correctly classified with ¢? rules.

4 Training UCS with Unbalanced Class
Datasets

We ran UCS with the following parameter settings (see
[BWO1] and [BGO3] for the notation): N=400, v=10,
£=0.2, 04=25, x=0.8, ;1=0.04, 6=0.1, 04¢,=20, GASub =
true, [A]Sub=false, 0,5, = 20, accy=0.99, Specify=true,
Ns =20, Ps =0.5. We trained UCS with the datasets shown
in figure 1 for 200,000 learning iterations. To analyze the
boundaries evolved by UCS, we tested UCS with a dense
dataset which sampled the feature space with 10,000 uni-
formly distributed points. Then, we drew the class predic-
tion of UCS for each point.

Figure 2 shows the boundaries evolved by UCS on the
checkerboard problem. Boundaries of the minority class
squares are plotted in black, while boundaries of the ma-
jority class squares are plotted in gray. For brevity, we only
show the results for imbalance levels from 7 = 2to i = 5,
which reflect the most significant behavior of UCS. Figures
2(a) and 2(b) show the results for imbalance ratios of 1:4
and 1:8 respectively. In both cases, UCS was able to evolve
the correct boundaries. For lower imbalance levels, UCS’s
boundaries were also correct. For imbalance levels ¢ = 4
and higher, UCS begins to find difficulties classifying the
minority class examples. Note that UCS predicted almost
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Figure 1: Training datasets for the checkerboard problem
with dataset size s = 4096, concept complexity ¢ = 4, and
imbalance levels from O to 7. Each figure shows the posi-
tion of each training point and the class to which it belongs,
plotted with a different type of point.

all the feature space as belonging to the majority class.

For a deeper analysis of UCS’s behavior, let’s look at
the population evolved by UCS for ¢ = 4, where UCS has
abruptly changed its behavior with respect to the previous
imbalance levels. Table 1 shows some of the classifiers of
the final population, sorted by class and numerosity. For
each classifier, we show its condition and class and the most
important parameters. Each condition has two interval pred-
icates, one for each dimension. For each predicate we show
the lower and upper extremes of the interval. The majority
class is 0 and the minority class is 1.

The table shows that, in fact, UCS evolved accurate and
maximally general classifiers covering each of the squares
belonging to the minority class. Actually, the eight most
numerous rules are those that cover the eight minority class
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Figure 2: Space model evolved by UCS with imbalance lev-
els from 2 to 5. Black regions are those classified as the
minority class and gray regions are those classified as the
majority class.

squares. Additionally, the table contains other less numer-
ous rules predicting the majority class. The problem is that
these rules are too general; instead of covering only the
squares of the majority class, they are generalized to the
whole feature space. Note that all rules predicting class 0
have interval predicates of type at; € [0, 1] and ats € [0, 1].
The accuracy of these rules is 0.94, which corresponds to
the case of covering accurately all the instances of the ma-
jority class and covering wrongly the instances of the minor-
ity class. As the instances of the minority class are less fre-
quent, their incidence in the accuracy of overgeneral rules
is not very significant.

To explain UCS’s tendency to evolve these overgen-
eral rules, we checked whether overgeneral rules were also
evolved in lower imbalance levels. Surprisingly, we found
that all populations evolved with imbalance levels greater
than 1 contained the most general rule (at; € [0,1] and
aty € [0,1]). The only difference was that the accu-
racy value was different in each imbalance level; i.e., the
accuracy of the overgeneral rule was greater for higher im-
balance levels. Table 2 shows the population evolved for
1 = 3. Note that the population contains the eight rules cor-
responding to the eight minority class squares and several
other overgeneral rules covering all the feature space. Ac-
curacy of overgeneral rules is 0.89 for « = 3 and 0.94 for
1 =4.

We hypothesize that these overgeneral rules are created
due to the generalization pressure induced by the applica-
tion of the GA to the correct sets (see [BPO1] for a study on
evolutionary pressures on XCS). General rules tend to par-
ticipate in more correct sets, and consequently they have
more reproductive opportunities. For highly unbalanced
datasets, overgeneral rules have moderate fitness values, be-
cause accuracy is biased towards the majority class. In addi-
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Table 1: Most numerous rules evolved by UCS in the chk
problem with imbalance level i=4, sorted by class and nu-
merosity. Columns show respectively: the rule number, the
condition and class (C), where 0 is the majority class and 1
the minority class, the accuracy (acc), fitness (F), and nu-
merosity (N).

id condition C acc F N
1 [0.509,0.750] [0.259,0.492] 1 1.00 1.00 39
2 [0.000,0.231] [0.252,0.492] 1 1.00 1.00 38
3 [0.000,0.248] [0.755,1.000] 1 1.00 1.00 35
4 [0.761,1.000] [0.000,0.249] 1 1.00 1.00 34
5 [0.255,0.498] [0.520,0.730] 1 1.00 1.00 33
6 [0.751,1.000] [0.514,0.737] 1 1.00 1.00 31
7 [0.259,0.498] [0.000,0.244] 1 1.00 1.00 27
8 [0.501,0.743] [0.751,1.000] 1 1.00 1.00 18
9 [0.500,0.743] [0.751,1.000] 1 1.00 1.00 9
10 [0.751,1.000] [0.531,0.737] 1 1.00 1.00 8
18 [0.509,0.750] [0.246,0.492] 1 0.64 0.01 1
19 [0.000, 1.000] [0.000,1.000] O 094 0.54 20
20 [0.000, 1.000] [0.000,0.990] O 094 0.54 13
21 [0.012,1.000] [0.000,0.990] 0 094 0.54 10
64 [0.012,1.000] [0.038,0.973] O 094 0.54 1

Table 2: Most numerous rules evolved by UCS in the chk
problem with imbalance level ¢=3, sorted by class and nu-
merosity. Columns show respectively: the rule number, the
condition and class (C), where 0 is the majority class and 1
the minority class, the accuracy (acc), fitness (F), and nu-
merosity (N).

id condition C acc F N
1 [0.251,0.498] [0.000,0.244] 1 1.00 1.00 39
2 [0.501,0.751] [0.760,1.000] 1 1.00 1.00 37
3 [0.000,0.246] [0.259,0.500] 1 1.00 1.00 36
4 [0.259,0.499] [0.504,0.751] 1 1.00 1.00 33
5 [0.506,0.746] [0.263,0.498] 1 1.00 1.00 30
6 [0.751,1.000] [0.502,0.749] 1 1.00 1.00 29
7 [0.752,1.000] [0.000,0.240] 1 1.00 1.00 27
8 [0.000,0.246] [0.759,1.000] 1 1.00 1.00 20
25 [0.000,0.233] [0.584,1.000] 1 0.13 0.00 1
26  [0.000, 1.000] [0.000,1.000] O 0.89 031 13
27 [0.010,1.000] [0.000,1.000] O 0.89 0.31 12
60 [0.051,1.000] [0.017,0.926] O 0.89 0.31 1
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tion, the specific classifiers trying to cover minority exam-
ples have a lower GA exposure. Thus, overgeneral rules
tend to be created and maintained in the population. In
balanced or low unbalanced datasets, overgeneral rules will
have low fitness. For a well-balanced dataset, an overgen-
eral rule covering all the feature space has an accuracy of
0.50. Thus, in these cases an overgeneral rule will not be
very significant; in the case it is created, it will tend to be
removed from the population due to its low fitness. At least,
their numerosity will be smaller than that of overgeneral
rules in high imbalance levels.

After analyzing why the overgeneral rules are created
and maintained in the population as the imbalance level in-
creases, let’s return to the population shown in table 1. For
imbalance level i=4, UCS generalizes all the feature space
by the majority class. However, for i=3, the minority class
squares are correctly classified despite the presence of over-
general rules in the population. The reason may be found
in the way that UCS selects the predicted class. Recall that
UCS computes a vote weighted by fitness for each of the
classes represented in [M], and chooses the class with the
highest vote as the prediction for the given example. Thus,
if there are many overgeneral classifiers and their fitness
is moderately high, overgeneral classifiers can get a higher
vote than accurate classifiers. This happens for ¢ = 4 and
higher imbalance levels.

5 Strategies for Dealing with Class Imbalances

There are several methods that have been proposed in the
literature to deal with class imbalances. Some of the best
well-known approaches are applied at the sampling level
[JS02, HDWQO]. They are based on sampling appropriately
the training dataset so that they balance the a-priori prob-
abilities of classes. This can be done either oversampling
the minority class examples or undersampling the majority
class examples. Both methods can be applied in any concept
learning system, since they act as a preprocessing phase, al-
lowing the learning system to receive the training instances
as if they belonged to a well-balanced dataset. Thus, any
bias of the system towards the majority class due to the dif-
ferent proportion of examples per class would be expected
to be suppressed. However, we caution that these meth-
ods are changing somehow the available information in the
training dataset, and probably their success depends on the
topology and geometry of class boundaries.

Other contributions deal with the class imbalance prob-
lem at the classifier system level [Hol98]. We have fo-
cused on this approach. Having identified the class imbal-
ance problem in UCS system, we propose a modification in
the system which aims to alleviate the class imbalance ef-
fect without changing the system behavior on well-balanced
datasets.

The class imbalance problem reported in section 4 has
been ascribed to the fact that fitness is based on accuracy,
which presents a high bias towards the majority class in-
stances, combined with the generalization tendency of the
GA. This made UCS to evolve easily overgeneral classi-
fiers that covered all the feature space. Making accuracy
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class-sensitive rather than instance-sensitive could help in
the identification of overgeneral classifiers predicting large
regions of the search space as belonging to the majority
class. The idea is to restrict classifiers to cover regions
formed by examples of a single class. Thus, we modify ac-
curacy so that each class is considered equally important re-
gardless of the number of instances representing each class.
The method will be referred as class-sensitive accuracy.
Next section analyzes UCS under class-sensitive accu-
racy on the set of chk problems at different levels of class
imbalances. As a future work, we acknowledge that the
study could also be extended to the analysis of sampling
strategies and their comparison with the proposed strategy.

6 Class-Sensitive Accuracy

We modify the way in which accuracy is computed in UCS
as described as follows. For each classifier, we compute the
accuracy on each of the classes acc; separately. We also
compute individually the number of examples that the clas-
sifier covers of each class. We name it as the classifier’s ex-
perience on that class, and denote as exp;. The compound
accuracy is then obtained by the average of all individual
accuracies whose experience is higher than 0:

1 c
acc = a | Z ace; 5)
i=1lexp; >0

where C is the number of classes of the problem, and C,

is the number of different classes that the rule covers (i.e.,
the number of classes where exp; is greater than 0). Note
that we average only the accuracies of the classes such that
exp; > 0. Changing accuracy also changes fitness so that
we expect the GA to be guided towards classifiers predicting
only instances of a single class.

We ran UCS with class-sensitive accuracy in the chk
problem using the same parameter settings as in section 4.
Figure 3 shows the results. Figures 3(a) and 3(b) show the
models evolved with imbalance levels i = 2 and ¢ = 3
respectively. In these cases, both UCS and UCS with class-
sensitive accuracy evolved correct models of the feature
space. However, UCS with class-sensitive accuracy shows
a little tendency to evolve smaller minority class regions,
leaving some parts of the feature space uncovered. Dur-
ing learning, when a classifier that covers either a minority
or a majority class region is enlarged by a genetic opera-
tor and starts covering some examples of the opposite class,
its accuracy is decreased to the half, and therefore its fit-
ness is abruptly decreased. Classifiers that cover minority-
class regions have more probabilities of suffering this ef-
fect, as long as there are more majority-class instances than
minority-class ones. The result is that those regions closer
to the boundaries are often left uncovered.

Figures 3(c) and 3(d) show the models evolved with im-
balance levels ¢ = 4 and ¢ = 5. The boundaries evolved by
UCS under class-sensitive accuracy clearly improve those
ones evolved by raw UCS. Besides, the population obtained
shows that the tendency of evolving overgeneral rules is
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Figure 3: Space model evolved by UCS with class-sensitive
accuracy, for imbalance levels ranging from 2 to 7. Black
regions are those classified as the minority class, while gray
regions are those classified as the majority class. White re-
gions are uncovered domain regions.

avoided. Table 3 depicts the most numerous rules evolved
by UCS under class-sensitive accuracy for imbalance level
i = 4. Now, we show the individual accuracy for each class
rather than the compound accuracy. Note that the popu-
lation does not contain any overgeneral rule, and the most
numerous rules are those that predict correctly each of the
16 squares.

Finally, figures 3(e) and 3(f) show the models evolved
with imbalance levels ¢ = 6 and ¢ = 7. As the imbalance
level increases, the system is able to discover fewer minor-
ity class regions. For the highest imbalance level, UCS can
only discover four regions of the minority class. Looking
at the population evolved, not detailed for brevity, we hy-
pothesize that the problem is attributable to the fact that the
imbalance ratio is so high (1:128) that the problem almost
derives to a sparsity problem. There are so few instances
of the minority class squares that UCS can hardly evolve
generalizations.

7 Weighted Class-Sensitive Accuracy

Class-sensitive accuracy causes a high deletion pressure to-
wards overgeneral classifiers. So, it tends to remove the
classifiers closer to class boundaries as long as their con-
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Table 3: Most numerous rules evolved by UCS with class-
sensitive accurcy, at imbalance level :=4. Columns show
respectively: the rule number, the condition and class (C),
where 0 is the majority class and 1 the minority class, the ac-
curacy for each class (ag and a1), fitness (F), and numeros-
ity (N).

id condition C ay a1 F N
1 [0.485,0.756] [0.483,0.753] O 1 - 1.00 34
2 [0.000,0.253] [0.502,0.756] O 1 - 1.00 34
3 [0.252,0.505] [0.750, 1.000] O 1 - 1.00 32
4 [0.753,1.000] [0.749,1.000] O 1 - 1.00 31
5 [0.737,1.000] [0.238,0.515] O 1 - 1.00 29
6 [0.499,0.772] [0.000,0.277] O 1 - 1.00 27
7 [0.000, 0.244]  [0.000,0.248] O 1 - 1.00 27
8 [0.225,0.544] [0.223,0.529] O 1 - 1.00 27
9 [0.252,0.499] [0.000, 0.207] 1 - 1 1.00 21

10 [0.752,1.000] [0.000, 0.242] 1 - 1 1.00 18

11 [0.751,1.000] [0.502, 0.738] 1 1 1.00 15

12 [0.506,0.734] [0.761, 1.000] 1 - 1 1.00 15

13 [0.510,0.741] [0.252,0.479] 1 - 1 1.00 13

14 [0.000,0.233]  [0.757, 1.000] 1 - 1 1.00 12

15 [0.000, 0.240] [0.254, 0.485] 1 - 1 1.00 11

16 [0.252,0.488] [0.516,0.743] 1 - 1 1.00 6

17 [0.252,0.498] [0.516, 0.692] 1 - 1 1.00 6

18 [0.000,0.227]  [0.757, 1.000] 1 - 1 1.00 4

19 [0.504,0.772] 0 1 - 1.00 4

[0.000, 0.277]

ditions slightly exceed the class boundary, decreasing their
accuracy to 0.5. This leaves some uncovered regions in the
feature space. Taking this fact to the extreme, the system
would maintain only those rules that classify instances of
the same class.

Herein, we modify the class-sensitive accuracy function
to give more opportunities to classifiers approaching class
boundaries while they are not much experienced. We expect
that giving them more recombination opportunities, new
better classifiers will be generated before the overgeneral
ones are removed from the population. The modification
only applies if the classifier has some class accuracies with
little experience (exp; < 64..) and other class accuracies
with high experience (ezp; > 64cc). In the remaining cases,
we use the accuracy function of formula 5. In the former
case, the compound accuracy is weighted according to each
class experience:

C

acc = Ci Z

¢ i=1lexp; >0

ace; - w; 6)

where w; weights the contribution of each class accuracy to
the compound accuracy depending on the classifier’s expe-
rience in each class. It is computed as follows:

|
)’g

ac; c
. —_ E ETP;
¢ vace i=1|0<ezp;<blacc Pi

Cee “Yacc

w; =

Q

'lf ETP; Z Hacc

where C.. is the number of experienced classes (i.e., the
number of classes whose accuracy experience is higher than
Oace), and .. is a threshold below which the class accuracy
is considered inexperienced. Thus, for each rule we com-
pute separately the accuracy for each class (acc;) and the
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Figure 4: Space model evolved by UCS with weighted
class-sensitive accuracy, for imbalance levels ranging from
2 to 7. Black regions are those classified as the minority
class, while gray regions are those classified as the majority
class. White regions are uncovered domain regions.

experience for each class (exp;). The contribution of the ith
class to the global accuracy is weighted by the ratio of exp;
to B¢, if this class accuracy is inexperienced. If the rest of
the classes have experienced accuracies, their contribution
to the global accuracy is the same among them.

The new expression gives more opportunities to inaccu-
rate classifiers, smoothing the abruptness introduced by for-
mula 5 during the first 0,.. participations in [M] predicting
an specific class. Parameter 6,.. defines the opportunities
given to a classifier. If it is too low, the behavior is the
same as in formula 5. If it is too high, the system gives too
many opportunities to inaccurate classifiers. It should be set
depending on the 65 4 threshold, because 6 4 defines the
GA application frequency on [C]. In all experiments made
herein, 0,.. = 2 - 054 = 50.

Figure 4 shows the models evolved with weighted class-
sensitive accuracy. As expected, uncovered regions that ap-
peared previously in figure 3 have now been reduced. Cov-
erage has improved. However, minority class regions are
harder to discover, since the new average function intro-
duces more pressure towards more general rules. Looking
at the population evolved, we see that overgeneral rules tend
to appear especially for the highest imbalance levels, but
to a lower extent than with the original UCS approach. In
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fact, for the highest imbalance levels there are so few repre-
sentatives of the minority class regions that we may debate
whether these points are representative of a sparse region or
whether they can be attributed to noise cases. In the latter
case, we would acknowledge that UCS should not evolve
any distinctive region for these cases and thus, the result
obtained in these cases would be desirable.

8 Conclusions

This paper analyzed UCS’s behavior on class unbalanced
datasets. We found that for low unbalanced datasets, UCS’s
boundaries are not biased by the majority class instances.
However, UCS tends to evolve overgeneral rules covering
large regions of the feature space. For low unbalanced
datasets, the ruleset behaves as a default hierarchy and thus,
the predicted boundaries are not affected significantly by
these overgeneral rules. For moderate and high unbalanced
datasets, overgeneral rules interfere with specific rules cov-
ering the minority class regions to the extreme that all the
feature space gets classified by the majority class. In our do-
main, this happened for imbalance ratios equal to or greater
than 1:16. We would like to extend this study to other prob-
lems to see if this ratio is generalizable to other domains,
although we suspect that this will depend on the distribu-
tion of classes in the feature space.

We studied strategies to help UCS discover the correct
boundaries regardless of the number of examples each con-
tained. We identifed UCS’s bias towards the majority class
attributable to the generalization pressure of the genetic al-
gorithm, coupled with the fitness guidance provided by the
current accuracy computation. Thus, we proposed a fitness
adaptation based on class-sensitive accuracy, which penal-
izes rules covering examples belonging to different classes.
Results showed that UCS was able to discover the right
boundaries, while avoiding the tendency to evolve over-
general rules. Besides, UCS maintained its performance
in well-balanced datasets, although we observed some dif-
ficulties covering the examples near the class boundaries.
Weighted class-sensitive accuracy made UCS’s learning
smoother so that rules approaching class boundaries had
more opportunities. Results showed better coverage of the
feature space.

We studied UCS’s behavior on a particular type of clas-
sification problem. As the original balanced problem im-
posed no difficulties to UCS system, we could vary the im-
balance level and attribute the differences to this. However,
the study would be much enhanced analyzing jointly the
contribution to each of the complexity factors (dataset size
and concept complexity) to UCS’s behavior and studying to
what degree class imbalance is related to them. We could
also extend the analysis towards other types of problems
with different topologies, including problems with multi-
ple unbalanced classes. Finally, the addition of unbalanced
real-world datasets could serve as a testbed for validating
our results.

Proposals for dealing with class imbalances at the sam-
pling level could be analyzed under this extended testbed.
Class-sensitive accuracy has alleviated significantly the bias



towards majority class rules in UCS. However, as UCS is an
online learner and examples come once at a time, the sys-
tems suffers from sparsity if minority class instances come
very infrequently with respect to majority class instances.
When the imbalance ratio is very high, UCS with class-
sensitive accuracy can hardly generalize the minority class
instances. In these cases, a sampling strategy such as over-
sampling could aid the system to see sparse examples more
frequently and allow UCS to learn them. Also an strategy
combining oversampling and class-sensitive accuracy could
be designed.

Another possible limitation of the current approach
based on class-sensitive accuracy is the presence of noise in
the dataset. If the dataset contains mislabeled instances, a
class-sensitive accuracy can make the system evolve bound-
aries too tailored to the training dataset and present few
generalization capability on unseen instances. In fact, we
should analyze to what extent noise can affect UCS’s per-
formance with class-sensitive accuracy. If the percentage
of noisy instances is small, UCS may perceive it as sparse
instances and generalize these examples under the envelop-
ing class. It may depend strongly on the geometry of class
boundaries and the distribution of these noisy instances. We
suspect that oversampling and undersampling also would
suffer difficulties under noisy problems. We should analyze
to what extend noise interferes with strategies dealing with
class imbalances.

The study could also be enhanced with the analysis of
other LCSs. Preliminary results made on two evolutionary
learning classifier systems, GAssist and HIDER, showed
a high bias towards the prediction of the majority classes.
Moreover, it would be also interesting to extend the com-
parison to other classifier schemes not based on evolution-
ary algorithms.
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