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Abstract 

A fuzzy theory refinement algorithm composed of a heuristic process of generaliza- 
tion, specification, addition and elimination of rules is proposed. This refinement algo- 
rithm can be applied to knowledge bases obtained from several sources (learning 
algorithms, experts), but its development is strongly associated with the SLAVE learn- 
ing system. SLAVE was developed for working with noise-affected systems where the 
application of  some conditions of  classical learning theory do not produce good descrip- 
tidns. This learning system allows us to obtain the structure of  the rule, i.e. it can deter- 
mine among all the variables proposed those that are relevant for describing the system 
(feature selection). SLAVE uses an iterative approach for learning with genetic algo- 
rithms. This method is an alternative approach to the classical Pittsburgh and Michigan 
approach and it consists in obtaining a useful rule to describe the system in each itera- 
tion. So in this approach, the final solution is obtained from partial solutions. The re- 
finement module appended to SLAVE (SLAVE + R) is proposed as a method for 
verifying that the union of  the partial solutions is a good global solution. Furthermore, 
this module allows us to minimize the number of  necessary rules, maintaining or im- 
proving the accuracy and understanding of  these rules. © 1998 Elsevier Science Inc. 
All rights reserved. 

Keywords: Machine learning; Fuzzy logic; Fuzzy rules refinement 

"Corresponding author. Tel.: +34 58 243 199; fax: +34 58 243 317; 
e-mail: a.gonzalez@decsai.ugr.es. 

I This work has been supported by CICYT under Project TIC95-0453. 

0888-613X/98/$19.00 © 1998 Elsevier Science Inc. All rights reserved. 
PII: S 0 8 8 8 - 6  1 3 X ( 9 8 ) 0 0 0  1 3-9 



194 A. Gonzalez, R. Perez I lnternat. J. Approx. Reason. 19 (1998) 193-220 

1. Introduction 

Knowledge acquisition is one of the main problems in developing know- 
ledge-based systems. Two phases in the acquisition knowledge problem may 
be distinguished: in the first stage, the knowledge is directly given by an expert 
or it is automatically extracted using a learning algorithm [7,18,20]; in the sec- 
ond stage, this knowledge must be refined in order to produce a high-perfor- 
mance system (theory refinement). In a similar way, this process for refining 
the initial knowledge can be automatically done by taking into account a set 
of examples that describes the behavior of the system in the past. There are sev- 
eral ways to represent the obtained knowledge but this knowledge is usually ex- 
pressed using rules that represent the relationships between the different 
variables in the problem. Therefore, given an incomplete and/or incorrect fuzzy 
rule base (fuzzy theory) that represents the initial knowledge (where this set can 
be empty) and a set of consistent examples, the refinement problem consists in 
modifying this initial set of rules so that it may be better adapted to the exam- 
ple set. 

The basic operations in this type of algorithm, when the knowledge is rep- 
resented by rules, are the processes of specification, generalization, addition 
and elimination of rules. Consequently, the main difference between two algo- 
rithms of rule refinement is the heuristic used by the algorithm for applying 
these processes. For example, in the EITHER algorithm [19], the set of rules 
is improved, causing minimum changes to the initial knowledge. However, 
we can find the JoJo algorithm [4] where its heuristic is only guided by the ac- 
curacy of the rule set over the example set. Both systems were designed for 
working with crisp rules. 

In [7] we presented a learning algorithm of fuzzy rules called SLAVE. This 
algorithm obtains a rule set for describing the consequent variable, using an it- 
erative method. The selection of the best rule in each iteration is done by a ge- 
netic algorithm (GA). An inconvenience of the iterative method is that the 
solution of the learning problem is composed of a set of "good" individual 
rules, but the behavior is unknown when all the rules work together. Further- 
more, SLAVE uses a graded definition on the consistency condition with two 
parameters to determine the good quality of the rule. We have proven experi- 
mentally that there is a strong dependency between the learning rates and the 
values of these parameters. This strong dependency implies that a successful es- 
timation of these parameters is needed to obtain good results with SLAVE, but 
the estimation of the consistency parameters are not easy. 

For these reasons, we have developed a refinement algorithm associated to 
SLAVE as a new component. So, this algorithm was proposed as a method of 
verifying that the union of the individual rules is a good global solution and of 
reducing the dependency with the learning parameters. In other studies such as 
[10-12], an initial version of a refinement algorithm for crisp and fuzzy 
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consequent domains was presented, and in [14] we proved that this refinement 
algorithm can be successfully applied to the rule set obtained with other learn- 
ing algorithms. 

The basic elements of this algorithm are as follows. 
(a) The rule model." This element is inherited from SLAVE and it is an im- 

portant feature of this system because it allows us to determine the relevant 
variables for each rule. Therefore it is strongly associated with determining 
the structure of the rule and obtaining more understandable descriptions. 

(b) The heuristic." The special way in which the process of generalization, 
specification, addition and elimination of rules are combined. 

(c) The inference process: We can distinguish two different kinds of inference 
processes, one for crisp consequent domain and another for fuzzy consequent 
domain. Both types of learning problem can be solved using SLAVE. For the 
first one, SLAVE uses a particular function to establish the compatibility be- 
tween an example and the rule set and a special procedure for solving the con- 
flict problems. The mechanism for solving conflicts uses a rule sorting criterion 
based on a measure of the accuracy of each rule. Therefore, the refinement al- 
gorithm supposes that the rule set given as input is ordered using this criterion. 
For problems with fuzzy consequent domain, the order of the rule is not im- 
portant since the output is obtained by the combination of the activated rules. 
In this case, a simple inference process and a defuzzification method are used. 

In this paper, we propose an improved version of this refinement algorithm, 
where the main differences when it is compared to the initial version are: 
1. a modification of the heuristic that guides the algorithm, 
2. a new process that modifies the semantics of the labels of the consequent 

variable and it allows the introduction of a better system description in 
the fuzzy consequent domain. 
The aim of Section 2 is to briefly show a description of the SLAVE learning 

algorithm and to consider the initial ideas for the refinement algorithm. Sec- 
tion 3 describes the refinement algorithm for the crisp consequent domain 
and its behavior is tested using other learning algorithms. In a similar way, Sec- 
tion 4 describes and tests the refinement algorithm for the fuzzy consequent do- 
main. Finally, we show the conclusions of this work in Section 5. 

2. An overview of the slave learning algorithm 

SLAVE is an inductive learning algorithm that was initially proposed in [7] 
and later developed in [8,9], and uses fuzzy rules to represent the knowledge 
obtained. The basic element of the SLAVE learning algorithm is its rule model 

IFXI is Al and . . .  and Xp is Ap THEN Y is B 
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where each variable X~ has a referential set U,. and takes values in a finite do- 
main D;, for i ~ {1 , . . .  ,p}. The referential set for Y is V and its domain is F. 
The value of  the variable y is B, where B ~ F and the value of  the variable 
X~ is Ai, where Ai E P(Di) and P(Dg) denotes the set of  subsets of  D ,  

In general, we can consider the variables in this model to be linguistic, i.e. 
the domains of  the variable can be described using linguistic labels, or in gen- 
eral fuzzy sets. The key to this rule model is that each variable can take as a 
value an element or a subset of  elements from its domain, i.e. we let the value 
of  a variable be interpreted more as a disjunction of  elements than just one el- 
ement in its domain. This concept is clarified in the following example: 

Example 2.1. Let X~ be a variable whose domain is shown in Fig. l(a). An 
antecedent like 

. . .  and X / =  {La,Ls,L6) and . . .  

is equivalent to 

. . .  and {X/is L4 or X,. is L5 or S,. is L6} and . . .  

Using the previous rule model, the set of  all possible rules is 

A = P(D, )  x P(D2) × - - '  × P(Dn) x F.  

Another important characteristic of  this learning algorithm is that it uses the 
iterative genetic approach in order to learn the rule set. The iterative approach 
is presented as an alternative to Michigan and Pittsburgh's well-known ap- 
proaches for machine learning. This approach consists in including a genetic 
algorithm in an iterative scheme similar to the foUowing [13]: 

LI  L 2 L 3 L 4 L 5 L 6 

Fig. 1. A fuzzy domain. 
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1. Use a GA to obtain a rule for the system. 
2. Incorporate the rule into the final set of rules. 
3. Penalize this rule. 
4. If  the set of  rules obtained is sufficient to represent the examples in the train- 

ing set, the system will return the set of  rules as the solution. Otherwise re- 
turn to step 1. 
The GA obtains a rule in each step that is a partial solution to the learning 

problem. The true solution is obtained by appending each rule to the rule set. 
In recent literature, we can find different algorithms that use this new approach, 
such as [3,7,23]. An interesting discussion about the problems generated by the 
use of  these approaches can be seen in [13]. 

Therefore, in the iterative approach, the GA is used for selecting the best 
rule in each iteration of  the learning process. This GA and its parameters 
are described in [9]. In SLAVE, in order to measure the good quality of the 
rule, we introduced two definitions that are based on the classical consistency 
and completeness conditions. These conditions provide the logical foundation 
of  the algorithms for concept learning from examples. 

Definition 2.1. The completeness condition states that every example in some 
class must verify some rule from this class. 

Definition 2.2. The consistency condition states that if an example satisfies a 
description of  some class, then it cannot be a member of  a training set of any 
other class. 

These definitions are associated on the entire rule set, but SLAVE obtains 
the set of  rules that describes the system, extracting one rule in each iteration 
of the learning process. For  this reason, we need to define these concepts on 
each rule. Moreover, we are not interested in proposing hard definitions on fuz- 
zy problems, thus, we propose a completeness degree and a consistency degree; 
both definitions use the concepts proposed in [9]. 

Definition 2.3. The completeness degree of  a rule RB(A) is defined as 

A(Rs(A) ) -- n+(RB(A) ) , 
nB 

where nB is the number of  examples of  the B class and n + (R8 (A)) is the number 
of  positive examples covered by RB(A). 

The soft consistency degree is based on the possibility of  admitting some 
noise in the rules. Therefore, in order to define the soft consistency degree 
we use the following set: 
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A k = {RB(A) In-(R~(A)) < k n+(RB(A))} 

that represents the set of rules having a number of negative examples 
(n-(Rn(A))) strictly less than a percentage (depending on k) of the positive ex- 
amples (n+ (RB(A) )). 

Definition 2.4. The degree to which a rule R satisfies the soft consistency con- 
dition is 

1 if R E A kl 

k2n+(R)-n- (R)  i fR ~/A ~ and R e A  ~2, 
Fkah(R) = n+(R)(k2 - kl) 

0 otherwise, 

where kl,k2 E [0, 1] and kl < k2, and n-(R), n-(R) are the number of positive 
and negative examples of the rule R. 

This definition uses two parameters: kl is a lower bound of the noisy thresh- 
old and k2 is an upper bound of the noisy threshold. In both definitions, we 
have used the definitions of positive and negative example number proposed 
in [9]. These definitions are based on the use of the cardinality of two fuzzy sets 
(the positive and negative example sets). 

Thus, SLAVE selects the rule that simultaneously verifies the completeness 
and soft consistency conditions to a high degree. Therefore, the rule selection in 
SLAVE can be solved by the following optimization problem: 

max{ A(RB(A)) x Fklk2(RB(A))}, 
AED 

where D = P(D1) × P(D2) x . . .  x P(D,). Fig. 2 shows the different elements of 
the SLAVE learning algorithm and the relationships between them. 

In our practical experience, we have detected some problems in the good 
quality of the rule set obtained by SLAVE. The causes of these problems are 
mainly due to the following reasons: 

(a) The iterative approach of SLAVE obtains each rule from the rule set in- 
dividually, therefore the final rule set contains a set of good individual rules 
that have an unknown behavior when they are all used to classify an example. 

(b) The rule set obtained by SLAVE has a strong dependency on the param- 
eters of the consistency conditions. Therefore, a good estimation of these pa- 
rameters is necessary for correct learning. 

So, the refinement algorithm is proposed as a method to verify that the un- 
ion of the individual rules is a good global solution and to reduce the depen- 
dency on the consistency parameters. Furthermore, this module allows us to 
minimize the number of necessary rules, maintaining accuracy, and to improve 
the understanding of these rules. SLAVE+R is the name which we give to the 
system composed of SLAVE with the addition of the refinement module, and 
its basic structure is showed in the Fig. 3. 
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Fig. 2. Description of Learning Process. 
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Fig. 3. Description of SLAVE + R. 

The refinement algorithm is a heuristic algorithm that tries to maximize the 
good quality of  the rules. The estimated good quality of the rule set is based on 
error measurements. The algorithm uses the hill-climbing strategy and it is 
composed of  the operations of  specification, generalization, addition and elim- 
ination of  rules that are repeated until the global error and the number of rules 
cannot be decreased. 
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The refinement uses a heuristic function to select the most promising action 
in each step of the algorithm in order to find a satisfactory solution. This heu- 
ristic function measures the error produced by a set of rules and therefore the 
heuristic function is closely related to the inference process. Because the infer- 
ence process for the crisp consequent is different to the fuzzy consequent, we 
develop two different refinement modules that use similar steps but with a dif- 
ferent interpretation. In the following sections, we describe each one of these 
modules. 

3. Refinement module for crisp consequent domain 

The refinement module attempts to improve the rule set obtained by 
SLAVE, reducing the problems previously described. The module is composed 
of two tasks. The first one consists in improving the correctness of each rule. 
For this purpose, a specification process is used which attempts to ensure that 
each rule covers the highest number of well-classified examples from the orig- 
inal rule without covering its worst-classified examples. Following this task, it 
is possible that some of the worst-classified examples covered by some rules be- 
come unclassified examples. The next task attempts to cover these unclassified 
examples using a generalization process on the existing rules or additional new 
rules. The previous tasks are repeated on the rule set until a termination con- 
dition is verified. Fig. 4 shows the different steps of this algorithm. 

The refinement uses a heuristic function and a hill-climbing strategy to select 
the most promising action in each step of the algorithm in order to find a suit- 
able solution. We consider a function that measures the global precision of the 
current rule set on the training set. Thus, in order to define this function it is 
necessary to describe the predictive module used. The inference process begins 
with an ordered rule set and the classification of an example is done in the fol- 
lowing way: the adaptation between the example and the antecedent part of 
each rule is evaluated and the rule class with the best adaptation is returned. 
If there is more than one rule with the best adaptation (conflict problem), 
the class from the rule with the lowest order in the rule set is returned. The heu- 
ristic component of the refinement algorithm selects rules in the order previous- 
ly described in the rule set. However, we have not considered any special 
ordering for variables and values. They are taken by considering the default or- 
der. 

Now, we will describe each one of the steps in the refinement algorithm with 
more detail. 

(1) Improving the precision of  the rules: In this step, we try to improve the 
prediction capacity of the rule set obtained by SLAVE on the training set, in- 
creasing the correctness for each rule. 
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Fig. 4. Refinement for crisp consequent domain. 

Definition 3.1. A rule is correct if its precision, using the predictive process, is 
complete, i.e. this rule has total success. 

To obtain a rule set where all the rules are correct is not appropriate in some 
cases, for example, when we work with noisy training sets since a subset of the 
examples will be correctly classified but we cannot say anything about the rest. 
A possible solution consists in grading the correctness of  the rule. This degree is 
based on the precision of  the rule, i.e. the relation between successes and suc- 
cesses plus failures produced by the rule on the training set. Using this grading 
in the completeness concept, the goal of  the refinement algorithm consists in 
finding a good rule set from the original rule set, in which each rule must be 
as complete as possible. 
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When we learn with SLAVE, the parameters of the consistency degree fix 
an estimation on the minimum degree of correctness of each rule that it is 
learnt. One of the problems that we must solve when we work with SLAVE, 
consists in assigning suitable values for the k~ and k2 parameters. If the 
choice of these values is not correct, during the rule selection, rules with a 
lower degree of correctness may be preferred over other rules with a high 
correctness degree but lower valuation. The following example shows this 
problem. 

Example 3.1. Let us suppose that we want to learn the example set shown in 
Fig. 5 using SLAVE. In this problem, there are two predictive variables X1 and 
X2, for which the domains are {al, a2, a3, a4} and {hi, b2, b3, b4} respectively. 
The examples can be members of two different classes {+ , -} .  Furthermore, let 
us suppose that kl = k2 and that they are fixed at ½. Under these conditions, the 
first rule that is returned by SLAVE for (+) class is 

IFX~ is {al,a2, a3} and X2 is {bl,b2, b3} THEN + 

for which its value is 

7 
A(R) = g, 

rk~k2(R) = 1.0, 

7 
A(R) Fk, k2(R) = -~ 

and its precision is 7. Contrary to this rule, we can find the rule 

IFXI is {al,az,a3} andXz is {bl,b2} THEN + 

for which its value 

6 
A(R) = -~ , 

X 1 
aa a2 83 a4 

b 1 + + + - 

b 2 ÷ @ @ - 
V 

÷ . ÷ 

F i g .  5. A se t  o f  e x a m p l e s .  
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rk, k2(R) = 1.0, 
6 

A(R) Fk, k:(R) = -~ 

is less than in the previous rule, but the rule is correct. 

SLAVE has a tendency to generalize the rules as far as the k~ and k2 param- 
eters allow. The first step of  the algorithm attempts to counteract this behavior 
by specifying the rules for reducing the number of failures in each rule. Thus, 
this process begins by specifying the rules in the order in which they appear in 
the rule set. We shall say that a value for a variable is active if this value ap- 
pears for that variable in the description of the rule. So, we shall say that a val- 
ue for a variable is not active if this value does not appear for that variable in 
the description of the rule. In this way, a specification operation can be consid- 
ered as changing to non-active value that previously was active and we will say 
that this value is deactivated. This process can be described in the following 
way. 
1. The most relevant rule is selected. 
2. Select a variable and do the following: 

2.1. Select an active value. 
2.2. This value is deactivated. 
2.3. If the overall accuracy is improved or maintained, the modification is 

accepted. Otherwise, the value is activated. 
2.4. If  there are other active values, go to 2.1. 
2.5. If all the values of  the variable are deactivated, then this rule is re- 

moved from the rule set. 
2.6. If there are other unselected variables, go to 2. 

3. If  there are more unselected rules, select the next most relevant rule and go 
to 2, otherwise the process finishes. 
Furthermore,  we must note that this step allows us remove rules from the 

rule set. Therefore, the elimination of  a rule from the rule set is considered 
as a particular case of  specification and it is caused when all the values of  an 
antecedent variable are deactivated. 

(2) Improving the completeness generalizing the rules: In this second step, the 
refinement algorithm attempts to improve the completeness of  the rules by 
using an ordered process of  generalization. In this process, new values are ap- 
pended to the antecedent variables for each rule. This generalization is done 
when the overall accuracy is kept or strictly improved, using the rule set that 
includes the modified rule. There are two reasons for the improvement in accu- 
racy: 

(a) Unclassified examples can be correctly covered by generalizing one of the 
rules. 
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(b) Examples incorrectly classified by one rule with a lower order can be cor- 
rectly covered when a rule with a higher order is generalized. 
Consequently, this step of the algorithm improves the completeness and the 
correctness of some of the rules of the rule set. 

This procedure has a similar structure to the previous algorithm, but the or- 
der of rules is reversed and it begins by selecting the least relevant rule: 
1. The least relevant rule is selected. 
2. Select a variable and do the following: 

2.1. Select a deactivated value. 
2.2. This value is activated. 
2.3. If the overall accuracy is strictly improved or maintained, the modifi- 

cation is accepted. Otherwise, the value is deactivated. 
2.4. If there are other deactivated values, go to 2.1. 
2.5. If  there are other unselected variables, go to 2. 

3. I f  there are more unselected rules, select the next most relevant rule and go 
to 2, otherwise the process finishes. 
In this process, the inverse order is used for the following reason: the infer- 

ence method used favors the rules that appear in the first positions in the rule 
set when the conflict problems appear. A rule that has the T position in the rule 
set may include in its description the descriptions of all the rules that have a 
lower position than T, if it does not reduce the accuracy of the systems. This 
fact means that the first rules are more specific than the last rules in the rule 
set. So, the last rules have a higher probability of being generalized than the 
first rules. 

(3) Improving the completeness by the addition of new rules: The next step in 
the algorithm, consists in appending new rules to cover the examples that are 
not covered by any rule and which the previous process cannot cover. This task 
adds the most specific rule with the best adaptation for each example that is not 
covered in the training set. 

Example 3.2. Let us suppose we have three variables, Xl, X2 and X3, and the 
fuzzy domain associated with each one is shown in Fig. 6, and furthermore, let 
us suppose that the example (rl, r:, r3) is not covered by any rule, this example 
being a member of a certain B class. In this case, the most specific rule with the 
best adaptation with this example is 

IFX~ is {A13} and )(2 is {A23} andX3 is {A3~ ) THEN Y is B 

(4) Termination condition: The previous steps are repeated until the rule 
set is stable. In the algorithm, the rule set is determined as being stable 
when the number of rules and the accuracy is maintained in two consecutive 
iterations. 
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A12 A13 

D 3 

t3 

½ 

r2 

Fig. 6. Domains of the X1, X2, )(3 variables. 

3.1. Testing the refinement algorithm in SLA VE 

The main problem that we encounter when we want to use SLAVE is select- 
ing an appropriate value for the parameters of the consistency degree. In this 
paper, we try to prove that SLAVE with this refinement algorithm greatly re- 
duces the dependency on the parameters of the weak consistency condition. 

In order to test the performance of the refinement algorithm, we use a data- 
base of examples that we split into a training set (70%) and a test set (30%). We 
take 200 different values for the parameter of the consistency condition in the 
following four situations: 

(A) SLAVE using the [k, k]-consistency degree. 
(B) SLAVE using the [0, k]-consistency degree. 
(C) SLAVE using the [k, k]-consistency degree and the refinement algorithm. 
(D) SLAVE using the [0, k]-consistency degree and the refinement algorithm. 
The values of k are taken every 0.005, beginning at 0 and finishing at 1 (200 

points). For each situation, we draw a line connecting the different points ob- 
tained. 

For this experiment, we have selected the well-known IRIS plants database, 
described by Fisher in [6]. The problem of IRIS plants lies in classifying the 
plants in function of four predictive variables. The predictive variables are con- 
tinuous and the classification variable is discrete with three different classes. In 
the overall databases, there are 150 examples, 50 for each class. 

When working with SLAVE, we need to define the domain on the continu- 
ous variables using fuzzy labels. In this problem, we have used five fuzzy labels 
for each antecedent variable, distributed uniformly over each range, 
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In Fig. 7 the different graphs obtained for situations A, B, C and D are 
shown, respectively. In Table 1, we show the probability of obtaining the best 
result in the training and test sets (P. Train. and P. Test) and the best results in 
each case (Best Train. and Best Test). From the table and the graphs, we can 
obtain the following conclusions: 
• The [0, k] model for the parameter of the consistency degree presents a high- 

er probability of finding the best values in test and training than the model 
[k, k]. In this way, the first of them has less dependence over the estimation of 
its parameter. Furthermore, for this model the range of variation from the 
results is shorter (both in training and test). 

• Using the refinement algorithm, the results are improved in both cases, re- 
ducing the range of variation. 

• The best result is obtained when the model with two parameters and the re- 
finement algorithm are used. In these cases, the best results in the test set are 
obtained (95.04%) and those with high probability may be found (74%). 
We can then consider that the refinement algorithm using the model [0, k] 

produces the most promising results, giving more stability to the behavior of 
the rule set and reducing the dependency on the estimation of the parameter. 
From now on, in view of the previous result, we use the [0,1] model and the 
refinement algorithm that is proved to obtain high accuracy in the majority 
of the situations. 

In the next section, we compare the result obtained by SLAVE with the re- 
finement algorithm and the [0, 1] model with other classical methods of learning. 

3.2. Comparing S L A  VE+R with other learning algorithms 

In this section, we compare the results obtained by SLAVE+R with other 
learning algorithms on different databases. The learning algorithms considered 
are C4.5, C4.5rules [21] and CART [2]. C4.5 and CART return decision trees 
for classifying the examples and C4.5rules generates a set of rules from the de- 
cision trees returned by C4.5. 

The databases used in the experimental work are the following: 
• The MONK's problems [21,22] are a collection of three classification prob- 

lems on a discrete domain with six attributes. 
• The IRIS database [6] used in the previous section. We have considered five 

uniformly distributed linguistic labels for each antecedent variable. 
In the IRIS database, we have taken five different partitions (training (70%) 

and test (30%)) for each one. In Table 2, we show the average accuracy on the 
test set for each database. On the MONK's problems, we take the same train- 
ing and test sets proposed by Quinlan [21]. From Table 2 we can deduce: 
• For the MONK's problems, where all the predictive variables are nominals, 

SLAVE + R obtains the best results. Only on MONK1, does C4.5rules ob- 
tain as good a result as SLAVE + R. 
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Fig. 7. Graphs of the results of the experiments. 
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Table 1 
Probability of finding the best result 

Exp. P. Train. (%) P. Test (%) Best Train. (%) Best Test (%) 

A 4 31.5 98.06 93.20 
B 39 70.5 98.06 93.20 
C 65 38.5 98.06 93.20 
D 93 74 98.06 95.04 

For the IRIS database, where all the predictive variables are continuous, the 
best result is returned by CART. SLAVE + R is the second best result which 
is very close to the CART result. SLAVE + R presents better results than the 
classical learning algorithms C4.5 and C4.5rules. 

4. Refinement module for fuzzy consequent domain 

When the domain of the consequent variable is continuous, we can discretize 
the domain using a fuzzy domain. In this case, we have a fuzzy consequent do- 
main. Contrary to the refinement module for the crisp consequent, this refine- 
ment algorithm has two components that are specially designed for these types 
of problems. These special components are the inference process and error 
measurement. The predictive process used is the max-min inference system 
and the average of the center of gravity weighted by the matching value as a 
defuzzification method and the minimum operator as t-norm [5]. Based on 
the inference system, we define a measure for establishing the accuracy of 
the rule set, using an error measurement. This error measurement is a modifi- 
cation of the average square error, and is defined as 

Error = ~ (Yi 2~)2  , 
i=1 

where yi is the correct output, ~ is the output of the inference process using the 
rule set and n is the number of the examples. 

Table 2 
Results of different learning algorithms 

CART (%) C4.5 (%) C4.5rules (%) SLAVE + R (%) 

Monkl 83.27 75.70 100 100 
Monk2 60.30 65.00 65.30 81.94 
Monk3 92.32 97.20 96.88 97.20 
IRIS 97.24 92.73 94.36 96.61 
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The refinement algorithm is a heuristic algorithm that attempts to maximize 
the good quality of  the rules. The estimate of  the good quality of  the rule set is 
based on an error measurement. The algorithm uses the hill-climbing strategy 
and consists of  the following four steps (see Fig. 8) that are repeated until the 
global error and the number of  rules cannot be decreased (termination condi- 
tion). 

(1) Improving the correctness of the rules: When we work with problems 
where the variable consequent is discrete, the correctness is the relation be- 
tween the number of  examples classified and the number of examples covered 
by this rule. In the cases where the variable consequent is continuous, this con- 
cept must be extended because the output in the predictive process depends on 
the interaction between all the possible rules that are applicable. In the contin- 
uous case, we define the correctness of  a rule as the average of the errors pro- 
duced in the outputs in which this rule is used. 

This step consists of  a specification process where the irrelevant cases of the 
antecedent variables are eliminated for each rule. When these cases are elimi- 
nated from the description of the rule the correctness of the new rule is im- 
proved. 

This part of the procedure is necessary for the SLAVE learning algorithm 
since its main problem is produced when the consistency parameters selected 
are not the most appropriate. In this situation, the correctness of  the rules re- 
turned by the learning algorithm are too low and using this method, the cor- 
rectness can be improved. Furthermore, any rule with a very low degree of  
correctness can be eliminated from the rule set. This is possible because the 
elimination of a rule is considered as a special case of  specification (that is, 
when all the values of  an antecedent variable are deactivated). The implemen- 
tation of this process is similar to step 1 of  the refinement of  the crisp conse- 
quent domain. 

(2) Decreasing the error using a generalization process: In this step, we try to 
improve the completeness of  the rules using an order generalization process. 
The process consists in appending new cases for the antecedent variables if 
the global error is maintained or decreased. Its implementation is similar to 
step 2 of  the refinement of  the crisp consequent domain. 

(3) Decreasing the error by appending new rules: This step has the same goal 
as the previous one but we are now interested in solving the problem by ap- 
pending new rules. The main problem in this step is the following: which rule 
must we append to the rule set? 

The answer to this question consists in establishing a criterion for deciding 
between all the possible rules that we can introduce. Given that the goal con- 
sists in finding the rule set that produces, on average, the smallest possible error 
on the training set, we introduce the most specific rule that reduces the largest 
error present in the training set. Therefore, the process consists in finding the 
example that has the maximum error and we will design a new rule from it. 



210 A. Gonzalez, R. Perez / Internat. J. Approx. Reason. 19 (1998) 193-220 

correctness Specification ,~ 
Process 

"- - -  - . - :  - - . - . - :  - -  - - . - : . -  - - . - : :  . - . - . -  - : . ' : . ~ : . ' . ' - . ' . ' . ' . ' . ' : . ' ~ . ' . "  

Improve the [ 
completeness Generalization 

Process 

new rule 

No 

A just the 

consequent labels 

Fig. 8. Refinement for fuzzy consequent domain. 

If  there is more than one example with the maximum error, one of  them is ran- 
domly selected. The new rule is made in the following way: 
• Antecedent part: the most specific antecedent that covers this example. 
• Consequent part: the label of the consequent that produces the smallest 

global error when this rule is included in the rule set. 
The idea of this criterion is that the introduction of  a rule that improves the 
maximum individual error must improve the average global error. 
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After the new rule is included in the rule set, it is generalized as far as pos- 
sible following step 2 in this module and it is only applied for this rule. This 
step introduces rules until the last rule obtained can neither improve the max- 
imum individual error nor the average global error. This last rule is not includ- 
ed in the rule set. 

(4) Adjusting the consequent labels: In this part of the algorithm, we intro- 
duce a process for modifying the semantics of the consequent labels. In many 
cases, the semantic definition of the fuzzy labels is not well known. Therefore, 
the initial labels proposed can be considered as an approximation of the correct 
semantics. When we have a rule set that presents a description of the behavior 
of the system and we have an example set of this system, we can find a new se- 
mantic definition for the consequent labels that allows us to improve this de- 
scription. In this way, we propose a simple heuristic process for modifying 
the semantics of trapezoid or triangular consequent labels. The process changes 
the width and the center points of each label, guided by the error measure in 
the following way. 
1. Define a value 6 that indicates the offset permitted in the labels. 
2. For each label in the consequent variable carry out the following: 

2.1. The width of  the label is altered in 6 (first on the left and then on the 
right). 

2.2. If the error is strictly reduced, the modification is accepted. 
2.3. The center points of the label are altered in 6 (first on the left and then 

on the right). 
2.4. If  the error is strictly reduced, the modification is accepted. 

3. If  at least one change was accepted in step 2, then go to step 1. Otherwise, 
the process is finished. 

4.1. An example of  the behavior of the refinement 

Let us suppose that SLAVE has learned the function 

h(x ,y )  = x 2 + y 

shown in Fig. 9(a), randomly extracting a set of examples for this function. 
Previously, a set of fuzzy labels on its domain was defined. Each domain is 
composed of seven fuzzy labels with triangular membership functions crossing 
at height 0.5 and distributed uniformly. The approximation obtained by 
SLAVE appears in Fig. 9(b) and we can see how SLAVE correctly approaches 
the central zone of the surface, where there are enough examples, but that error 
is very high in the extremes of the graph. 

The refinement module attempts to correct the approximation obtained by 
SLAVE using the error measurement. In Fig. 9(c), the surface after the speci- 
fication process is shown. This graph appears to present a worse approxima- 
tion of the original because a strong slope appears on the surface, but by 
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taking the average error, this approximation is better. These strong slopes re- 
sult from the elimination of bad rules which means that some of the examples 
are not well covered by the rule set. 

From this step, we can see the development of the refinement algorithm as a 
process of smoother approximation on the original function. In Fig. 9(d), the 
control surface is improved by using the generalization process where the ex- 
amples badly covered in the previous step, are covered to a better degree by 
the generalization of the existing rules. Fig. 9(e) shows the behavior of the rule 
set after step 3. The criterion used for introducing new rules consists in select- 
ing a rule that reduces the maximum individual error. Using this criterion, we 
can see that the approximation of the extremes of the graph are more similar to 
the original graph. 

i i ' ,  
z ~  

I o  

5 " 

2 s  "- 

5 

j ? - -  

3 S  " 

5 S -  . 

Fig. 9. An example of the refinement algorithm (a) Function h(x,y) = x 2 +y2 (b) Approximation 
obtained by SLAVE (c) Approximation after step 1 (d) Approximation after step 2 (e) Approxima- 
tion after step 3 (f) Approximation after refinement. 
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In order to solve this problem, the refinement algorithm is repeated eight 
times until the termination condition is satisfied. Fig. 9(0 shows the approxi- 
mation returned by this module. This surface is very similar to the original sur- 
face and the improvement of the surface obtained by SLAVE is high. 

The rule model of SLAVE is not usually used in problems with a fuzzy con- 
sequent domain. A rule model is normally used where each antecedent variable 
takes one and only one value of its domain [3,15,24]. In Section 2, we showed 
some of the advantages of this type of rule in that it allows us to determine the 
relevant variable for each concept and therefore it obtains more understand- 
able descriptions. In Fig. 10, we propose two different non-linear functions 
to test if the refinement algorithm maintains this property. We have selected 
the function 

f ( x , y )  = x 2 

(Fig. 10(al)) and SLAVE returns 11 rules for this problem (Fig. 10(bl)). 
SLAVE + R (Fig. 10(cl)) refines the rules of SLAVE and it returns six rules 
where the y variable is considered to be irrelevant for all the rules. Contrary 
to this function, the function 

g(x ,y)  = cos(x) cos(y) 

(Fig. 10(a2)) depends on two variables to determine the output. In this situa- 
tion, SLAVE + R (Fig. 10(c2)) obtains a good approximation of the original 
g function, considering both predictive variables to be relevant for all of its 
rules. 

4.2. Applying S L A V E  to a control problem 

The purpose of any controller is to periodically look at the values of the 
state variables in the controlled system and to obtain the values associated with 
their control variables by means of the relationships existing between them. If 
these relationships can be expressed in a mathematical way, it is not too diffi- 
cult to design the controller. The problem comes when, as happens in a lot of 
real world non-linear systems with complex dynamics, there is no mathematical 
model representing the existing relationships. 

Over the last few years, the application of Artificial Intelligence techniques 
has become a research topic in the domain of process control allowing efficient 
controllers to be obtained in cases in which a mathematical representation of 
the controlled systems cannot be obtained. Fuzzy Logic Control (FLC) is 
the main topic of this new field known as Expert Control. FLC was pioneered 
by Mamdani and Assilian in the work [17], and is now considered as one of the 
most important applications of Fuzzy Set Theory suggested by Zadeh [25]. 
Over the past few years, many applications of FLC have been developed suc- 
cessfully. Some of the most recent applications are water treatment, elevator 
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Fig. 10. An example of the refinement algorithm (al) Function f (x ,y )= x a (a2) Function 
g(x,y) = cos(x) cos(y) (bl) Approximation of SLAVE (b2) Approximation of SLAVE (cl) Ap- 
proximation of SLAVE + R (c2) Approximation of SLAVE + R. 

control, video equipment, robot  control and control of  biological processes 
and several articles can be found about these topics [1,15,16]. 

A traditional control problem used for testing the behavior of  any new con- 
troller is the pendulum problem. The pendulum problem consists in learning 
the rule set that permits the pendulum to be controlled, taking into account 
the example set that describes the system's performance. Assuming 101 << 1 (ra- 
dian) the non-linear differential equation that leads to the behavior of  the pen- 
dulum is managed by the equation 

. . . .  ( k l 2 d20 l - f  -4- mg sin 0 - d t J  
m 3 dt 2 2 

where kdO/dt is an approximation of  the friction strength. 
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This system can be described using two state variables 0 (angle) and ~o (an- 
gular speed) and the control variable f (force). A pendulum weighing 5 kg and 
which is 5 m long has been considered in a real simulation, applying the force 
to the center of gravity, for a constant time of 10 ms. With these parameters, 
the discourse universe of the variables are the following: 

0 E [-0.277,0.277], ~o E [--0.458,0.458], f E [--1593, 1593]. 

Using the previous restriction, we have experimentally obtained two exam- 
ple sets: the first one contains 213 examples and is used for learning (training 
set) and the second one contains 125 examples and is used for testing the be- 
havior of the learned rule set (test set). These example sets have been obtained 
from the previous equation on two different initial conditions: 

(a) 0 = - 0 . 2 7 7  and 09 = 0. 
(b) 0 = 0.277 and 09 = 0. 
Fig. 11 represents the control surface on the previous conditions. The first 

step for working with the SLAVE learning system consists in discretizing the 
range of variables using fuzzy labels. Fig. 12 shows the labels used for each 
variable. Furthermore, for this problem, the value of 6 has been simply defined 
as (rb - ra)/100, where rb and ra are the maximum and minimum value of the 
consequent variable respectively, that is 6 = 59.6. 

We want to know the behavior of this refinement algorithm using different 
theories for this problem. Therefore, we propose the following knowledge bas- 
es: 

UnK. This is an empty theory, that is, it has not contained any rule. 
SLAVE. This is the knowledge base obtained by SLAVE. 
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Fig. 11. Control surface of the pendulum problem. 
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Angle 

NL NM NS Z R  PS PM PL 

- 0.524 -0,5021 -0.3493 -0.1746 0.00 0.1746 0.3493 0.5021 0.524 

Velocity 

NL NM NS Z R  PS PM P L  

-0.858 -0.822 -0.572 -0.286 0.00 0.286 0.572 0.822 0.858 

Power 

N L  NM NS ZR PS PM P L  

-2980 -2855.83 -1986.66 -993.33 0.00 993.33 1986.66 2825.83 2980 

Fig. 12. Pendulum problem domains. 

WM. This is the theory obtained using the Wang and Mendel algorithm 
[24]. 

For the experiment, we have studied the behavior of the previous knowledge 
bases and their combination with the refinement algorithm proposed in [11], 
that we will denote by +OldR, and with the refinement algorithm proposed 
in this work, that we denote +R, that is, for example SLAVE + OldR means 

Table 3 

Table of results 

Rule database Error Number of rules 

W M  7.45 9 
SLAVE 492.16 6 

UnK + OldR 216.01 9 
WM + OldR 6.92 6 

SLAVE + OldR 1.21 5 

UnK + R 13.02 7 
W M  + R 0.14 5 
SLAVE + R 0.14 5 
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the database obtained by the learning algorithm SLAVE and refined by the al- 
gorithm proposed in the previous work. 

Table 3 shows the number of rules and the error obtained using the test 
example set with the most relevant combinations between the previous 
knowledge bases and the refinement algorithm. In all cases, we have taken 
the max-min inference system and the average of the center of gravity weighted 
by the matching value as a defuzzification method and the minimum operator 
as t - n o r m .  The set of rules obtained by SLAVE + R is shown in Table 4. 

Fig. 13 represents the control surface obtained by SLAVE and Fig. 14 the 
control surface obtained by SLAVE plus the refinement algorithm (by using 
the previous rule set). Fig. 15 shows that in the process of adjusting the labels 
of the consequent variable, the labels NM and PM are slightly modified in or- 
der to improve the behavior. 

The Wang-Mendel result has been obtained from the learning algorithm 
proposed in [24] and using the same fuzzy discretization as we used in 

Table 4 
The fuzzy theory obtained by SLAVE + R 

1 If  0 is NS and o~ is NS Then f is NS 
2 If  0 is PS and ~o is PS Then f is PS 
3 If  co is ZR  Then  f is Z R  
4 If  0 is N M  or NS and co is N M  Then  f is N M  
5 If  0 is PS or PM and a~ is PM Then f is PM 

"pendulo-slave.data" - -  

2000 - 

1500 
J / / / / / / / /  

1000 

5O0 

0 i / / 1 1 / / /  
-SO0 

-1000 

-1500 

-2000 0,4 
0.3 

0.2 

~ ~ - 0 . 2  -0.1 0 0.1 

0.2 

Fig. 13. Control surface obtained by SLAVE. 
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Fig. 14. Control surface obtained by SLAVE + R. 
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Fig. 15. Modification of the consequent variable labels. 

SLAVE. From the results we can deduce the following conclusions for this 
problem. 

(a) The refinement algorithm applied to UnK produces good results but they 
are not comparable with the results obtained by this refinement algorithm 
when the initial knowledge represents a good approximation of the system that 
we want to learn. 

(b) The new proposal of the refinement algorithm has shown that better re- 
suits are obtained than in the initial proposal. 

(c) This algorithm of refinement, that was developed as a component of the 
SLAVE learning system, can be applied to knowledge bases obtained by other 
learning algorithms or obtained using other processes. 

(d) SLAVE + R produces good results in accuracy, number of rules and the 
simplicity of the rules. 
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5. Conclusions 

219 

In this paper, we have described an algorithm for refining fuzzy rules. This 
algorithm uses a particular heuristic to combine the processes of specification, 
generalization, addition and elimination of rules. We have defined two different 
algorithms, one of them for problems where the consequent variable is crisp 
and the other for problems where the consequent variable is discretized using 
fuzzy labels. The objective in both cases is to improve the performance of the 
obtained knowledge and to improve the understanding of this knowledge. 

This refinement algorithm can be applied to knowledge bases obtained from 
several sources, offering a significant improvement of this knowledge, but its 
development is strongly associated with the SLAVE learning system. The com- 
bination of both algorithms is called SLAVE + R. We have tested the behavior 
of SLAVE + R with respect to SLAVE and other learning algorithms in prob- 
lems with crisp consequent variables and in problems with fuzzy consequent 
variables. 

This learning system obtains a reasonably small set of fuzzy rules which can 
be easily understood from a human point of view. Finally, in this paper we 
have shown, that SLAVE + R produces good results when it is applied to dif- 
ferent problems. 
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