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Abstract—We address the incomplete-data problem in which feature vectors to be classified are missing data (features). A

(supervised) logistic regression algorithm for the classification of incomplete data is developed. Single or multiple imputation for the

missing data is avoided by performing analytic integration with an estimated conditional density function (conditioned on the observed

data). Conditional density functions are estimated using a Gaussian mixture model (GMM), with parameter estimation performed using

both Expectation-Maximization (EM) and Variational Bayesian EM (VB-EM). The proposed supervised algorithm is then extended to

the semisupervised case by incorporating graph-based regularization. The semisupervised algorithm utilizes all available data—both

incomplete and complete, as well as labeled and unlabeled. Experimental results of the proposed classification algorithms are shown.

Index Terms—Classification, incomplete data, missing data, supervised learning, semisupervised learning, imperfect labeling.
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1 INTRODUCTION

THE incomplete-data problem in which certain features are
missing from particular feature vectors,exists in a wide

range of fields, including social sciences, computer vision,
biological systems, and remote sensing. For example, partial
responses in surveys are common in the social sciences,
leading to incomplete data sets with arbitrary patterns of
missing data. In remote sensing applications, incomplete data
can result when only a subset of sensors (e.g., radar, infrared,
acoustic) are deployed at certain regions. Increasing focus in
the future on using (and fusing data from) multiple sensors or
information sources (e.g., [21], [11]) will make such incom-
plete-data problems increasingly common.

Incomplete-data problems are often circumvented via
imputation—the “completion” of missing data by filling in
specific values. Common imputation schemes include
“completing” missing data with zeros, the unconditional
mean, or the conditional mean (if one has an estimate for
the distribution of missing features given the observed
features, pðxmi

i jx
oi
i Þ). More sophisticated methods that have

been used to complete missing data—and which can also be
viewed as single imputation schemes—include semidefinite
programming [7] and the em algorithm [21]. Because
imputation treats the missing data as fixed known data,
though, the uncertainty of the missing data is ignored [18].

The method of multiple imputation [19] instead generates
M > 1 samples for every missing feature. This imputation
(sampling) is performed only because the desired posterior
distribution of a parameter involves an intractable integral
(details on multiple imputation as applied to classification
problems are provided in Section 4). The intractable integral
can be avoided by requiring the data (i.e., features) to be

discrete [9]. This discreteness assumption permits a
“weighted EM” algorithm [9] from which maximum like-
lihood parameter estimates (e.g., classifier weights) can be
obtained. Although this method—developed for generalized
linear models with incomplete data—avoids imputation, it
does not extend to the case of continuous features. An
accessible introduction to, and summary of, the subject of
dealing with missing data can be found in [20].

In this work, we develop supervised and semisupervised

classification algorithms that explicitly account for incom-

plete data. We first tackle the incomplete (continuous) data

problem for (supervised) logistic regression classification in

a principled manner, avoiding explicit imputation. When

calculating the posterior distribution of a parameter, it is

proper to integrate out missing data [4]:

p yijxoii
� �

¼
Z
p yijxmi

i ;x
oi
i

� �
p xmi

i jx
oi
i

� �
dxmi

i ; ð1Þ

where xoii are the observed data (i.e., features) and xmi

i are the

missing data. This integral is intractable in general. However,

in the case of logistic regression (with yi the class label), this

integral can be solved analytically using two minor assump-

tions. The first assumption is that pðxmi

i jx
oi
i Þ is a Gaussian

mixture model (GMM). This assumption is mild since it is

well-known that a mixture of Gaussians can approximate any

distribution. The second (highly accurate) assumption is that

the sigmoid function can be approximated as a probit function

(i.e., thecumulative distributionfunction ofaGaussian).Since

the integral in (1) can be solved analytically, the likelihood (in

a supervised framework) can be maximized—in a manner

analogous to the complete-data case—to obtain classifier

weights. Once the weights are obtained, the classification

algorithm can be applied to classify incomplete testing data.
We also extend this proposed supervised algorithm to

the semisupervised case by using graph-based regulariza-

tion. In this form, our algorithm utilizes all available data:

both incomplete and complete data, as well as both labeled

and unlabeled data. To our knowledge, no semisupervised

algorithms exist for incomplete-data classification.
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The remainder of the paper is organized as follows: In
Section 2, we derive the supervised logistic regression
algorithm for classification of incomplete data and, in
Section 3, we extend this supervised algorithm to the
semisupervised case. Experimental results for the classifica-
tion algorithms are shown in Section 4, followed by a
discussion in Section 5. Concluding remarks and suggestions
for future work are made in Section 6.

2 SUPERVISED CLASSIFICATION OF INCOMPLETE

DATA

The work in this paper assumes that the missing data is
either missing completely at random (MCAR) or missing at
random (MAR), meaning that the values of the data have no
affect on whether the data is missing or not (see [18], [5] for
more details). When the missing data is not missing at
random (NMAR), a model for the missing data must be
created for the specific data set under study. Because of this
fact, addressing the incomplete data problem when data is
not missing at random is inherently a problem-specific
issue. That is, a general algorithm cannot be constructed to
address arbitrary data sets.

Assume we have a set of labeled incomplete data,

DL ¼ fðxi; yi; �i;miÞ : xi 2 IRd; xia missing 8a 2 migNL

i¼1;

ð2Þ

where xi is the ith vector, labeled as yi 2 f�1; 1gwith known
labeling error rate �i 2 ½0; 0:5Þ; the features in xi indexed bymi

(i.e., xia; a 2 mi) are missing. Each xi has its own (possibly
unique) set of missing features, mi. One special case occurs
when a subset of data share common missing features, as with
multisensor data where the common missing features result
from a sensor that has not collected data.

In logistic regression (with a hyperplane classifier) [14],
the probability of label yi given xi is pðyijxi;wÞ ¼ �ðyiwTxiÞ,
where �ð�Þ ¼ ð1þ expð��ÞÞ�1 is the sigmoid function and
w constitutes a classifier. Accounting for imperfections in
the labeling process arising from a known labeling error
rate �i, the probability of label yi given xi and �i is [17]

p yijxi; �i;wð Þ ¼ �i þ ð1� 2�iÞ�ðyiwTxiÞ: ð3Þ

The labeling error rate is simply the probability that a true
label was flipped (corrupted) to the wrong label (e.g.,
fytrue

i ¼ 1g ! fyi ¼ �1g). For instance, to establish the
(perfect) label of data in a land mine detection task, the
buried object must be excavated, a dangerous and time-
consuming endeavor. An imperfect label may instead be
obtained by using a handheld (labeling) sensor, with the
level of confidence (or labeling error rate) tied to the
historical accuracy of the sensor. Note that the standard
case of perfect labels is recovered when �i ¼ 0.

We partition xi into its observed and missing parts,
xi ¼ ½xoii ; xmi

i �, where xoii ¼ ½xia; a 2 oi�
T , xmi

i ¼ ½xia; a 2 mi�T ,
and oi ¼ f1; � � � ; dg nmi is the (complementary) set of
observed features in xi. We apply the same partition to w
to obtain w ¼ ½woi ; wmi

�, yielding

p yijxi; �i;wð Þ ¼ �i þ ð1� 2�iÞ�ðyiðwT
oi
xoii þ �iÞÞ; ð4Þ

where �i ¼ wT
mi

xmi

i . Because xmi

i (and, hence, �i) is missing, (4)

cannot be evaluated. By integrating out the missing data xmi

i ,

the needed probability of yi given the observed features xoii
can be written as

p yijxoii ; �i;w
� �

¼
Z
p yijxmi

i ;x
oi
i ; �i;w

� �
p xmi

i jx
oi
i

� �
dxmi

i ð5Þ

¼ �i þ ð1� 2�iÞ
Z
�ðyiðwT

oi
xoii þ �iÞÞp �ijx

oi
i

� �
d�i: ð6Þ

It is important to note that the integral in (5) is, in general,

multidimensional, while the integral in (6) is one-dimen-

sional. The integration in (6) can be performed by making two

minor assumptions. First, we assume that pðxiÞ is a GMM:

pðxiÞ ¼
XK
k¼1

�kN
xoii

xmi

i

24 35;
��oik

��mi

k

24 35; �oioi
k ð�mioi

k ÞT

�mioi
k �mimi

k

24 350@ 1A;
ð7Þ

where the �k are the nonnegative mixture weights that sum

to unity; necessarily, p xmi

i jx
oi
i

� �
is a GMM as well. The

Expectation-Maximization (EM) [3] and Variational Baye-

sian EM (VB-EM) [2], [1] formulations for building the

required GMM is described in Appendix A, which can be

found at http://computer.org/tpami/archives.htm.

Because of the linear relation, �i ¼ wT
mi

xmi

i , p �ijxoii
� �

is

also a GMM,

p �ijxoii
� �

¼
XK
k¼1

�ikG
�i � �ik
	ik

� �
; ð8Þ

with the parameters

�ik ¼
�kN xoii ;��oik ;�

oioi
k

� �PK
‘¼1 �‘N xoii ;��oi‘ ;�

oioi
k

� � ; ð9Þ

�ik ¼ wT
mi


mi

k ; ð10Þ

	ik ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wT
mi

�mi

k wmi

q
; ð11Þ


mi

k ¼ ��
mi

k þ �mioi
k �oioi

k

� ��1ðxoii � ��
oi
k Þ; ð12Þ

�mi

k ¼ �mimi

k � �mioi
k �oioi

k

� ��1
�mioi
k

� �T
; ð13Þ

where Gð�iÞ ¼ ð2�Þ�1=2 exp ��2
i =2

� �
is the standard univari-

ate Gaussian density function with zero mean and unit

variance (i.e., GðuÞ � N ðu; 0; 1Þ).
The second assumption is that the sigmoid function can

be approximated as a probit function (i.e., a Gaussian

cumulative distribution function)

�ð	Þ ¼
Z 	

�1
G z

�

� �
dz; ð14Þ

where� ¼ �ffiffi
3
p . The accuracy of this approximation is shown in

Fig. 1. (It should be noted that probit regression can be used

instead of logistic regression, in which case, one would not

need to invoke this second assumption.)
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Substituting (8) and (14) into (6), we obtain

pðyijxoii ; �i;wÞ

¼�i þ ð1� 2�iÞ
ZZ yiðwT

oi
x
oi
i þ�iÞ

�1
G z

�

� �
dz
XK
k¼1

�ikG
�i � �ik
	ik

� �
d�i

ð15Þ

¼�i þ ð1� 2�iÞ
ZZ yiw

T
oi

x
oi
i

�1
G z0 þ yi�i

�

� �
dz0
XK
k¼1

�ikG
�i � �ik
	ik

� �
d�i

ð16Þ

¼ �i

þð1�2�iÞ
XK
k¼1

�ik

Z yiw
T
oi

x
oi
i

�1

Z
G z0 þ yi�i

�

� �
G yi�i � yi�ik

yi	
i
k

� �
d�i dz

0

ð17Þ

¼ �i þ ð1� 2�iÞ
XK
k¼1

�ik

Z yiw
T
oi

x
oi
i

�1
G z0 þ yi�ikffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðyi	ikÞ
2 þ �2

q
0B@

1CAdz0 ð18Þ

¼ �i þ ð1� 2�iÞ
XK
k¼1

�ik

Z yiw
T
oi

x
oi
i

�1
G z0 þ yi�ik

�

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð	ikÞ

2 þ �2

q
0B@

1CAdz0
ð19Þ

¼ �i þ ð1� 2�iÞ
XK
k¼1

�ik

Z yi�ðwToi x
oi
i
þ�i
k
Þffiffiffiffiffiffiffiffiffiffiffiffi

ð	i
k
Þ2þ�2

p

�1
G z

�

� �
dz ð20Þ

¼ �i þ ð1� 2�iÞ
XK
k¼1

�ik �
yi�ð�ik þwT

oi
xoii Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð	ikÞ
2 þ �2

q
0B@

1CA: ð21Þ

In the derivation leading to (21), (16) results from the

change of variable z0 ¼ z� yi�i, (17) is due to exchanging

the order of integrals and summation, (18) results because

the convolution of two Gaussians is a Gaussian, (19) holds

because y2
i ¼ 1, and (20) results from the change of variable

z ¼ � �ðz0 þ yi�ikÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð	ikÞ

2 þ �2

q ;

and (21) is obtained by reverting to sigmoid representation.

Thus, we have expressed p yijxoii ; �i;w
� �

as a mixture of
sigmoids.

Substituting (10) and (11) into (21), we obtain the

probability of yi given only the observed portion of xi:

p yijxoii ; �i;w
� �

¼�iþð1� 2�iÞ
XK
k¼1

�ik �
yi�ðwT

mi


mi

k þwT
oi
xoii Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wT
mi

�i
kwmi

þ �2
q

0B@
1CA:
ð22Þ

For the incomplete and possibly imperfectly labeled data
in (2), assuming the data points are independent of each

other, we obtain the log-likelihood function

‘ðwÞ ¼ log p fyigNL

i¼1jfx
oi
i g

NL

i¼1; f�ig
NL

i¼1;w
	 


¼
XNL

i¼1

log �iþð1� 2�iÞ
XK
k¼1

�ik �
yi�ðwT

mi


mi

k þwT
oi
xoii Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wT
mi

�i
kwmi

þ �2
q

0B@
1CA

264
375:

ð23Þ

The objective function (23) to be maximized is not concave
for two reasons: First, the concavity is destroyed by the

imperfect labels resulting from �i. Even in the case of perfect
labels, though, (23) is not concave because of the particular

form of the argument of the sigmoid function, arising from the
incompletedata.Since(23) isnotconcave, thesolutionmayget

trapped in local maxima. A good initialization is important, so
we initialize w as follows: We “complete” the data set by

replacing the missing features xmi

i with the conditional mean
IE½xmi

i jx
oi
i � ¼

PK
k¼1 �

i
k

mi

k , where �ik and 

mi

k are defined in (9)

and (12), respectively. For the initialization, we also treat all
labels as perfect, artificially setting all �i ¼ 0. This “com-

pleted,” “perfectly” labeled data set is submitted to the
standardlogistic regressionto obtainw0,which is thenusedas

the initialization of w in maximizing (23) by gradient ascent.
Thus, the maximum-likelihood (ML) logistic regression

classifier w is obtained in the presence of missing data (and
imperfect labels). Thereafter, the class predictions of an

unlabeled testing data point with incomplete (missing)
features is computed trivially using (22) (with �i ¼ 0 since

no actual labeling will have transpired).

3 SEMISUPERVISED CLASSIFICATION OF

INCOMPLETE DATA

3.1 Preliminaries

Semisupervised algorithms utilize both labeled and unla-
beled data to build a classifier. Although many semisuper-

vised algorithms exist (see [23] for a thorough literature
review), no semisupervised algorithms have been proposed

to handle the case of incomplete data. Here, we extend a

graph-based approach [10] to obtain a semisupervised
algorithm that handles incomplete data.

In addition to the labeled data set in (2), assume we have

a set of unlabeled incomplete data,
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Fig. 1. Illustration of the accuracy of the approximation made between

the logistic function and the (scaled) probit function.



DU ¼ fðxi;miÞ : xi 2 IRd; xia missing 8a 2 migNi¼NLþ1:

ð24Þ

A kernel function measures the similarity between two data

points. Computing the kernel function for every pair of

N data points (both labeled and unlabeled) results in the

symmetric, positive semidefinite kernel matrix K. The

ijth element of the kernel matrix—Kij—is a measure of

similarity between data points xi and xj. With D the diagonal

matrix whose iith element is given by Dii ¼
PN

j¼1 Kij, the

(unnormalized) graph Laplacian is defined to be

�0 ¼ D�K: ð25Þ

Theoretical work [12] has shown the necessity of normal-
izing the graph Laplacian, with one such acceptable
normalization being

� ¼ D�1=2�0D�1=2: ð26Þ

A fully connected, undirected graph with vertices V ¼
f1; 2; . . . ; Ngcan be summarized by the above kernel matrixK

in the following manner [10]: By assigning one vertex of the
graph to each data point, the edge of the graph joining
vertices iand j can be represented by the weightKij. A natural
way to measure how much a function f ¼ ½f1; . . . ; fN �T
defined on V varies across the graph is by the quantity

1

2

XN
i¼1

XN
j¼1

Kijðfi � fjÞ2 ¼ fT�0f : ð27Þ

By defining a Gaussian random field (GRF) on the vertices V
(using the normalized graph Laplacian � instead of the
unnormalized version �0),

pðfÞ / exp ð��=2Þ fT�f
� �

; ð28Þ

smooth functions f are deemed more probable. In (28), � is a
positive regularization parameter. If we define fi ¼ wTxi,
then f ¼ ½f1; . . . ; fN �T ¼ XTw, where the aith element of X

corresponds to the ath feature of the ith data point. With
this choice, pðfÞ induces a Gaussian prior on w,

pðfÞ ¼ p wjfxigNi¼1

	 

/ exp ð��=2ÞwTX�XTw

� �
¼ exp ð��=2ÞwTGw

� �
;

ð29Þ

with the precision matrix G ¼ X�XT . This formulation
encourages “similar” data points to have similar class labels.

3.2 Derivation

Our proposed semisupervised algorithm will utilize the
Gaussian prior formulation outlined in Section 3.1. To employ
this formulation when faced with incomplete data, we will
again analytically integrate out the missing data. In the
derivation of the requisite integration, two approximations
will be invoked. First, we will integrate out the missing data
from the log-prior instead of the prior. Second, we will
integrate out the missing data in a two-stage procedure, as
will be shown in greater detail below. Developing this
semisupervised method will allow unlabeled data to be
exploited explicitly in learning the classifier.

The maximum a posteriori (MAP) classifier maximizes

the posterior of w, which is proportional to the product of

the likelihood of the data and the prior of w:

p wjfxigNi¼1; fyig
NL

i¼1; f�ig
NL

i¼1

	 

/ p fyigNL

i¼1jfxig
NL

i¼1; f�ig
NL

i¼1;w
	 


p wjfxigNi¼1

	 

:

ð30Þ

Ideally, the missing data would be integrated out from the

posterior in (30):Z
p wjfxigNi¼1; fyig

NL

i¼1; f�ig
NL

i¼1

	 
 YN
i¼1

p xmi

i jx
oi
i

� �" #
dxm1

1 � � � dx
mN

N

/
Z
p fyigNL

i¼1jfxig
NL

i¼1; f�ig
NL

i¼1;w
	 


p wjfxigNi¼1

	 
 YN
i¼1

p xmi

i jx
oi
i

� �" #
dxm1

1 � � � dx
mN

N :

ð31Þ

Since this integral is, unfortunately, intractable, we appeal to

Jensen’s inequality, noting that the concavity of the logarithm

function leads to a lower bound on the logarithm of (31):

log

Z
p wjfxigNi¼1; fyig

NL

i¼1; f�ig
NL

i¼1

	 

YN
i¼1

pðxmi

i jx
oi
i Þ

" #
dxm1

1 � � � dx
mN

N

�
Z

log p wjfxigNi¼1; fyig
NL

i¼1; f�ig
NL

i¼1

	 

YN
i¼1

pðxmi

i jx
oi
i Þ

" #
dxm1

1 � � � dx
mN

N

/
Z

log
n
p fyigNL

i¼1jfxig
NL

i¼1; f�ig
NL

i¼1;w
	 


pðwjfxigNi¼1Þ
o YN

i¼1

pðxmi

i jx
oi
i Þ

" #
dxm1

1 � � � dx
mN

N

¼
Z

log p fyigNL

i¼1jfxig
NL

i¼1; f�ig
NL

i¼1;w
	 


YN
i¼1

pðxmi

i jx
oi
i Þ

" #
dxm1

1 � � � dx
mN

N

þ
Z

log p wjfxigNi¼1

	 
 YN
i¼1

pðxmi

i jx
oi
i Þ

" #
dxm1

1 � � � dx
mN

N

¼ ‘ðwÞ þ
Z

log p wjfxigNi¼1

	 
 YN
i¼1

pðxmi

i jx
oi
i Þ

" #
dxm1

1 � � � dx
mN

N :

ð32Þ

We therefore integrate out the missing data for the log-

posterior. Since the expression for the log-likelihood ‘ðwÞ has

already been obtained in (23), we direct our attention to

integrating the log-prior (or, equivalently, G; see, (29)) in (32).

If a normalized graph Laplacian is to be used in G, as we

desire, a closed-form expression cannot be obtained for this

integral. Instead, we use a two-stage approach in computing
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this integral.1 It was shown in [22] that, when faced with

missing data, the kernel matrix can be analytically completed

by integrating out the missing data (for a Gaussian kernel).

From this completed kernel matrix, the graph Laplacian can

be readily computed using (25), and then normalized using

(26), resulting in �. We follow this path, replacing the graph

Laplacian within G with the analytically completed �, which

is no longer a function of the missing data. Then, in the second

stage, treating � as a constant, the result of the requisite

integration in (32) is

log p wjfxoii g
N
i¼1

	 

¼
Z

log p wjfxigNi¼1

	 
 YN
i¼1

pðxmi

i jx
oi
i Þ

" #
dxm1

1 � � � dx
mN

N

¼ ð��=2Þ
Z

wTX�XTw
YN
i¼1

pðxmi

i jx
oi
i Þ

" #
dxm1

1 � � � dx
mN

N

¼ ð��=2ÞwT eX�eXT þ �
	 


w:

ð33Þ

The derivation of (33) is shown in Appendix B, which can
be found at http://computer.org/tpami/archives.htm. In
(33), the aith element of eX is

eXai ¼
xia if a 2 oiPK

k¼1 �
i
k

mi½a�
k if a 2 mi

�
ð34Þ

and the abth element of � is

�ab ¼
XN
i¼1

�ii

XK
k¼1

�ik�
mi½ab�
k 1a2mi

1b2mi
; ð35Þ

with 1z an indicator function that is unity if z is true, but
is zero otherwise. Note that 


mi½a�
k is the element in 

mi

k

that corresponds to feature a and �
mi½ab�
k is the covariance

element in �mi

k that corresponds to features a and b.
The two-stage approach to the integration in (32) retains

tractability while also limiting the propagation of errors due
to missing data. By first analytically integrating out the
missing data in the completion of the kernel matrix, we
establish a very accurate relationship between every pair of
data points. Because subsequent calculations depend on
these pairwise relationships, errors in these quantities
would compound and spread throughout G.

Our proposed semisupervised classifier is then the (MAP-
like2) classifier w that maximizes the sum of (23) and (33):

w ¼ arg max
w

(XNL
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ð36Þ

As in the supervised version, this w is found using gradient
ascent. Evidence maximization [13] is used to select the
value of �; the procedure is shown in Appendix C, which
can be found at http://computer.org/tpami/archives.htm.

4 EXPERIMENTAL RESULTS

4.1 GMM Estimation

One of the main goals of this work is to develop a principled
means of extending logistic regression to allow for the
classification of incomplete data. Since the GMM density
estimation plays a major role in the classification algorithm,
an auxiliary goal is to compare the performance of the VB-
EM and EM algorithms in estimating a GMM. To accomplish
this secondary goal, we created a synthetic 2d data set,
defined by a mixture of four Gaussians.

The true parameters of this GMM are as follows:

pðxÞ ¼
XK
k¼1

�kNðx;��k;�kÞ; ð37Þ

�� ¼
h

1=3 1=6 1=4 1=4
i
;

��1 ¼
h

0 0
iT
; ��2 ¼

h
4 3

iT
;

��3 ¼
h

1=2 13=2
iT
; ��4 ¼

h
6 4

iT
;

�1 ¼
1 3=4

3=4 1

� 

; �2 ¼

1 �2=3

�2=3 2=3

� 

;

�3 ¼
1 3=5

3=5 1

� 

; �4 ¼

1=8 1=4

1=4 1

� 

:

We randomly removed 40 percent of the features and then
built GMMs using the VB-EM and EM algorithms. For each
number of samples used to train the GMM, 50 trials were run.
Each trial consisted of different data generated from the true
GMM and different patterns of missing features.

An approximation to the Kullback-Leibler (KL) diver-
gence between two Gaussian mixture models can be
computed analytically using the unscented transform [6].
The smaller the KL divergence, the closer the estimated
distribution is to the true distribution. The results of this
experiment appear in Fig. 2. The difference between the VB-
EM and EM algorithms is most pronounced when a small
amount of data is available to build the GMMs, in which
case, the VB-EM GMM is superior.
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Fig. 2. Approximate KL divergence between the true GMM and the

estimated GMMs using VB-EM and EM for the synthetic data set. Error

bars represent one standard deviation about the mean value.

1. It has been our experience that the inelegance of the two-stage
integration is worth the gains to be reaped from using a normalized graph
Laplacian.

2. The w that maximizes the posterior in (30) may not be the same w that
maximizes the log-posterior in (32) because of the integration.



4.2 Classification

The area under a receiver operating characteristic (ROC)
curve (AUC) is given by the Wilcoxon statistic [8]

AUC ¼ ðMNÞ�1
XM
m¼1

XN
n¼1

1am>bn ; ð38Þ

where a1; . . . ; aM are the classifier decisions (e.g., the
probabilities from (22)) of data belonging to class 1,
b1; . . . ; bN are the classifier decisions of data belonging to
class -1, and 1 is an indicator function. We present the
results of our classification algorithms in terms of the AUC.

We applied our proposed classification algorithms to the
IONOSPHERE and WISCONSIN DIAGNOSTIC BREAST CAN-

CER (WDBC) benchmark data sets from the UCI Machine
Learning Repository. We also provide a comparison to
multiple imputation for the data considered in Fig. 2 (see
(37)). The IONOSPHERE data set has 351 data points and
34 features, while the WDBC data set has 569 data points and
30 features. In all experiments, missing features were
artificially created in both training and testing data. Artifi-
cially creating missing data affords us the opportunity to
observe algorithm performance as a function of various
parameters (e.g., amount of missing data).

In the following experiments, every trial consists of a
random partition of training and testing data and a random
pattern of missing features, the amounts of which are
determined by the given parameters. Because both the
training sets as well as the patterns of missing features in
every trial are unique, performance can vary widely
between trials. The relative differences between two
methods over all trials vary less. That is, the methods have
a consistent relative difference in performance, even though
the absolute difference in performance may vary widely
from trial to trial. Therefore, for all experiments, in lieu of
error bars, we report the results of paired t-tests between
the proposed method and the other competing methods. All
of these t-test results are shown in Appendix D, which can
be found at http://computer.org/tpami/archives.htm.

4.3 Multiple Imputation

Using the same synthetic data set used in Section 4.1 (see (37)),
we compared the proposed supervised method—from
Section 2 that analytically integrates out missing data—with
the method of multiple imputation [19]. Specifically, the
2d data set was composed of 200 data points, with 40 percent
of the features randomly removed. Data points generated by
one of the first two mixture components belong to class y ¼ 1
and data points generated by the third or fourth mixture
component belong to class y ¼ �1. Ten percent of the data
was used as training data, while the remaining 90 percent was
used as testing data. We conducted 200 independent trials,
where each trial consisted of a unique partition of the data
into training and testing sets and a unique pattern of missing
features. The VB-EM algorithm was used to estimate the
(GMM) density function required by both methods.

For each trial, several different numbers of imputations
were considered for the multiple imputation method. The
process of classification with multiple imputation with
M imputations proceeded as follows: First, the data set with
missing features is replicatedM times. For each of theM data
sets, one sample is drawn from the estimated density function
for each missing feature. These samples are inserted for the

previously missing features, which produces complete data
sets missing no features. For each of these M (artificially)
complete data sets, a logistic regression classifier is learned.
Each testing data point is then evaluated by each of the
M classifiers (with any missing features of the testing data
points first replaced by samples from the density function).
The resultingM predictions (i.e., the probability of belonging
to a given class) for each data point are then averaged. This
procedure results in a single prediction (i.e., class probability)
for each data point. Finally, the AUC is computed using these
averaged predictions.

The results of this set of experiments are shown in
Fig. 3. The paired t-test results are shown in Table 1 in
Appendix D, which can be found at http://computer.org/
tpami/archives.htm. As can be seen from Fig. 3, as the
number of imputations increases, the performance of the
multiple imputation method approaches the performance
of the proposed algorithm. However, it should be noted
that the computational cost of the multiple imputation
method scales linearly as a function of the number of
imputations ðMÞ. Whereas multiple imputation requires
substantial sampling—as well as learning multiple classi-
fiers—the proposed algorithm requires no sampling and
must learn only a single classifier. With a sufficient
number of imputations—what constitutes “sufficient” is
unknown a priori in practice—and enough computational
resources, multiple imputation will result in comparable
performance to the proposed method. In subsequent
experiments, we compare the proposed method to more
computationally feasible methods that share similar levels
of computational complexity.

4.3.1 Supervised Classification with Perfect Labels

Experimental results for the supervised algorithm are shown
in Figs. 4 and 5 for the IONOSPHERE and WDBC data sets,
respectively. To allow one to observe the performance of the
methods as a function of data-set size, the GMMs are trained
using only training (labeled) data. In practice, all available
data (labeled and unlabeled) can be used to build the GMMs
because labels are not used in this density estimation.

Five different methods were compared for the experi-
ments on the IONOSPHERE data set. Two methods use the
proposed supervised algorithm; to estimate the GMM, one
of these methods uses the VB-EM algorithm, while the other
method uses the EM algorithm. Three mean imputation
methods were also considered. These methods first “com-
plete” all missing data using conditional mean imputation
(utilizing the GMM estimated using VB-EM or EM) or
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Fig. 3. Experimental results of the proposed supervised algorithm and

the method of multiple imputation for the synthetic data set.



unconditional mean imputation. Specifically, in conditional
mean imputation, the missing features of each data point
are replaced with their conditional mean:

xmi

i  IE½xmi

i jx
oi
i � ¼

XK
k¼1

�ik


mi

k ; ð39Þ

where �ik and 

mi

k are defined in (9) and (12), respectively. In
unconditional mean imputation, all missing data is “com-
pleted” with the unconditional mean, which does not require
a model of the data. If xi is missing feature a (i.e., a 2 mi),
unconditional mean imputation will make the substitution

xia  IE½xia� ¼
PN

j¼1 xja1a2ojPN
‘¼1 1a2o‘

: ð40Þ

Standard (complete-data) logistic regression was then used
for these three mean imputation methods.

Each point on every curve in Fig. 4 is an average over
10 trials. The paired t-test results are shown in Table 2 in
Appendix D, which can be found at http://computer.org/
tpami/archives.htm. From Fig. 4, it can be observed that the
proposed method using VB-EM for the GMM estimation
consistently performed better than the same method using
EM for the GMM estimation. In particular, this difference was
most significant when a small number of data points were

available to train the GMM (see Fig. 2 also). We also observed

that both of these versions of the proposed method were

superior to the three single imputation schemes considered.

For the proposed method using VB-EM, having fewer

training data points with a higher fraction of features present

appears to be more important (in terms of performance) than

having more training data points with a lower fraction of

features present (e.g., when the fraction of training data

points is 0.2, 0.3, and 0.6 in Figs. 4a, 4b, and 4c, respectively,

the training set has the same total number of present features).
Confident of the superiority of the VB-EM algorithm over

the EM algorithm for the GMM estimation (see Figs. 2 and 4),

all subsequent experiments use the VB-EM algorithm to

estimate GMMs. Additional results—for the WDBC data

set—shown in Fig. 5 were obtained by following the same

experimental setup as that used to obtain the results for the

IONOSPHERE data set in Fig. 4. The paired t-test results are

shown in Table 3 in Appendix D, which can be found at

http://computer.org/tpami/archives.htm. The proposed

method again outperformed the mean imputation methods.

4.3.2 Supervised Classification with Imperfect Labels

The IONOSPHERE data set was also used to evaluate the

proposed supervised algorithm with imperfect labels.
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Fig. 4. Experimental results for the supervised algorithm on the IONOSPHERE data set. The proposed methods use the new logistic regression method

(no imputation), with the requisite GMMs trained using the VB-EM or EM algorithm. The other three methods complete the missing data via imputation

using the conditional mean (obtained via the VB-EM or EM GMMs) or the unconditional mean. The results are for the cases when (a) 25 percent,

(b) 50 percent, and (c) 75 percent of the features are missing.

Fig. 5. Experimental results for the supervised algorithm on the WDBC data set. Refer to the caption of Fig. 4 for additional details. The results are for

the cases when (a) 25 percent, (b) 50 percent, and (c) 75 percent of the features are missing.



We compared the proposed supervised algorithm with
imperfect labels to two other algorithms: 1) the same
supervised algorithm except without the imperfect label
capability (i.e., with � ¼ 0 incorrectly) and 2) the supervised
(logistic regression) algorithm with imperfect label cap-
ability, except all missing data is first “completed” with the
unconditional mean values. The training data labels were
randomly made incorrect at the given labeling error rate �.
The results of these experiments appear in Fig. 6. The paired
t-test results are shown in Table 4 in Appendix D, which
can be found at http://computer.org/tpami/archives.htm.

For this set of experiments, 50 percent of the data was
labeled training data. Each point on every curve in Fig. 6 is
an average over 15 trials. Every trial consists of a random
partition of training and testing data and a random pattern
of missing features. For each trial, all three methods
considered use the same data partitions, missing data
patterns, and corrupted training labels.

The proposed incomplete-data method using the true
labeling error rate � consistently achieves better perfor-
mance than the method that incorrectly assumes perfect
labeling (i.e., � ¼ 0). This latter method using the wrong
labeling error rate value still achieves better performance
than unconditional mean imputation with the true �. These
results suggest that using the proposed algorithm with an
inaccurate labeling error rate is still better than performing
mean imputation. This result is particularly important
because an accurate estimate of the labeling error rate
may be difficult to obtain in practice.

4.3.3 Semisupervised Classification

The IONOSPHERE data set was again used to evaluate the
proposed semisupervised algorithm. We compared the
proposed semisupervised algorithm to two other algo-
rithms: 1) the purely supervised version of the algorithm
and 2) the semisupervised algorithm of the same form (i.e.,
logistic regression with a GRF prior), except all missing data
is first “completed” with the unconditional mean values.
The results of these experiments appear in Fig. 7. The paired
t-test results are shown in Table 5 in Appendix D, which
can be found at http://computer.org/tpami/archives.htm.

Each point on every curve in Fig. 7 is an average over
15 trials. Every trial consists of a random partition of
training and testing data and a random pattern of missing
features. For each trial, all three methods considered use the
same data partitions and missing data patterns.

From Fig. 7, it is seen that the proposed semisupervised
algorithm consistently outperforms both the supervised
algorithm as well as the semisupervised mean imputation
method. The advantage of the proposed semisupervised
algorithm was most significant when there was limited
labeled (training) data.

5 DISCUSSION

The incomplete-data problem, and in particular our proposed
approach using GMMs, raises several questions. For instance,
the number of data points required to accurately estimate the
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Fig. 6. Experimental results for the supervised algorithm with imperfect labels when the labeling error rate is (a) � ¼ 0:1, (b) � ¼ 0:2, and (c) � ¼ 0:3.

Fig. 7. Experimental results for the semisupervised algorithm. The results are for the cases when (a) 25 percent, (b) 50 percent, and (c) 75 percent of
the data is labeled.



GMM will increase as the square of the feature dimension
because the covariance matrix is modeled. In contrast, the
number of parameters in the standard logistic regression is
equal to the feature dimension. Despite this ostensibly
increased data size requirement, our proposed algorithm
using the VB-EM GMM still performs better than single
imputation schemes when the number of training data points
is small. For example, in Fig. 4, when the fraction of training
data points is 0.1 (corresponding to only 35 training data
points, each of which have 34 features), our proposed
algorithm still outperforms the single imputation methods.
This result suggests that the benefits of our algorithm
outweigh the added parameter estimation burden. It must
be noted, however, that the proposed approach is not feasible
for data sets with many (e.g., thousands) of features, such as
gene expression data sets [16]. Future work will focus on
developing methods to handle such data sets.

Another question the incomplete-data problem raises is
whether ignoring data with missing features is better than
using an incomplete-data method (either our proposed
method or even a simple imputation scheme). It is, of
course, displeasing to discard data (information), but can
doing so improve performance? There is a major problem
with simply ignoring data with missing features. It is true
that ignoring data with missing features in the training
stage will eliminate incomplete-data training issues. How-
ever, in the testing stage, one cannot simply ignore a data
point to be classified because it is missing some features.
One would still be forced to resort to ad hoc procedures
such as filling in zeros or the unconditional mean for the
missing features of such incomplete testing data. In
contrast, our principled proposed method does not rely
on any ad hoc methods in either the training or testing
stage.

Our proposed classification algorithm does, however,
have some drawbacks. The semisupervised extension uses
two approximations to retain tractability in integrating out
the missing data: A two-stage approach was employed to
perform the integration of the log-posterior (instead of the
posterior). Despite the inelegance of this approach, the
proposed semisupervised extension still achieves better
performance than the purely supervised classifier. More-
over, it should be emphasized that our algorithm is the first
semisupervised algorithm that handles incomplete data.

Perhaps the largest drawback of our general classifica-
tion algorithm is the restriction to linear classifiers. The
integration in (5) cannot be performed analytically as we
have done if a nonlinear kernel function is used to first map
data into a new feature space. If a typical kernel is used, all
components for which data is missing would appear in each
of the new features. In a sense, the kernel mapping would
actually “create” more missing data. If it is imperative that a
nonlinear classifier be used for a certain incomplete-data
problem, we suggest instead using the analytical kernel
matrix completion idea [22] that was used to build the
graph Laplacian. Although this method “completes” all of
the missing data, it does so in a principled manner. This
approach has already been used successfully to classify
incomplete data using a nonlinear classifier [22].

6 CONCLUSION

Our main contribution is the development of a logistic
regression algorithm for the classification of incomplete
data. By making two mild assumptions, the proposed
supervised algorithm solves the incomplete-data problem
in a principled manner, avoiding imputation heuristics.

We then extended this supervised algorithm to the
semisupervised case in which all available data is utilized—
both incomplete and complete, as well as labeled and
unlabeled. Experimental results have shown the advantages
of the various features of this algorithm. The proposed
algorithm has also been successful even when a high
percentage of features are missing. Moreover, despite the
additional parameters to be estimated, the proposed algo-
rithm has been successful when the training set size is small.
In fact, the semisupervised extension improves performance
most significantly in this very regime. Allowing for imperfect
labels extends the theme of utilizing all available data to
perform classification.

We have also derived the equations for building a GMM
with incomplete data via the EM and VB-EM algorithms.
Experimental evidence has shown that the VB-EM algorithm
is markedly superior in terms of density estimation when
data is scarce.

Several exciting directions exist for future research. One
topic deserving of future study is the development of a
principled algorithm that allows a nonlinear classifier to be
used to classify incomplete data. Additional research will
focus on extending the present algorithm both to handle the
case of multinomial classification and to permit data sets
with very large feature dimensions. Additional work will
focus on establishing the relative (theoretical) value of
incomplete data.
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[18] S. Rässler, “The Impact of Multiple Imputation for DACSEIS,”
Technical Report DACSEIS Research Paper Series 5, Univ. of
Erlangen-Nürnberg, Nürnberg, Germany, 2004.

[19] D. Rubin, Multiple Imputation for Nonresponse in Surveys. Wiley,
1987.

[20] J. Schafer and J. Graham, “Missing Data: Our View of the State of
the Art,” Psychological Methods, vol. 7, no. 2, 2002.

[21] K. Tsuda, S. Akaho, and K. Asai, “The em Algorithm for Kernel
Matrix Completion with Auxiliary Data,” J. Machine Learning
Research, vol. 4, pp. 67-81, 2003.

[22] D. Williams and L. Carin, “Analytical Kernel Matrix Completion
with Incomplete Multi-View Data,” Proc. 22nd Int’l Conf. Machine
Learning (ICML) Workshop Learning with Multiple Views, pp. 80-86,
2005.

[23] X. Zhu, “Semi-Supervised Learning with Graphs,” PhD thesis,
Carnegie Mellon Univ., 2005.

David Williams received the BSE (magna cum
laude), MS, and PhD degrees in 2002, 2003,
and 2006, respectively, all from Duke University.
While at Duke, he was the recipient of a James
B. Duke Graduate Fellowship and a National
Defense Science and Engineering Graduate
Fellowship. His principal technical interests lie
in the fields of machine learning and automatic
target recognition. He is a member of the IEEE.

Xuejun Liao (SM ’04) received the BS and MS
degrees in electrical engineering from Hunan
University, China, in 1990 and 1993, respec-
tively, and the PhD degree in electrical engineer-
ing from Xidian University, China, in 1999. From
1993 to 1995, he was with the Department of
Electrical Engineering, Hunan University, work-
ing on electronic instruments. From 1995 to
2000, he was with the National Key Lab for
Radar Signal Processing, Xidian University,

working on automatic target recognition (ATR) and radar imaging. Since
May 2000, he has been working as a research associate with the
Department of Electrical and Computer Engineering, Duke University.
His current research interests are in planning under uncertainty,
machine learning, bioinformatics, signal, and image processing. He is
a senior member of the IEEE.

Ya Xue received the BS degree in electrical
engineering in July 2000 from Tsinghua Uni-
versity, Beijing, China, and the MS degree in
electrical engineering in December 2002 from
Arizona State University, Tempe. She received
the PhD degree from Duke University in elec-
trical and computer engineering in December
2006. Her interests are machine learning and
nonparametric statistical techniques.

Lawrence Carin (F ’01-SM ’96) received the BS, MS, and PhD degrees
in electrical engineering from the University of Maryland, College Park,
in 1985, 1986, and 1989, respectively. In 1989, he joined the Electrical
Engineering Department at Polytechnic University (Brooklyn) as an
assistant professor, and became an associate professor there in 1994.
In September 1995, he joined the Electrical and Computer Engineering
Department at Duke University, where he is now the William H. Younger
Distinguished Professor. Dr. Carin has been the principal investigator on
several large research programs, including two Multidisciplinary
University Research Initiative (MURI) programs. He is the cofounder
of the small business Signal Innovations Group (SIG), which was
purchased in 2006 by Integrian, Inc. He was an associate editor of the
IEEE Transactions on Antennas and Propagation from 1996-2001. His
current research interests include signal processing and machine
learning for sensing applications. He is a member of the Tau Beta Pi
and Eta Kappa Nu honor societies. He is a fellow of the IEEE.

Balaji Krishnapuram received the BTech de-
gree from the Indian Institute of Technology (ITT)
Kharagpur in 1999 and the PhD degree from
Duke University in 2004, both in electrical
engineering. He works as a scientist with Sie-
mens Medical Solutions in Malvern, Pennsylva-
nia. His research interests include statistical
pattern recognition, Bayesian inference, and
computational learning theory. He is also inter-
ested in applications in computer-aided medical

diagnosis, signal processing, computer vision, and bioinformatics.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

436 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 3, MARCH 2007



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


