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ABSTRACT
A number of feature selection metrics have been explored
in text categorization, among which information gain (IG),
chi-square (CHI), correlation coefficient (CC) and odds ra-
tios (OR) are considered most effective. CC and OR are
one-sided metrics while IG and CHI are two-sided. Feature
selection using one-sided metrics selects the features most
indicative of membership only, while feature selection us-
ing two-sided metrics implicitly combines the features most
indicative of membership (e.g. positive features) and non-
membership (e.g. negative features) by ignoring the signs of
features. The former never consider the negative features,
which are quite valuable, while the latter cannot ensure the
optimal combination of the two kinds of features especially
on imbalanced data. In this work, we investigate the use-
fulness of explicit control of that combination within a pro-
posed feature selection framework. Using multinomial näıve
Bayes and regularized logistic regression as classifiers, our
experiments show both great potential and actual merits
of explicitly combining positive and negative features in a
nearly optimal fashion according to the imbalanced data.

1. INTRODUCTION
Feature selection has been applied to text categorization
in order to improve its scalability, efficiency and accuracy.
Since each document in the collection can belong to multi-
ple categories, the classification problem is usually split into
multiple binary classification problems with respect to each
category. Accordingly, features are selected locally per cat-
egory, e.g. local feature selection.

A number of feature selection metrics have been explored,
notable among which are Information Gain (IG), Chi-square
(CHI), Correlation Coefficient (CC), and Odds Ratio (OR) [8;
9; 10; 12; 15]. CC and OR are one-sided metrics which se-
lect the features most indicative of membership for a cate-
gory only, while IG and CHI are two-sided metrics, which
consider the features most indicative of either membership
(e.g. positive features) or non-membership (e.g. negative
features). A feature selection metric is considered as one-
sided if its positive and negative values correspond to posi-
tive and negative features respectively. On the other hand,
a two-sided metric is non-negative with the signs of features

ignored.

One choice in the feature selection policy is whether to rule
out all negative features. Some argue that classifiers built
from positive features only may be more transferable to new
situations where the background class varies. Others believe
that negative features are numerous, given the imbalanced
data set, and quite valuable in practical experience. Their
experiments show that when deprived of negative features,
the performance of all feature selection metrics degrades,
which indicates negative features are essential to high qual-
ity classification [3]. We think that negative features are
useful because their presence in a document highly indicates
its non-relevance. Therefore, they help to confidently reject
non-relevant documents.

The focus in this paper is to answer the following three ques-
tions with empirical evidence:

• How sub-optimal are two sided metrics?

• To what extent can the performance be improved by
better combination of positive and negative features?

• How can the optimal combination be learned in prac-
tice?

The first two questions are concerned with the potential of
optimal combination of positive and negative features, and
the last with a practical solution.

Imbalanced datasets are commonly encountered in text cat-
egorization problems, especially in the binary setting. A
two-sided metric implicitly combines the positive and neg-
ative features by simply ignoring the signs of features and
comparing their values. However, the values of positive fea-
tures are not comparable with those of negative features due
to the imbalanced data. Furthermore, different performance
measures attach different weights to positive and negative
features: the optimal size ratio between the two kinds of
features should also depend on the performance measure.
Two-sided metrics cannot ensure the optimal combination
of the positive and negative features. However, neither one-
sided nor two-sided metrics themselves allow control of the
combination.

In order to examine the effect of control of the combina-
tion of positive and negative features, this paper presents a
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novel feature selection framework, in which the positive and
negative features are selected separately, and then combined
explicitly afterwards. Several standard methods are unified
by this framework and a set of new methods is proposed
that optimally combines the positive and negative features
for each category according to the data characteristics and
performance measure.

The rest of the paper is organized as follows. Sections 2
and 3 describe the related work: various feature selection
metrics and the imbalanced data problem respectively. In
Section 4, we present the new feature selection framework.
The experimental setup is reported in Section 5, and results
are analyzed in Section 6. The last section concludes.

2. FEATURE SELECTION METRICS
In this section, we present six feature selection metrics (four
known measures and two proposed variants), which are func-
tions of the following four dependency tuples:

1. (t, ci): presence of t and membership in ci.

2. (t, ci): presence of t and non-membership in ci.

3. (t, ci): absence of t and membership in ci.

4. (t, ci): absence of t and non-membership in ci.

where: t and ci represent a term and a category respec-
tively. The frequencies of the four tuples in the collection
are denoted by A, B, C and D respectively. The first and
last tuples represent the positive dependency between t and
ci, while the other two represent the negative dependency.

Information gain (IG) Information gain [12; 15] mea-
sures the number of bits of information obtained for
category prediction by knowing the presence or ab-
sence of a term in a document. The information gain
of term t and category ci is defined to be:

IG(t, ci) =
∑

c∈{ci,ci}

∑

t′∈{t,t}

P (t′, c) · log P (t′, c)

P (t′) · P (c)

Information gain is also known as Expected Mutual In-
formation. The Expected Likelihood Estimation (ELE)
smoothing technique was used in this paper to handle
singularities when estimating those probabilities.

Chi-square (CHI) Chi-square measures the lack of in-
dependence between a term t and a category ci and
can be compared to the chi-square distribution with
one degree of freedom to judge extremeness [12; 15].
It is defined as:

χ2(t, ci) =
N [P (t, ci)P (t, ci)− P (t, ci)P (t, ci)]

2

P (t)P (t)P (ci)P (ci)

where: N is the total number of documents.

Correlation coefficient (CC) Correlation coefficient of
a word t with a category ci was defined by Ng et al.
as [12; 10]

CC(t, ci) =

√
N [P (t, ci)P (t, ci)− P (t, ci)P (t, ci)]

√

P (t)P (t)P (ci)P (ci)

It is a variant of the CHI metric, where CC2 = χ2.
CC can be viewed as a “one-sided” chi-square metric.

Odds ratio (OR) Odds ratio measures the odds of the
word occurring in the positive class normalized by that
of the negative class. The basic idea is that the dis-
tribution of features on the relevant documents is dif-
ferent from the distribution of features on the non-
relevant documents. It has been used by Mladenić for
selecting terms in text categorization [8]. It is defined
as follows:

OR(t, ci) = log
P (t|ci)[1− P (t|ci)]

[1− P (t|ci)]P (t|ci)

Similar to IG, ELE smoothing was used when estimat-
ing those conditional probabilities.

According to the definitions, OR considers the first two de-
pendency tuples, and IG, CHI, and CC consider all the four
tuples. CC and OR are one-sided metrics, whose positive
and negative values correspond to the positive and negative
features respectively. On the other hand, IG and CHI are
two-sided, whose values are non-negative. We can easily ob-
tain that the sign for a one-sided metric, e.g. CC or OR, is
sign(AD −BC).

A one-sided metric could be converted to its two-sided coun-
terpart by ignoring the sign, while a two-sided metric could
be converted to its one-sided counterpart by recovering the
sign, e.g. CHI vs. CC.

We propose the two-sided counterpart of OR, namely OR-
square, and the one-sided counterpart of IG, namely signed
IG as follows.

OR-square (ORS) and Signed IG (SIG)

ORS(t, ci) = OR2(t, ci),

SIG(t, ci) = sign(AD −BC) · IG(t, ci)

The overall feature selection procedure is to score each po-
tential feature according to a particular feature selection
metric, and then take the best features. Feature selection
using one-sided metrics like SIG, CC, and OR pick out the
terms most indicative of membership only. The basic idea
behind this is the features coming from non-relevant docu-
ments are useless. They will never consider negative features
unless all the positive features have already been selected.
Feature selection using two-sided metrics like IG, CHI, and
ORS, however, do not differentiate between the positive and
negative features. They implicitly combine the two.

3. THE IMBALANCED DATA PROBLEM
The imbalanced data problem occurs when the training ex-
amples are unevenly distributed among different classes. In
case of binary classification, the number of examples in one
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class is significantly greater than that of the other. Attempts
have been made to deal with this problem in diverse domains
such as fraud detection [2], in-flight helicopter gearbox fault
monitoring [4], and text categorization [6; 1; 9].

When training a binary classifier per category in text cate-
gorization, we use all the documents in the training corpus
that belong to that category as relevant training data and
all the documents in the training corpus that belong to all
the other categories as non-relevant training data. It is of-
ten the case that there is an overwhelming number of non-
relevant training documents especially when there is a large
collection of categories with each assigned to a small num-
ber of documents, which is typically an “imbalanced data
problem”. This problem presents a particular challenge to
classification algorithms, which can achieve high accuracy by
simply classifying every example as negative. To overcome
this problem “query zone” and “category zone” have been
introduced to select a subset of most relevant non-relevant
documents as the non-relevant training data [13]. Essen-
tially these techniques try to obtain more balanced relevant
and non-relevant training data by under-sampling negative
examples.

In this work, we consider the imbalanced data problem from
a different perspective. As Forman [3] argued, feature selec-
tion should be relatively more important than classification
algorithms in highly imbalanced situations. Instead of bal-
ancing the training data, our methods actively-select the
most useful features, e.g. combine positive and negative
features in a nearly optimal fashion, according to the im-
balanced data. This provides an alternative to handle the
imbalanced data problem. Experimental comparison of our
methods and those sampling strategies will be our future
research.

The impact of imbalanced data problem on the standard
feature selection can be illustrated as follows, which primar-
ily answers the first question of Section 1:

First, for the methods using one-sided metrics (e.g. SIG,
CC, and OR), the non-relevant documents are subject to
misclassification. It will be even worse for the imbalanced
data problem, where non-relevant documents dominate. How
to confidently reject the non-relevant documents is impor-
tant in that case.

Second, given a two-sided metric, the values of positive fea-
tures are not necessarily comparable with those of negative
features. Let us use CHI for example. The upper limit CHI
value of a positive or negative feature is N . For the posi-
tive feature, it represents the case that the feature appears
in every relevant document, but never in any non-relevant
document. For the negative features, it means that the fea-
ture appears in every non-relevant document, but never in
any relevant document. Due to the large amount and di-
versity of the non-relevant documents in imbalanced data
set, it is much more difficult for a negative feature to reach
the same maximum that a positive feature does. This ex-
treme example shed light on why the CHI values of positive
features are usually much larger than those of negative fea-
tures. CHI and CC are very similar when the size of the
feature set is small and the data set is highly imbalanced.

Third, let TP, FP, FN and TN denote true positives, false
positives, false negatives and true negatives respectively.
Positive features have more effect on TP and FN , while
negative features have more effect on TN and FP . Two-
sided metrics attach the same weights to the two kinds of
features. Therefore, feature selection using a two-sided met-
ric combines the positive and negative features so as to op-
timize the accuracy, which is defined to be TP+TN

TP+TN+FP+FN
.

F1 has been widely used in information retrieval, which is:
2·TP

2·TP+FP+FN
[11]. In case of imbalanced dataset where TN

is much larger than TP , the two measures are quite different.
Two-sided metrics cannot ensure the optimal combination
of positive and negative features according to F1.

Finally, some performance measures themselves, e.g. Fβ , β 6=
1.0, attach different weights to precision(p) and recall(r) [11]:

Fβ =
(β2 + 1)p× r

β2p + r

=
(β2 + 1) TP

(β2 + 1) TP + FP + β2 FN

where p and r are defined as TP
TP+FP

and TP
TP+FN

respec-
tively. Therefore, positive and negative features are consid-
ered of different importance. Two sided metrics cannot en-
sure the optimal combination according to those measures,
no matter whether the dataset is balanced or not.

4. FEATURE SELECTION FRAMEWORK
Since implicit combination of positive and negative features
using two-sided metrics is not necessarily optimal, explicit
combination is the choice. In order to examine the effect of
control of the combination, we propose separate handling of
the two kinds of features in the following framework.

4.1 General formulation
For each category ci :

• generate a positive-feature set F +

i of size l1 by selecting
the l1 terms with highest =(t, ci). l1, 0 < l1 ≤ l, is a
natural number.

• generate a negative-feature set F−
i of size l2 by select-

ing the l2 terms with highest =(t, ci). l2 = l − l1 is a
non-negative integer.

• Fi = F+

i ∪ F−
i .

where: l is the size of feature set, which is usually prede-
fined. 0 < l1/l ≤ 1 is the key parameter of the framework
to be set. The function =( · , ci) should be defined so that
the larger =(t, ci) is, the more likely the term t belongs to
the category ci. Obviously, one-sided metrics like SIG, CC,
and OR can serve as such functions, while two-sided metrics
like IG, CHI, and ORS cannot.

In the first step, we intend to pick out those terms most
indicative of membership of ci, while those terms most in-
dicative of non-membership are selected as well in the second
step. The final feature set will be the union of the two.
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Based on their definition, we can easily obtain:

SIG(t, ci) = −SIG(t, ci),

CC(t, ci) = −CC(t, ci),

OR(t, ci) = −OR(t, ci),

Accordingly, the second step can be rewritten as:

• generate a negative-feature set F−
i of size l2 by select-

ing the l2 terms with smallest =(t, ci).

Therefore, the framework combines the l1 terms with largest
=( · , ci) and the l − l1 terms with smallest =( · , ci).

4.2 Two special cases
The standard feature selection methods generally fall into
one of the following two groups:

1. select the positive features only using one-sided met-
rics, e.g. SIG, CC, and OR. For convenience, we will
use CC as the representative of this group.

2. implicitly combine the positive and negative features
using two-sided metrics, e.g. IG, CHI, and ORS. CHI
will be chosen to represent this group.

The two groups are two special cases of our feature selec-
tion framework. The standard feature selection using CC
corresponds to the case where = = CC, l1/l = 1. The
standard method using CHI corresponds to the case where
= = CC, and l1/l is implicitly set as follows. Considering
CHI, we have Fi = Max[χ2(·, ci), l]. The positive subset of

Fi is F
′

i = {t ∈ Fi|CC(t, ci) > 0}. The feature set Fi can be
equivalently obtained as a combination of the terms most
indicative of membership and non-membership:

F+

i = Max[CC(·, ci), |F
′

i |];

F−
i = Min[CC(·, ci), l − |F

′

i |];

Fi = F+

i ∪ F−
i

Where: Max[=(·, ci), l] and Min[=(·, ci), l] represent the l
features with highest and smallest = values respectively.

Note that F
′

i ≡ F+

i . It illustrates the standard feature se-
lection using CHI is a special case of the framework, where

l1 = |F ′

i | is internally decided by the size of feature set l
given the data set.

4.3 Optimization
The feature selection framework facilitates the control on
explicit combination of the positive and negative features
through the parameter l1/l.

As we can see, the combination of positive and negative
features is solely decided by the size ratio l1/l given the pre-
defined feature size and metric. One-sided and two-sided
metrics actually correspond to two particular values of that
ratio, which are not optimal. How to optimize the size ra-
tio is the key. We design the following two scenarios for
optimization answering the second and third questions of
Section 1 respectively.

Ideal scenario is designed to explore the potential of ex-
plicit combination of positive and negative features.
In this case, the size ratio for each category is opti-
mized on the test set. That is, we use the training
data to learn different models per category according
to different size ratios ranging from 0 to 1 and select
the ratio having best performance, e.g. F1, on the test
set. It represents the “best possible” size ratio for each
category.

Practical scenario Certainly, in practice the optimal size
ratios cannot be learned from the test set. One sim-
ple way we tried in this paper is to empirically select
the size ratio per category having best performance
on the training set. This scenario is similar to wrap-
per techniques [5], but use feature selection metrics
as heuristics to guide the search more efficiently and
effectively.

Accordingly, a set of new methods corresponding to = =
SIG, CC and OR are proposed for each of the two scenar-
ios, where l1/l ∈ (0, 1] is empirically chosen per category
according to the scenario. The first set of methods are re-
ferred to as improved SIG, CC and OR in ideal scenario
while the other set are improved SIG, CC and OR in prac-
tical scenario.

The efficient implementation of optimization within the frame-
work is as follows:

• select l positive features with greatest =(t, ci) in a de-
creasing order.

• select l negative features with smallest =(t, ci) in an
increasing order.

• empirically choose the size ratio l1/l such that the fea-
ture set constructed by combining the first l1, 0 < l1 <
l, positive features and the first l− l1 negative features
has the optimal performance.

Therefore, during the optimization of size ratio l1/l for each
category, we did not conduct feature selection for each pos-
sible l1/l, but once only.

5. EXPERIMENTAL SETUP
In order to determine the usefulness of the new feature selec-
tion methods, we conduct experiments on standard text cat-
egorization data using two popular classifiers: näıve Bayes
and logistic regression.

5.1 Data collection
Reuters-21578 (ModApte split) is used as our data collec-
tion, which is a standard data set for text categorization [14;
15; 16]. This dataset contains 90 categories, with 7769 train-
ing documents and 3019 test documents. After filtering
out all numbers, stop-words and words occurring less than
3 times, we have 9484 indexing words in the vocabulary.
Words in document titles are treated same as in document
body.

5.2 Classifiers
On the training algorithms, We used näıve Bayes (NB for
short) and regularized logistic regression (LR for short).
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The multinomial mixture model of NB (tf representation)
and multivariate model of LR (binary representation) are
used [7; 17].

A NB score between a document d and the category ci can
be calculated as:

Score(d, ci) =
logP (ci) +

∑

fj
logP (fj |ci)

logP (ci) +
∑

fj
logP (fj |ci)

where: fj is the feature appearing in the document d, P (ci)
and P (ci) represent prior probabilities of relevant and non-
relevant respectively, and P (fj |ci) and P (fj |ci) are condi-
tional probabilities estimated with Laplacian smoothing.

Logistic regression tries to model the conditional probability
as:

P (y|d, w) =
1

1 + exp(−yiwT d)

The optimization problem for LR is to minimize:

w∗ = argminw{
1

n

n
∑

i=1

log(1 + exp(−yiw
T di)) + λwT w}

where di is the ith training example, w is the weight vec-
tor, yi ∈ {−1, 1} is the label associated with di, and λ is
an appropriately chosen regularization parameter, set to be
0.0001 as suggested in [17]. Column relaxation with Gauss-
Seidel is used for solving this optimization [17; 16].

5.3 Performance measure
To measure the performance, we use both precision (p) and
recall (r) in their combined from F1 : 2pr

p+r
[11]. To re-

main compatible with other results, the F1 value at Break
Even Point (BEP) [17] is reported throughout this paper,
which avoids the tuning of thresholds and purely evaluates
the direction of the decision hyperplane learned by the linear
method itself. BEP is defined to be the point where precision
equals recall. It corresponds to the minimum of |FP −FN |
in practice. To measure the global performance of different
methods, We report both micro and macro-averaged BEP
F1.

The micro-averaged F1 is largely dependent on the most
common categories while the rare categories influence macro-
averaged F1. The two most common categories: earn and
acq contain many more positive documents than the re-
maining categories and both of them have very good perfor-
mance on different classifiers (around .95 BEP F1 with both
NB and LR). The micro-averaged F1 is dominated by the
F1 values of the two categories. Besides, feature selection on
imbalanced data is our focus in this study. The top two cat-
egories are somewhat balanced. On the other side, for those
extremely rare categories containing only a few documents,
their F1 values are unstable, which will affect the reliability
of macro-averaged F1 [16]. Therefore, we decided to exclude
the two most common categories and those categories con-
taining less than ten training documents from our collection,
which results in 58 categories from the third to the sixtieth,
ranked in decreasing order according to the number of pos-
itive examples. Figure 1 show the percentages of positive
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Figure 1: The percentage of # positive examples in the
training set (58 categories:3rd-60th)

examples in the training set for the 58 categories. The per-
centage ranges from a minimum of 0.1% to maximum of 7%
in the training set, which indicate high class imbalances of
the dataset.

We also list the maximum IG, CHI and ORS values of pos-
itive and negative features for each of the 58 categories in
table 7 as attached, which verifies the second illustration of
Section 3: the values of positive features are not compara-
ble with those of negative features, given a two-sided metric.

5.4 Optimization
During the optimization of the size ratio per category, we
tried different size ratios ranging from 0 to 1: 0, .05, · · · , .95, 1
(21 possible ratios) and select the ratio having best BEP F1
on test and training sets corresponding to the two optimiza-
tion scenarios respectively.

6. PRIMARY RESULTS AND ANALYSIS
In order to compare different feature selection methods, we
apply them to text categorization using NB and LR, and
compare their performance in terms of micro and macro av-
eraged F1 (BEP). We report the performance of NB and
LR with the improved feature selection methods in both
optimization scenarios as compared to the standard feature
selection methods using one-sided and two-sided metrics.

6.1 Ideal scenario
In order to answer the second question of Section 1, we con-
sider the following three groups of feature selection methods:

• Standard IG, Standard SIG and improved SIG in ideal
optimization scenario. The three methods are referred
to as IG, SIG and iSIG for notational simplicity.

• Standard CHI, Standard CC and improved CC in ideal
optimization scenario, referred to as CHI, CC and iCC
respectively.

• Standard ORS, Standard OR and improved OR in
ideal optimization scenario, referred to as ORS, OR
and iOR respectively.
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Table 1: Micro-averaged F1(BEP) values for NB with the feature selection methods at different sizes of features over the 58
categories:3rd-60th. The micro-averaged F1(BEP) for NB without feature selection (using all 9484 features) is .641

|Fi| IG SIG iSIG CHI CC iCC ORS OR iOR

10 .67 .673 .737 .681 .681 .735 .438 .445 .502
20 .693 .684 .751 .685 .685 .766 .46 .481 .565
30 .694 .674 .755 .681 .681 .762 .486 .489 .582
40 .681 .669 .763 .676 .676 .769 .514 .509 .615
50 .692 .668 .762 .671 .67 .77 .56 .543 .647

100 .678 .657 .751 .668 .655 .767 .651 .597 .725
200 .681 .655 .756 .67 .65 .755 .685 .611 .764
500 .676 .654 .749 .683 .643 .749 .694 .623 .768

1000 .662 .661 .74 .666 .647 .74 .676 .626 .761
2000 .647 .653 .729 .671 .627 .724 .676 .628 .751
3000 .63 .648 .72 .667 .606 .713 .669 .619 .743

Table 2: As table 1, but for macro-averaged F1(BEP). The macro-averaged F1(BEP) for NB without feature selection is .483

|Fi| IG SIG iSIG CHI CC iCC ORS OR iOR

10 .626 .627 .725 .62 .62 .719 .482 .483 .60
20 .606 .602 .731 .616 .616 .733 .497 .503 .665
30 .603 .588 .728 .595 .595 .731 .50 .499 .677
40 .573 .56 .721 .588 .588 .732 .529 .522 .692
50 .589 .566 .712 .59 .59 .733 .548 .537 .701

100 .579 .542 .703 .545 .54 .724 .579 .541 .721
200 .572 .55 .698 .568 .534 .715 .584 .543 .726
500 .558 .569 .693 .598 .521 .682 .577 .538 .709

1000 .522 .575 .68 .577 .52 .664 .553 .522 .684
2000 .47 .568 .666 .583 .476 .64 .545 .518 .665
3000 .432 .547 .65 .562 .427 .627 .523 .494 .657

The methods are compared to each other within the same
group at different sizes of features. Typical size of a lo-
cal feature set is between 10 and 50 [10]. In this paper, the
performance are reported at a much wider range: 10 ∼ 3000.

Tables 1 and 2 list the micro and macro averaged BEP F1
values for näıve Bayes classifiers with the nine different fea-
ture selection methods (as listed in the first row) at differ-
ent sizes of feature set ranging from 10 to 3000 (as listed in
the first column); Tables 3 and 4 list the micro and macro
averaged BEP F1 values for regularized logistic regression
classifiers. The best micro averaged F1 across different sizes
of feature set is highlighted for each method. We can see the
improved methods in ideal scenario significantly outperform
the corresponding one-sided and two-sided methods, which
indicates the great potential of optimal combination of pos-
itive and negative features.

From tables 1 and 2, we can see it is very useful to con-
duct feature selection for NB (The micro-averaged F1 for
NB without feature selection is .641). On the other side,
tables 3 and 4 show that standard feature selection, e.g. IG,
SIG, CHI, CC, ORS and OR, will not improve LR’s per-
formance (The micro-averaged F1 for LR without feature
selection is .766), which confirms the general conseus that
standard feature selection will not help the regularized lin-
ear methods, e.g. SVMs, LR and ridge regression. However,

the best performance of the improved methods in ideal sce-
nario (iSIG: .81, iCC: .812, and iOR: .816) shows that the
improved feature selection methods can be very helpful to
LR.

Figure 2 show the size ratios implicitly decided by two-sided
metrics: IG, CHI and ORS respectively (feature size = 50),
which confirms that feature selection using a two-sided met-
ric is similar to its one-sided counterpart(size ratio = 1)
when the feature size is small. When using CHI, only pos-
itive features are considered for 56 categories(equivalent to
CC) and only one negative feature is included for each of
the remaining two categories(3rd and 7th).

Figure 3 visualizes the optimization for the first two (money-

fx and grain) and last two categories (dmk and lumber) us-
ing NB, where = = CC, feature size = 50. Figures 4 and 5
show the optimal size ratios for the 58 categories using NB
and LR respectively. Both are quite different from figure
2, which confirms that implicit combination using two-sided
metrics are not optimal. The 58 categories are ordered by
the numbers of their training documents. Intuitively, given
the fixed size of feature set, 50 in this case, the optimal size
ratio should decrease with category id increases. We can see
in figures 4 and 5 that the optimal size ratios vibrate be-
tween 0 and 1 from category to category irregularly though
the general trend confirms the intuition. Therefore, besides
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Table 3: Micro-averaged F1(BEP) values for LR with the feature selection methods at different sizes of features over the 58
categories. The micro-averaged F1(BEP) for LR without feature selection is .766

|Fi| IG SIG iSIG CHI CC iCC ORS OR iOR

10 .70 .701 .723 .70 .70 .728 .447 .449 .474
20 .725 .719 .759 .726 .726 .768 .497 .508 .552
30 .735 .728 .776 .73 .73 .78 .527 .527 .575
40 .741 .733 .785 .737 .737 .79 .563 .569 .616
50 .745 .738 .794 .738 .738 .792 .597 .591 .642

100 .755 .74 .80 .746 .74 .799 .663 .666 .721
200 .76 .734 .807 .745 .736 .806 .718 .717 .763
500 .76 .748 .81 .756 .747 .812 .738 .731 .796

1000 .771 .747 .807 .76 .752 .807 .754 .738 .808
2000 .77 .747 .807 .762 .757 .805 .759 .744 .814
3000 .774 .75 .808 .761 .759 .804 .762 .745 .816

Table 4: As table 3, but for macro-averaged F1(BEP). The macro-averaged F1(BEP) for LR without feature selection is .676

|Fi| IG SIG iSIG CHI CC iCC ORS OR iOR

10 .669 .669 .714 .651 .651 .703 .505 .505 .548
20 .68 .679 .741 .673 .673 .743 .569 .572 .648
30 .677 .673 .743 .675 .675 .756 .582 .583 .654
40 .684 .675 .748 .679 .679 .76 .605 .607 .677
50 .684 .676 .753 .686 .686 .763 .622 .619 .693

100 .698 .68 .759 .68 .678 .761 .651 .652 .741
200 .705 .683 .768 .695 .683 .768 .673 .675 .745
500 .703 .702 .771 .695 .699 .768 .681 .678 .751

1000 .708 .684 .77 .686 .697 .758 .688 .683 .754
2000 .706 .674 .766 .677 .699 .749 .686 .68 .756
3000 .712 .676 .765 .676 .697 .746 .691 .683 .76

number of positive examples, category(domain) character-
istics also have effects on optimal feature selection. Our
results also show the optimal size ratios learned by NB with
iSIG, iCC and iOR (figure 4) are significantly different from
those learned by LR (figure 5) respectively. Both results
confirm Mladenić’s observation [9]: a good feature scoring
measure for text should consider domain and classification
algorithm characteristics.

6.2 Practical scenario
We consider the improved CC in the practical optimization
scenario also. The performance of the improved CC in prac-
tical optimization scenario with NB and LR is reported in
table 5. The best performance with NB is .74 (feature size =
50), which is 3% lower than the ideal scenario (.77), but sig-
nificantly (5.5%) better than CHI and CC (both are .685).
The advantage of the improved CC in practical scenario over
standard CHI and CC is also observed with LR. Wilcoxon
signed rank tests show that improved CC in practical sce-
nario significantly outperforms CHI and CC with both NB
and LR at the 0.05 significance level. This verifies that the
improved methods have not only great potential but practi-
cal merits also. Since LR is a highly effective classifier com-
pared to non-regularized methods such as NB, the room for
improvement is not that huge. This explains why the perfor-
mance gain of LR using our new feature selection methods
is not as much as that of NB. In this scenario, the size ra-
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Figure 2: Size ratios implicitly decided by using two-sided
metrics: IG, CHI and ORS respectively (58 categories:3rd-
60th, feature size = 50)

tios were optimized over the whole training set, which might
cause overfitting. We expect more performance gain by n-
fold cross validation with the training set.

The micro-averaged F1 values for NB with iCC in ideal
and practical scenarios are .77 and .74 respectively (fea-
ture size = 50), both approach LR without feature selec-
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categories (out of 58 categories) at different l1/l values (NB,
= = CC, feature size = 50). The optimal size ratios for
money-fx, grain, dmk and lumber are 0.95, 0.95, 0.1 and 0.2
respectively
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Figure 4: Optimal size ratios of iSIG, iCC and iOR (NB, 58
categories:3rd-60th, feature size = 50)
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Figure 5: As figure 4, but for LR

Table 5: Micro and macro-averaged F1(BEP) values for NB
and LR with the improved CC in practical scenario at dif-
ferent sizes of features over the 58 categories

|Fi| NB LR
micro macro micro macro

10 .708 .658 .695 .652
20 .73 .673 .734 .672
30 .719 .657 .741 .679
40 .737 .676 .754 .691
50 .74 .68 .758 .696
100 .738 .673 .763 .694
200 .717 .664 .769 .712
500 .714 .633 .77 .702
1000 .693 .593 .772 .704
2000 .687 .591 .769 .696
3000 .686 .584 .771 .693

Table 6: BEP F1 values of NB and LR for the two most
common categories: 1st and 2nd. iCC and iCC’ represent
ideal and practical scenarios respectively, feature size = 50

NB LR
CHI CC iCC iCC’ CHI CC iCC iCC’

earn .957 .914 .958 .956 .971 .959 .974 .97
acq .871 .819 .917 .907 .897 .858 .926 .926

tion (.766). This indicates that with the improved feature
selection methods such as iCC, NB is competitive with state-
of-the-art classification methods such as LR.

Obviously, the efficiency of the improved methods mainly
depends on the classification method used to learn the op-
timal size ratios. For those fast algorithms such as NB, lin-
ear regression, etc, the optimization is reasonably efficient.
Since the optimization of size ratio for one category is in-
dependent with other categories, parallel computing can be
performed for those time-consuming classifiers, e.g. kNN,
neural networks, SVMs, LR, etc, with many features (fea-
ture size > 1000). Possible further work includes an analytic
solution to finding optimal size ratios based on the category
characteristics.

6.3 Additional results
In order to investigate the effect of our new methods on
balanced data, we report in table 6 the performance val-
ues for the two most common categories: earn and acq
separately. For earn, no performance gain is observed by
applying our new methods. It’s due to the well-balanced na-
ture of this category: around 2

5
of its training examples are

positive. However, the performance of acq was significantly
improved. This can be partially explained by the fact that
this category is more imbalanced than earn: only around 1

5

of its training examples are positive.

In order to compare this work with others, we also show in
figures 6 and 7 the micro-averaged BEP F1 values for the
second group of feature selection methods on all 90 cate-
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Figure 6: Micro-averaged BEP F1 values for CC, CHI, iCC
in practical scenario, and iCC in ideal scenario (NB, all 90
categories)

gories. We can see in figure 6 the micro-averged F1 of all 90
categories for NB using CHI (with 2000 features) is 80.4%.
The micro averaged F1(BEP) of LR without feature selec-
tion is .854 as shown in figure 7. Both are consistent with
previous published results [14; 16; 17]. The micro averaged
F1(BEP) score of LR is slightly lower than [17] due to a dif-
ference of treating document titles. [17; 16] treated words
in document titles as different words in document bodies
while we consider them equivalently.

As we expect, the improved methods consistently outper-
form standard CHI and CC. However, since the micro-averaged
F1 over all 90 categories is dominated by the most common
category, which happen to be well-balanced, the improve-
ment is not as impressive. We can also see in figures 6 and
7 that CHI is always better than CC even when the feature
size is small. For the two most common categories, CHI
and CC will choose features quite differently since the CHI
values of positive and negative features are comparable on
balanced data. In that case, CHI will select useful negative
features as well even when the feature size is small. Another
interesting point in figure 6 is that with the number of fea-
tures increases, the performance of CC first increases, then
decreases, and finally increases again. The first increase is
due to the inclusion of more useful positive features. The
afterward decrease is due to the inclusion of noisy or non-
indicative (1) positive and (2) negative features. The final
increase is because of the inclusion of useful negative fea-
tures. In contrast with figure 6, figure 7 does not see notice-
able performance drop for CHI and CC, which is because
that due to the regularization factor of LR, the inclusion of
noisy features has much less impact on LR than NB.

7. CONCLUSION
In order to investigate the usefulness of experimenting with
the combination of positive and negative features, a novel
feature selection framework was presented, in which the pos-
itive and negative features are separately selected and ex-
plicitly combined. We explored three special cases of the
framework:

1. consider the positive features only by using one-sided
metrics;
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Figure 7: As figure 6, but for LR

2. implicitly combine the positive and negative features
by using two-sided metrics;

3. combine the two kinds of features explicitly and choose
the size ratio empirically such that optimal perfor-
mance is obtained.

The first two cases are known and standard, and the last
one is new. The main conclusions are:

• Implicitly combining positive and negative features us-
ing two-sided metrics is not necessarily optimal, espe-
cially on imbalanced data.

• A judicious combination shows great potential and prac-
tical merits.

• A good feature selection method should take into con-
sideration the data set, performance measure, and clas-
sification methods.

• Feature selection can significantly improve the perfor-
mance of both näıve Bayes and regularized logistic re-
gression on imbalanced data.

Furthermore, we observe that multinomial näıve Bayes with
our proposed feature selection is competitive with the state-
of-the-art algorithms such as regularized logistic regression.
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Table 7: The maximum IG, CHI and ORS values of posi-
tive (+) and negative (-) features for each of 58 categories.

category maxIG maxCHI maxORS
id + - + - + -

3 .057 .022 1661 216 30.9 31.8
4 .086 .014 3696 153 44.7 29.3
5 .101 .011 3194 98 54.6 28
6 .082 .016 1950 148 36.9 32.6
7 .056 .014 1569 137 27.8 26.8
8 .105 .009 6334 84 76.3 26.4
9 .05 .008 2833 75 55.8 21
10 .061 .006 4321 58 45.3 20.2
11 .022 .005 891 52 41.3 17.9
12 .043 .005 1762 56 33.4 21.5
13 .067 .005 5929 46 71.8 17
14 .04 .004 3579 43 55.3 16.9
15 .069 .005 6776 43 133.3 20
16 .03 .004 2921 42 50.5 19
17 .05 .003 4464 34 95.6 14.7
18 .025 .003 2983 34 58.4 17.8
19 .043 .003 4800 28 68.7 13.3
20 .024 .003 1414 29 46.5 16.6
21 .013 .003 1633 29 52.9 16.6
22 .03 .002 2520 24 43.7 13
23 .02 .003 1577 42 44.9 15.9
24 .04 .002 6718 21 102.9 14.2
25 .019 .002 796 21 51.9 14.2
26 .019 .002 3373 19 56.7 13.4
27 .033 .001 6075 11 118.8 9.8
28 .028 .002 5104 23 73.1 12.8
29 .021 .002 1470 23 67.3 12.7
30 .011 .002 486 17 40 12
31 .019 .001 2325 13 71.4 8.8
32 .027 .001 5600 12 111.9 10.1
33 .026 .001 5412 14 109.5 11.3
34 .02 .001 3564 12 54.4 10.3
35 .025 .002 5122 20 88 8.4
36 .018 .001 4274 12 69.1 10
37 .024 .001 5335 12 88.6 10
38 .012 .0009 2782 9 57.5 8.5
39 .022 .001 5541 12 111 10
40 .019 .0009 6425 9 124.1 8.2
41 .008 .0009 1432 9 40.2 8.4
42 .014 .0008 3251 8 87 7.9
43 .016 .0005 5256 6 107.4 5.5
44 .005 .0005 1551 5 69.7 5.2
45 .008 .001 1622 12 40.3 7.3
46 .014 .001 5418 13 91 10.6
47 .014 .0007 4988 8 104.3 7.1
48 .009 .0006 3673 7 84.1 6.5
49 .005 .0006 1181 6 62.3 6.5
50 .013 .0006 5400 6 108.9 6.5
51 .004 .0004 2019 4 68.9 4.3
52 .007 .0004 2012 4 63.4 4
53 .006 .0005 2214 5 55.3 5.1
54 .005 .0005 1108 5 64.6 5.8
55 .008 .0004 1191 4 63.6 4.8
56 .007 .0005 4778 5 101.7 5.5
57 .005 .0009 466 10 42.8 9
58 .007 .0007 4081 8 89.9 7.7
59 .005 .0007 2153 8 55.5 8
60 .004 .0004 2483 4 71 4.4
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