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Abstract

For high-dimensional data, the appropriate selection of features has a significant effect on the cost and accuracy of
an automated classifier. In this paper, a feature selection technique using genetic algorithms is applied. For classifi-
cation, crisp and fuzzy k-nearest neighbor (KNN) classifiers are compared. Composite fuzzy classifier architectures are
investigated. Experiments are conducted on airborne visible/infrared imaging spectrometer (AVIRIS) data, and the
results are evaluated in the paper. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Advances in sensor technology for earth ob-
servation make it possible to collect large numbers
of spectral bands. For example, the NASA/JPL
airborne visible/infrared imaging spectrometer
(AVIRIS) generates image data in 224 bands
simultaneously. For such high dimensionality,
pattern recognition techniques suffer from the
well-known curse-of-dimensionality phenomenon.
This problem is resulting from the fact that the
required number of labeled samples for supervised
classification increases dramatically as a function
of dimensionality (Fukanaga, 1990).

In this paper, we will discuss three different
aspects of this problem. One way to overcome the
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problem is to reduce the dimensionality of the
feature space. This can be done by extracting or
selecting a subset of features from the total
amount of features. Different feature extraction
and selection techniques are proposed in the lit-
erature (branch-and-bound Narendra and Fuka-
naga, 1977, floating search Pudil et al., 1994,
discriminant analysis Lee and Landgrebe, 1993).

A successful soft-computing technique for
solving optimization problems is given by Genetic
Algorithms (GAs) (Goldberg, 1989). GAs were
applied to the problem of feature selection (Sied-
lecki and Sklansky, 1989; Kuncheva and Jain,
1999; Ishibuchi and Nakashima, 2000; Yang and
Honavar, 1997) and were found to be very efficient
to do so (Jain and Zongker, 1997).

Another problem with high dimensionalities is
that the discrimination between classes becomes
much more difficult. In pattern recognition, crisp
classification is often replaced by fuzzy classifica-
tion (Bezdek, 1981). In these techniques, the deci-
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sion to classify a data point is delayed as long as
possible. Instead, membership values are assigned
to the point as a function of the point’s distance
from its k-nearest neighbors (KNN) and those
neighbors’ memberships in the possible classes.
These techniques have proven to outperform the
crisp classification techniques, especially when
clusters tend to overlap. In this paper, crisp and
fuzzy kNN algorithms (Keller et al., 1985) are
compared for the classification of hyperspectral
images.

Another approach to improve classification is
to combine classifiers. Achieving higher classifi-
cation accuracy by combining multiple classifiers
is an effective technique, and an important re-
search topic in the literature (Xu et al., 1992;
Rogova, 1994; Lam and Suen, 1995; Woods
et al., 1997; Kittler et al., 1998). Although there is
a rather large research body on multiple com-
bining methods for classifiers, very little effort has
been done with combining the specific classifier:
the nearest neighbor classifier. In this paper,
composite classifier architectures for nearest
neighbor classifiers are investigated (Skalak, 1997;
Wolpert, 1989).

This paper is organised as follows: in the fol-
lowing section, the genetic feature selection pro-
cedure is elaborated. In Section 3, the crisp and
fuzzy kNN algorithms are explained. In Section 4,
the composite fuzzy nearest neighbor classifiers are
presented and recapitulated. In Section 5, experi-
ments are conducted on AVIRIS data. The ex-
perimental setup is explained and results are
discussed. Finally, we conclude this paper.

2. Genetic feature selection

We will follow the procedure of Siedlecki and
Sklansky (1989). They designed a genetic feature
selection algorithm that was found to be very ef-
ficient for high (>20) dimensionalities Jain and
Zongker (1997). Unlike classical optimization
procedures it does not optimize a single solution,
but, instead, it modifies a population of solutions
at the same time. This guarantees at least a sub-
optimal optimization.

A solution is represented by a finite sequence
of 0’s and 1’s, called a chromosome. The chro-
mosomes are allowed to ‘crossover’, i.e. two
chromosomes exchange their parts at a ran-
domly chosen point to create two new chromo-
somes. Chromosomes are also allowed to
‘mutate’, i.e. a small change (e.g. flipping of a
bit) can be made to a chromosome. The opti-
mization process is carried out in ‘generations’,
where each time a population of new chromo-
somes is generated. Since the population size is
finite, only the ‘best’ chromosomes are allowed
to survive. A ‘fitness’ function is defined that
allows to calculate a fitness score for each of the
chromosomes.

For the problem of feature selection, a chro-
mosome has length d, the total number of features.
A ‘1’ stands for a selected feature, whereas a 0’
stands for a rejected feature. There are two ways of
optimizing a string. One way is to minimize the
classification error rate. This, however, will not
necessarily minimize the number of selected fea-
tures. Better is to define a threshold error rate ¢,
and to find the string with the lowest number of
selected features that leads to an error rate e, lower
than ¢. A fitness function is defined that takes this
into account:

flai)) =J(a)) — ((J(a)) — cAJ(a:)),

where (-) and 4 are the mean and standard devi-
ation over the population, ¢ is a small positive
constant which assures that min f(a;) > 0, i.e. even
the least fit chromosome is given a chance to re-
produce. The score J(a) of a string a is given by

J(a) = l(a) + p(e(a)),

where /(a) is the ‘length’ (=number of ‘1’) of
string a, and p(e) is a penalty function for the
obtained error rate e. If e is below the threshold
error rate ¢, p(e) is negative, and if e grows larger
than ¢, p(e) grows rapidly:

_exple—t)/m—1
(e) = exp(l) =1’

with m as a small scaling parameter (about 1%).
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3. Fuzzy kNN classification

In the feature selection procedure, the fitness
function to be calculated includes the calculation
of the classification error rate. Therefore, a clas-
sifier is to be designed. In this paper, we want to
compare ‘crisp’ and ‘fuzzy’ classifiers.

The nearest neighbor rule is one of the oldest
and simplest methods for performing non-para-
metric classification. Despite its simplicity, it has
many advantages, e.g. it may give competitive
performance compared to many other methods.
An easy and effective way to calculate the classi-
fication error rate is by the “leave-one-out” pro-
cedure. Hereby, each time the complete training
set, but one, is used, and the left out training
sample is used for testing. By doing this for each
training sample separately, the classification error
rate can be evaluated.

A fuzzy kNN classifier was designed by Keller
et al. (1985). Hereby, class memberships are as-
signed to the sample, as a function of the sample’s
distance from its kNN training samples:

Sy (11 = 70)
S (/e =07

with w as a scaling parameter between 1 and 2. The
memberships of the training samples u; can be
defined in several ways. The ‘crispest’ way is to
give them complete membership in their own class

(ID3,K-nn,Vote)

combining
clasifier
M
Cl(x)
Nearest Neighbor
Component Classifiers
Ci(x)

KIQ

and nonmembership in all other classes. A more
‘fuzzy’ alternative is to assign the training samples’
memberships based on the distance from their
class mean. After calculating the memberships for
the test sample, it is assigned to the class with
highest membership. In our experiments, we have
found that the second approach leads to the best
results.

4. Composite fuzzy nearest neighbor classifiers

We follow Skalak (1997) discussion on com-
posite nearest neighbor classifiers. Of the many
architectures for classifier combinations till now,
there are three primary architectures for combin-
ing classification algorithms: (1) Stacked General-
ization (Fig. 1); (2) Boosting (Fig. 2); (3) Recursive
Partitioning (Fig. 3).

Wolpert (1989) was probably the first to discuss
the idea of Stacked Generalization in its full gener-
ality. Stacked Generalization assumes that a set of n
level-0 (component) learning algorithms, a level-1
learning (combining) algorithm, and a training set
of classified instances have been given. It is a re-
cursive layered structure for combining classifiers,
where at each layer the classifiers are used to com-
bine the output of the classifiers just under that
layer. Boosting is due to Schapire (1990). The goal
of boosting is to increase the accuracy of a given
algorithm on a given distribution of training in-

Prediction
M([CL(x),...

,Cn(x)])

Train:Class of Instance

component
predictions

C2(x) C3 (%)

Instance,
X

Fig. 1. Stacked nearest neighbor classifier architecture.
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Vote

Cl C2 c3

Fig. 2. Boosting architecture. Classifier C; is taken as given,
while C; and C; are additional component classifiers.

c6 c7 c8

Fig. 3. An example of a recursive partitioning architecture.
Each of the component classifiers, from ¢ to cg, applies only to
a particular region of the instance space.

stances. It successively creates complementary
component classifiers by filtering the training set.
Recursive Partitioning algorithms use a divide-and-

Base Classifier
(Instance-based,all instances
stored as prototypes)

conquer strategy to partition a space into regions

that contain instances of only one class.

Skalak (1997) investigated one specific boosting
architecture as shown in Fig. 4. It is a two-layer
architecture, consisting of level-0 and level-1 clas-
sifiers. The level-0 classifiers consist of two classi-
fiers: a base classifier (say Cp), i.e. a full nearest
neighbor classifier, which uses all instances as
prototypes, and a complementary classifier (say
C1), which is a minimal nearest neighbor classifier
(Skalak, 1994), storing only one prototype per
class. In this work, the complementary nearest
neighbor classifier C; is obtained through the fol-
lowing procedure:

1. randomly sample 7 sets of s instances (with re-
placement) from the training set 7, where s is
the number of classes exposed in 7, one in-
stance is drawn from each class;

2. use each set as a prototype set to construct a
nearest neighbor classifier;

3. classify all instances in T using each of these n
classifiers;

4. choose the classifier with highest classification
accuracy on T as the complementary classifier
C.

For the level-1 combining algorithm, the deci-
sion tree algorithm ID3 (Quinlan, 1986) is used.
For each original training instance x € 7 with class
S;, a level-l1 training instance 1is created:
(Co(x), Ci(x),S:). So, for example, let x be a level-0
instance, if C, predicts class 4 when applied to
instance x, while C; predicts class B when applied
to instance x, then the level-1 feature representa-
tion for x becomes (4,B). The entire level-1 rep-
resentation for x also includes the class of x (say

level-1 classifier

c-1 level-0 classifier

Complementary Classifier

(Instance-based, one prototype

stored as per class)

Fig. 4. A composite architecture.
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A), i.e. the level-1 representation is actually
(4,B,A). The set of these three-tuples of class
samples is the training set used to train the level-1
learning algorithm ID3.

ID3is a greedy algorithm that grows the tree top-
down, at each node selecting the attribute that best
classifies the local training examples. This proce-
dure continues until the tree perfectly classifies the
training examples, or until all attributes have been
used. Although ID3 is no longer considered as a
state-of-the-art decision tree, we use it as the level-1
combining algorithm. All the level-1 features are
symbolic, the implementation of ID3 uses the same
feature selection metric as described by decision tree
C4.5 (Quinlan, 1993), a descendant of ID3.

We will apply the above mentioned architecture
for our AVIRIS dataset. In the level-0 layer, the
nearest neighbor classifiers are replaced by their
fuzzy counter-parts, as the fuzzy approach out-
performs the crisp approach discussed in the ear-
lier section.

5. Experiments and discussion

Experiments were conducted on an AVIRIS
dataset, containing 220 bands of 145 x 145 pixels,

that is downloadable from http://dynamo.
ecn.purdue.edu/~biehl/MultiSpec/documentation.
html, along with a groundtruth image, containing
16 classes.

In the first experiment, the genetic feature se-
lection technique is evaluated. For this, the mini-
mal number of obtained features is plotted in
function of the number of generations. The pa-
rameters ¢ and m are set so that the classification
error is about 10%. In Fig. 5, experimental results
are displayed for a 3-class problem (classes 2, 3
and 8), with 100 data points for each class. Several
experiments starting with different numbers of
bands are conducted. On the plot, the numbers of
bands are 50, 100, 150 and 220, respectively, i.e.
the first 50 bands, 100 bands, 150 bands of the
dataset and the full 220-band data.The population
size was 100. The crossover rate usually assumes
high values, close or equal to one, while the mu-
tation rate is typically small (Siedlecki and Sklan-
sky, 1989). The crossover rate is high to allow to
produce an offspring that is more optimal than its
parents. A 100% crossover rate would, however,
disrupt any good solution. In our experiment,
crossover and mutation rates were set to 90% and
1%, respectively. For classification, the fuzzy SNN
algorithm was applied. From the plot, one can

0 1 1 1 1

ool : (I

0 10 20 30 40

60 70 80 90 100

Fig. 5. Number of obtained features versus number of generations for the genetic feature selection on 50, 100, 150 and 220 bands,

respectively.
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observe that the number of obtained features de-
creases with the number of generations. The clas-
sification errors were about constant over all the
curves (about 10%). In the beginning the reduction
is very fast, but after about 50 generations con-
vergence becomes slow.

In experiment 2, crisp and fuzzy kNN classifi-
cation are compared for high dimensionality. For
this, the classification performance is evaluated as
a function of the number of applied features that is
gradually augmented by performing the floating
forward feature selection technique (Pudil et al.,
1994). The results reported in Fig. 6 refer to a 5-
class (classes 2, 3, 8, 10 and 11) classification task,
with 100 data point for each class, and repeated 10

0.85

times using different data points (the obtained er-
ror bars are plotted). One can observe a systematic
improvement of about 5% using the fuzzy ap-
proach. For dimensions >30, the classification
performance goes down, because of the curse of
dimensionality phenomenon (Landgrebe, 2000),
and results become unreliable.

Similar results can be obtained by using the
genetic feature selection technique. Since the fit-
ness function optimizes the classification error and
the number of features simultaneously, no con-
tinuous curve can be obtained. To be able to plot
the classification result in function of the number
of features, the parameters ¢ and m are varied. On
the figure, we have plotted about 20 obtained

T T T T T T
: SESSEEETEE
08 | g % I B e e N N U A J
0.75 g { ]
07 4
0.65 / 4
0.6 ‘,‘J’ B
0.55 “‘J 4
05 - fcrisp KNN ——— 1
gaciop NN
gafuzzy kNN ©
0.45 L L L 1 H
0 5 10 15 20 25 30 35

Fig. 6. Classification performance versus dimensionality for a 5-class problem using crisp and fuzzy KNN. The curves are obtained by
using floating forward feature selection, the individual points by using genetic feature selection.

band numbers | NB | 5NN | Fuzzy 5NN | C4.5 | composite
50 29.51 | 15.31 13.66 14.88 11.22
100 29.51 | 13.85 9.27 10.49 7.07
150 29.76 | 13.85 6.34 11.74 5.85
200 28.54 | 13.80 6.10 12.44 5.85

Fig. 7. Comparison of error rate among Naive—Bayes (NB), a single kNN (k =5), a single fuzzy kNN (k=5), decision tree C4.5 and
composite fuzzy nearest neighbor classifiers on different bands of the data set.
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results using genetic feature selection with the crisp
kNN and about 20 results using genetic feature
selection with the fuzzy ANN algorithm. One can
observe that the points follow the curves, obtained
by using floating forward feature selection, some
results are even better (up to 2%).

We can conclude that the genetic feature selec-
tion technique is a useful alternative for the
floating search feature selection technique. The use
of the fuzzy kKNN algorithm improves results over
crisp KNN. This holds for the floating search re-
sults as well as for the genetic selection results.

The third experiment was carried out on the
composite classifiers architecture as explained in
Section 4. In Fig. 7 experimental results are dis-
played for a 3-class problem (classes 2, 3, and 8),
with 100 instances per class. The experiments were
performed on dataset with different numbers of
bands. The numbers of bands are 50, 100, 150 and
200, respectively, i.e. the first 50 bands, 100 bands,
150 bands and 200 bands of the full dataset. In our
experiment, we used n =100 samples, k=1 (fuzzy
INN) for C,, k=5 (fuzzy SNN) for Cy. We com-
pared the performance of the composite structure
shown in Fig. 4 with that of C4.5, Naive-Bayes
(NB) (Cestnik, 1990), a single kNN (k = 5) and a
single fuzzy ANN (k=15). The justification for
comparing with C4.5 is based on the fact that the
level-1 combination algorithm in Fig. 4 is ID3, and
the C4.5 is a further extension of ID3.

For evaluation, 10-fold cross-validation was
used. From the comparison shown in Fig. 7, we
can see that the composite architecture using fuzzy
nearest neighbor classifiers outperforms both the
C4.5 decision tree and the single SNN classifier (an
average of about 6% improvement) in terms of
error rate. The difference with the single fuzzy
SNN classifier is small, and diminishes for high
dimensionality. Although some researchers (Koh-
avi and John, 1997) noted that NB’s accuracy is
superior over C4.5 in some real dataset, this con-
clusion did not show in our dataset.

6. Summary and conclusions

In this paper, the genetic feature selection
technique is applied to high dimensional remote

sensing data, the effectiveness of its use is pre-
sented. In contrast to the extensive research on
combining classifiers in the literature, there is few
work on the combination of nearest neighbor
classifiers. In this paper, composite fuzzy nearest
neighbor classifiers are investigated and their su-
perior performance is well justified by our experi-
mental results.
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