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Abstract

A rule base reduction and tuning algorithm is proposed as a design tool for the knowledge-based fuzzy control of a vacuum cleaner. Given

a set of expert-based control rules in a fuzzy rule base structure, proposed algorithm computes the inconsistencies and redundancies in the

overall rule set based on a newly proposed measure of equality of the individual fuzzy sets. An inconsistency and redundancy measure is

proposed and computed for each rule in the rule base. Then the rules with high inconsistency and redundancy levels are removed from the

fuzzy rule base without affecting the overall performance of the controller. The algorithm is successfully tested experimentally for the control

of a commercial household vacuum cleaner. Experimental results demonstrate the effective use of the proposed algorithm.
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1. Introduction

Many new technological products are being developed

and updated responding to the needs of the society. This fact

is especially visible in the home appliances industry, since

the range and features of its products are inevitably related

with the households and the life styles of their occupants.

With the decreasing cost of microprocessor-based control

systems, implementation of more complicated control

algorithms becomes more cost effective. Household appli-

ances that are equipped with sensors and more sophisticated

control algorithms started dominating the market in the past

decade. The motivation for this study stems from this need

for human friendly control systems for household

appliances.

Most house appliance products are subjected to very

different environmental conditions during operation and

thus the control methodology in use should cope with these

uncertainties. Additionally the control algorithm should be

robust to the usually highly nonlinear low cost sensors.
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Such sensors also directly present uncertainty in the overall

control problem.

Apart from these problems, modeling of household

appliances constitutes a challenging task. Variations in the

parameters of the underlying systems during operation and

nonlinear behavior of the components are major obstacles

facing such modeling efforts. For example, highly compli-

cated and random disturbances such as the distribution of

cloths in the drum of a washing machine or variations of the

humidity and temperature of ambient air for a refrigerator,

should be considered during the modeling stage.

Conventionally, manual control and rule-based on/off

algorithms are employed for controlling the household

appliances. In the case of manual control, the whole

controlling task is left to the user. Rule-based control is

used in the controllers which operate continuously such as

refrigerators and recently in other household appliances to

reduce the control burden on the user. Conventional rule-

based controllers, however, fail to effectively implement the

decision mechanism, in other words the performance

requirement of the user. Here, the problem to address is

the mathematical expression of a set of vague rules which

cover ranges rather than exact values of the sensor signal.

Hence Fuzzy Logic theory (Zadeh, 1965) lends itself as
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a powerful tool in the development of highly efficient

control algorithms.

The applications of fuzzy logic in control engineering had

its origins going back to mid 1970s with the control of a pilot

scale boiler-steam engine system (Mamdani, 1977). A more

systematic treatment of rule-based (expert-based) control is

given byin Arzen (1989) and Astrom, Anton, and Arzen

(1986). Here control signal is based on rules from expert

knowledge of the process to be controlled. During the last

two decades, fuzzy logic had found many industrial

applications in the control engineering area, especially in

Japan. The control system of Sendai subway system,

autofocus video camera control, fuzzy car control are some

examples of fuzzy logic control applications. A fuzzy rule-

based control of a mobile robot is also reported by the author

in (Ciliz & Işik, 1989). A systematic methodology for the

synthesis and analysis of fuzzy-logic controllers for multi-

input multi-output nonlinear dynamic systems with appli-

cation to a robotic manipulator is proposed by Emami,

Goldenberg, and Turksen (2000). A complete treatment of

fuzzy modeling and control with a large range of applications

can be found in Passino and Yurkovich (1998), Pedrycz and

Zadeh (1995) and Yager and Filev (1994). The success of

fuzzy logic control in industrial processes paved the way for

its applications in household appliances. The problems

encountered in the control of household appliances are

mainly the difficulties encountered in specifying the

performance criteria, availability of only low quality sensor

signals and most importantly cost factors which would

directly affect the size of the chosen rule base. In this study,

we focus on the efficient tuning and reduction of rule base

size with application on a household vacuum cleaner where

we extend some of the results reported in our work (Ciliz,

2003).

The construction of a fuzzy controller is a relatively

simple task compared to its analysis and tuning (Passino &

Yurkovich, 1998; Pedrycz & Zadeh, 1995). There has been

efforts in the past for obtaining the interactivity levels of the

rules, inconsistencies and completeness of the rule set

(Pedrycz & Zadeh, 1995). These completeness and incon-

sistency notions are used in the analysis of the controllers. In

the current study a new methodology is proposed to better

analyze the consistency of the rule base. The proposed

approach computes the inconsistencies of the rules based on

the ‘equality of two fuzzy sets’ as an alternative to the

‘possibility approach’ used in (Pedrycz & Zadeh, 1995). As

a further refinement for the rule base, a new measure,

‘redundancy level of rules’ is proposed for the analysis of

the controller. The motivation behind this analysis is the fact

that redundant rules do not explicitly contribute to the

performance of the fuzzy controller. Hence it gives the

control designer additional incentive to eliminate rules

without affecting the overall performance of the controller.

The proposed tuning methodology is applied for the

control of a household vacuum cleaner. The experimental

tests were performed on a commercial vacuum cleaner at
the Research Center of Arçelik Co. which is the largest

manufacturer of household appliances in Turkey.
2. Mathematical preliminaries

Let U denote the universal set. A fuzzy subset of U is

characterized by a function

AðxÞ : U/ ½0; 1� cx2A3U (1)

which associates each member of universal set with a real

number between 0 and 1. In this notation, U can be taken as a

discrete or continuous set which contains all the elements that

the group of fuzzy sets contain. Each number represents the

extent to which the particular element of universal set U

belongs to A. This helps in achieving a continuous grade of

membership. Thus, each element of a fuzzy set is

characterized by a membership value. A fuzzy set A which

is defined on a discrete universe of discourse can be shown as,

A Z m1=y1 Cm2=y2 C/Cmn=yn (2)

where mi denotes the membership value of yi and C sign

denotes the union operation of the set theory. Replacing C
with S as a short hand notation, universal set U may be

represented as,

U Z
Xn

iZ1

1=yi (3)

where 1 denotes the membership value of the elements of the

universal set U.

Connectives like ‘and’, ‘or’, and ‘negation’ may be

represented as operations on fuzzy sets. B is a subset of A if

the membership values of set A is greater than or equal to the

membership values of the corresponding members of the set

B. Formally,

cy2U; B3A5mBðyÞ%mAðyÞ (4)

The union C of two fuzzy sets A and B is defined as,

C Z A CB Z maxðmAðyÞ;mBðyÞÞ=y (5)

where C denotes the union operation. According to this

definition, ACB is the smallest fuzzy set which includes

both A and B. The intersection of A and B is defined as,

C Z AhB Z minðmAðyÞ;mBðyÞÞ=y (6)

According to this definition, C is the largest fuzzy set which

is contained in both A and B.

To describe the relations between fuzzy concepts, fuzzy

relations are used. A fuzzy relation R from X to Y is a subset

of the Cartesian product X!Y. R is defined by a

membership function defined on the elements of X and Y

as (Pedrycz & Zadeh, 1995),

R Z

ð

X!Y

mRðx; yÞ=ðx; yÞ (7)
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where the membership value mR(x, y) associated with the

ordered pair (x, y) gives the strength of the relation between

x and y elements.

A fuzzy rule or relation can be put into the general form,

IF A THEN B

where A and B are fuzzy quantities. In general fuzzy

implication functions are used to define the membership

value of each ordered pair of the relation connecting A and B

sets. Here we define the fuzzy implication operation as,

Rc Z ðA!BÞ (8)

Rc Z

ð

U!V

minðmAðuÞ;mBðvÞÞ=ðu; vÞ (9)

where U, V are the universal sets for A and B, and mA(u),

mB(v) are the membership functions for A and B,

respectively. As an example, let us illustrate the calculation

of a fuzzy implication for fuzzy sets A and B. Let, AZ
{1/1C0.5/2} and BZ{0.55/1C0.8/2}. Then

Rc Z A!B Z A
0:55 0:8

0:5 0:5

�����
�����

B

(10)

where each entry is computed using (9). For instance, the

first element of the first row is obtained by taking

the minimum of the membership values {1, 0.55} which

correspond to the first elements of A and B, respectively

(i.e. 0.55Zmin(1, 0.55)).
2.1. Fuzzy inference

Fuzzy relations basically describe a mapping from input

space of the fuzzy rule to its output space. Thus, similar to

ordinary functions one can obtain the implications of a

fuzzy relation for all of its input space. Using fuzzy

inference, it is possible to obtain the output of a fuzzy rule

even if the input does not completely match the conditions

defined in the input section of the rule. Fuzzy inference can

be achieved through the use of compositional operators.

Although there are different kinds of compositional

operators described in the literature, Sup–Min inference

mechanism is one of the most commonly used operators in

fuzzy logic control applications. For the fuzzy rule of the

form IF X THEN Y where X and Y are two fuzzy sets, for X1

which is a fuzzy set defined on the same universal set with

X. Then, given X1, output of the fuzzy rule can be computed

as,

X14R Z

ð

X!Y

max
y

ðminðmRðx; yÞ;mX1
ðxÞÞÞ (11)

where 4 defines the Sup–Min inference operation (Pedrycz

& Zadeh, 1995). Next, let us give an example for the

inference mechanism just outlined above.
Example. Let A and B be two fuzzy sets given as,

A Z 1=1 C0:8=2 C0:3=3 C0:5=4 C0:7=5

and

B Z 0:3=1 C0:9=2 C0:1=3

Then for a rule IF A THEN B, first the fuzzy relation RcZ
A!B is obtained using the fuzzy implication defined in (9)

as,

Rc Z A!B Z

0:3 0:9 0:1

0:3 0:8 0:1

0:3 0:3 0:1

0:3 0:5 0:1

0:3 0:7 0:1

�������������

�������������

(12)

Then for an arbitrary fuzzy predicate A1 which is defined on

the same universe with A,

A1 Z 0:8=1 C0:9=2 C0:3=3 C0:7=4 C0:9=5

the inferred fuzzy set B1 (output of the above defined rule)

can be obtained using the inference mechanism defined in

(11) as,

B1 Z A14R Z 0:3=1 C0:9=2 C0:1=3 (13)

3. Design tools for fuzzy control

A dynamic process which is defined in terms of a set of

‘IF X THEN Y’ type fuzzy rules can be controlled through a

fuzzy inference mechanism which is briefly outlined above.

Fuzzy quantities X and Y are related to each other using the

fuzzy implication function defined in (9) in the previous

section. The choice of primary fuzzy sets and the fuzzy

implication function which is responsible for fuzzy

inference mechanism and the defuzzification method,

which transforms the fuzzy quantities to crisp values that

are suitable to apply to the plant, are important features of a

fuzzy control algorithm. Another problem that must be

addressed is the determination of universal sets of input and

control (output) variables (Astrom et al., 1986; Emami et al.,

2000). Then, primary fuzzy sets are defined for each

variable covering the universal set of the signal. If the

universes are assumed to be discrete and finite, each

universe can be treated as a set of elements. Primary fuzzy

sets are defined as vectors which contain the membership

values of corresponding elements of the universal set.

The next step is the construction of the fuzzy relations,

Ri, iZ,.,N corresponding to each fuzzy rule by using the

implication function defined in (9), with N being the total

number of rules in the rule set. As the final step, the overall

relation R is computed by taking the union of the individual

fuzzy relations by using the union operator defined in (5),

R Z R1 CR2 C/CRn



Fig. 1. Computation of the possibility measure of two fuzzy sets.
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During the execution of the controller, the input signals are

obtained and quantized at each sampling instant, then the

corresponding fuzzy set is obtained based on the previously

defined membership functions over the universe of

discourse.

The final control action is obtained through the use of the

inference mechanism which is defined in (11) on the

previously obtained rule base. A fuzzy logic controller is a

deterministic system in the sense that it always yields the

same control action as long as the input state of the

controller is the same. Here it is assumed that the reader is

familiar with the basic principles of fuzzy logic control. For

a detailed treatment of fuzzy rule-based control, the

interested reader is referred to Passino and Yurkovich

(1998) and Pedrycz and Zadeh (1995). Next, we discuss the

design considerations and the proposed methodology for the

fuzzy logic controller.

One of major handicaps of fuzzy logic control has been

the difficulties in the stability analysis and tuning. Since

the controller is not based on an explicit model of the

process, the behavior of the closed loop system cannot be

easily examined as in the conventional type controllers.

There have been many efforts in the literature for the

analysis of fuzzy control systems in Astrom et al. (1986),

Ciliz and Işik (1988), Emami et al. (2000), and Lee

(1990), and in references compiled in Passino and

Yurkovich (1998), Pedrycz and Zadeh (1995), and

Yager and Filev (1994). Despite these efforts, establishing

a formal method of analysis for fuzzy logic systems is still

an active research topic. As noted in Pedrycz and Zadeh

(1995), there are some important issues that have to be

carefully analyzed during the design phase of a fuzzy

logic controller. These can be summarized as (a)

completeness (b) interaction and (c) consistency of the

control rules.

By completeness, it is meant that the controller can

generate a control output for any input fuzzy state X. In

other words, at least one rule is fired at all times. Another

important problem in fuzzy rule-based control is the

consistency of the control rules. If the outcome of the

two or more control rules with similar predicate conditions

fire contradictory control actions, this would lead to

unsatisfactory performance of the overall control scheme.

Inconsistency is evident if for a given input of the

controller, the resulting fuzzy set is multimodal, i.e. the

set clusters exist at more than one point of the universe of

discourse. The final outcome of the fuzzy controller may

suggest one action through the use of the defuzzification

process (for example after the use of an a cut for final

action determination) (Passino & Yurkovich, 1998). Some

tools for locating contradictory rules and determining

the level of inconsistency of each rule are available in the

literature. The ‘i’th and ‘k’th rules are said to be consistent

when a slight difference between predicates Xi and Xk of

the rules produces a slight difference between their

corresponding actions Yi and Yk. Formally, an index of
inconsistency of a pair of ‘i’th and ‘k’th rules, cik, is

defined by,

cik Z jPðXi;XkÞKPðYi;YkÞj (14)

P(Xi, Xk) and P(Yi, Yk) are called the possibility measures

of fuzzy sets (Xi, Xk) and {Yi, Yk} respectively (Pedrycz &

Zadeh, 1995). The possibility measure of Xi with respect to

Xk is defined as,

PðXi;XkÞ Z sup
x2X

½minðXiðxÞ;XkðxÞÞ� (15)

If two sets are identical, possibility measure yields a cik

value of 1. If they are disjoint the corresponding cik value

is equal to 0. Then, if two rules are identical cik is equal

to 0, meaning complete accordance. If Xi and Xk are

identical but Yi and Yk are disjoint, then cik becomes 1,

meaning complete inconsistency. As an example, the

calculation of the possibility measure of two fuzzy sets A

and B are illustrated in Fig. 1. In order to compute the

inconsistency of the ‘i’th rule and the remaining N ones,

one can sum the individual inconsistencies over the

second index,

ci Z
XN

kZ1

cik (16)

Having obtained the level of inconsistencies between

each rule, it is possible to omit the rules with high levels

of inconsistencies. Inconsistency measure introduced here

can be used effectively for the elimination of inconsistent

rules in a large fuzzy rule base. It should be expected

that by removing inconsistent rules, the overall perform-

ance of the controller would be improved or not changed

much, while a reduction in the size of the rule base is

achieved.
4. Tuning and rule base reduction

There have been some efforts in the literature for the

reduction of rule base size in fuzzy control. An interpolation

algorithm is proposed by Koczy and Hirota (1997) where

dense rule bases are reduced based on an interpolation

algorithm so that only minimal number of necessary rules



Fig. 2. Illustration of the set fuzeq(AjB) for ‘AZB’.
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remain in the rule base. A rule base reduction technique with

application to a robot manipulator control is given by

Bezine, Derbel, and Alimi (2002) where a boolean

approach is used for measuring equivalence hence incon-

sistency in the rules. A premise learning methodology

combined with a genetic algorithm is proposed by Xiong

and Litz (2002) to effectively reduce a large rule base for the

effective control of an inverted pendulum.

In this study, the inconsistency concept introduced in

Section 3 is further investigated and a new methodology for

refining the inconsistency measure is introduced, termed as

the ‘fuzzy matching set approach’ (Ciliz, 2003). In addition

to this new inconsistency approach, a new metric ‘redun-

redundancy measure’ is introduced to eliminate highly

redundant rules in the rule base, as well.

Two rules in the rule set are said to be an inconsistent pair

if they suggest diverse actions while their inputs are close to

each other. Given the rule format IF Xi THEN Yi, the

inconsistency measure of each rule pair can be obtained as in

(14). The possibility measure used in (14) gives the extent

with which two fuzzy sets overlap. In the possibility

approach the measure of equality of two fuzzy sets A and B

was taken to be the maximum membership value of A!B

(Pedrycz & Zadeh, 1995). Based on the definition given in

(14), rather high equality measures are obtained even if the

two sets overlap in a small portion of the universe of

discourse. This is demonstrated with the example given in

Section 3 and shown in Fig. 1. Obviously this measure which

relies on only a single point of universe of discourse is not

dependable. This led us to investigate a better methodology

to refine the inconsistency measure for the control rule base

(Ciliz, 2003).

4.1. Fuzzy matching set approach

As an alternative to the possibility measure as a means to

represent the equality of two fuzzy sets, the equality of two

fuzzy sets may be described as a fuzzy set defined on the

same universe of discourse. The second method relies on the

comparison of fuzzy sets in a certain logical setting. In set

theory two sets are said to be equal if simultaneously one is

contained in the second and vice versa. This fact is

expressed in logical notation as,

fA Z Bg5 fA3Bgh fB3Ag (17)

Modelling inclusion operator 3 as an operation in fuzzy

set theory as ‘f’ and applying an ‘AND’ definition as

a connective, we can identify the level of equality of fuzzy

sets A and B at a point in their universal sets, x2X,

fuzeqðAjBÞ Z ½AðxÞfBðxÞ�h ½BðxÞfAðxÞ� (18)

where

AðxÞfBðxÞ Z supðc2½0; 1�jAðxÞhc%BðxÞÞ (19)

Here we introduce a new index fuzeq(AjB) to denote the

fuzzy equality measure of two sets A and B. Calculating
the level of equality of two fuzzy sets for all of their

elements, a new fuzzy set that represents the equality of two

fuzzy sets can be obtained. As an example, let us illustrate

the equality measure between two fuzzy sets.

Example. Let A and B be two fuzzy sets defined on the

same universe of discourse U. These sets are defined below
AZ1/1C0.8/2C0.7/3C0.6/4C0.5/5C0.5/6
BZ0.7/1C0.8/2C1/3C1/4C0.8/5C0.5/6
CZ1/1C1/2C1/3C1/4C1/5C1/6

Applying the implication operator defined in (19), the grade

of inclusions kA3Bk(x) and kB3Ak(x) are calculated at

each point of the universal set U. The grade of inclusions is

expressed as fuzzy sets given below. The grade of inclusion

at a certain point is defined as the maximum {c} satisfying

the inequality A(x)hc%B(x) when calculating kA3Bk.

Assuming that intersection is modeled as taking the

minimum of two membership values (as in (6)), let us

calculate the membership values corresponding to element

‘1’ of the universal set U. Since the membership value of A

is greater than B for ‘1’, {c} must be equal to the

membership value of B to satisfy the equation defined in

(18). The inclusion of B in A at ‘1’ is equal to ‘1’ since

the membership value of B is less than A at this point

of the universe. Similarly, calculating for other elements of

U, we obtain,
kA3BkUZ0.7/1C1/2C1/3C0.6/4C1/5C1/6
kB3AkUZ1/1C1/2C0.7/3C0.6/4C0.5/5C1/6

Finally, calculating the intersection of these fuzzy sets, the

fuzzy set representing the equality of A and B over universal

set U is obtained as,

fuzeqðAjBÞ Z 0:7=1 C1=2 C0:7=3 C0:6=4 C0:5=5 C1=6

(20)

This proposed method of computing the equality of two

fuzzy sets will be termed as the fuzzy matching set

approach. An illustration of the pointwise definition of

equality of two fuzzy sets A and B given above is given in



Fig. 3. (a) Experimental set-up for the tests. (b) Experimental test bed:

Arcelik household vacuum cleaner.

Table 1

Fuzzy controller with four sensors design rule base

Rule no. Antecedents

Vacuum Dust CDS

1 Low

2 Medium

3 High

4 Low

5 Medium Medium

6 High

7 Medium Low

8 Medium

9 High

10 Low High

11 Medium High

12 Very high Low

13 Low Medium

14 Low Low
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Fig. 2. The figure illustrates that the membership values of

the fuzzy set {AZB} becomes higher as the membership

values of the fuzzy sets A and B take values closer to each

other. Furthermore if we take the average of the membership

values of the fuzzy set {AZB} we get a better represen-

tation of the matching between the fuzzy sets A and B.
4.2. Redundancy of the fuzzy rule base

In addition to the inconsistency level of rule pairs, it is also

meaningful to search for the excess or redundant rules in the

rule base. The motivation behind this search is obvious, since

the redundant rules do not contribute to the performance of

the controller. Therefore, it makes sense to minimize the rule

set, especially when performing fuzzy inference calculations

in real time. In this study, a redundancy measure which is

based on the degree with which input and output fuzzy sets of

different rules overlap is introduced. This proposed redun-

dancy measure is defined as,

rik Z ðfuzeqðXijXkÞC fuzeqðYijYkÞÞ=2 (21)

where fuzeq($)is defined as in (18) and i, kZ1,.,N where

N denotes the number of rules in the rule base. Xi and Yi

denote the predicates and consequences of the ‘i’ rule,

respectively and ‘fuzeq’ denotes the equality degree of two

fuzzy sets computed using the fuzzy matching set approach

as defined in (18). According to the basic notion underlying

this measure, a fuzzy rule pair is said to be highly

redundant if both their input spaces and output spaces

closely resemble each other. Consequently, identical rules

yield a maximum redundancy value of 1.00 while a pair of

totally disjoint rules yield a redundancy value of 0.00.

Removing the rules with high redundancy levels would

reduce the size of the rule base while not affecting the

overall performance of the controller.
Consequents

Surface Suction Brush

Parkey Low Slow

Parkey Low Slow

Parkey Medium Slow

Carpet Low Slow

Carpet Medium Medium

Carpet High Fast

Deep carpet Low Medium

Deep carpet High Fast

Deep carpet High Fast

High Fast

High Fast

Very low Slow

Carpet Medium Medium

Deep carpet Low Medium



Fig. 4. Fuzzy controller with four sensor inputs and two outputs.
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5. Application to the control of a vacuum cleaner

The methods developed in Section 4 are tested for the

control of a vacuum cleaner set which is a product of

Arçelik Co. of Turkey. A standard vacuum cleaner set is

modified with the necessary sensors for generating infor-

mation to be used in the fuzzy rule base. Four signals from

the sensors namely, dust sensor, vacuum sensor, cleaning

direction sensor and surface type sensor, are used as inputs

to the fuzzy inference mechanism. Suction power and

cleaning brush speed are the two outputs of the fuzzy

controller. The experimental set-up used for the tests are

shown in Fig. 3.

The rule base is formed based on the expert views and

user data. Fourteen different action rules are generated

based on the experiences of the product development

engineers at Arçelik Research Center (Altasli & Ciliz,

1993). Appropriately selected membership functions over

the whole range of each signal’s universal set are used to

determine the fuzzy predicates to be used in the sup–min

inference mechanism which is defined in (11). Membership

function derivation is discussed in detail in Altasli and Ciliz

(1993). The set of control rules is shown in Table 1.

In order to test the developed controller and the tuning

algorithms, six different scenarios are assumed with
Fig. 5. Inconsistency matrix computed
varying input conditions based on different carpet types

and dirtiness levels. These scenarios are the standard for

the product development phase of this appliance (Altasli &

Ciliz, 1993). In all the experiments, inputs for these six

scenarios are used in the fuzzy controller. For the

experimental tests, a commercial development tool,

Omron Co.’s FS10AT Development Package is utilized.

This is basically a fuzzy control development software

package along with a hardware interface card which can be

used on a standard PC architecture for interfacing with

analog signals (Altasli & Ciliz, 1993). The fuzzy controller

block diagram with four sensor inputs and two outputs is

shown in Fig. 4.

The inconsistency measures based on the possibility

approach given in Section 3 and the newly proposed

inconsistency and redundancy measures developed in

Section 4 are used in the implementation of the fuzzy

controller. For the implementation of the fuzzy controller,

expert driven rules tabulated in Table 1 are used. For these 14

rules, the inconsistency levels of each rule pair which were

computed based on the possibility measure is presented in

Fig. 5. As it can be observed from this table a quite coarse

map of inconsistencies were obtained. The indexes show

either total inconsistency (1.00) or complete accordance

(0.00) for most of the rule pairs. The last line in the index

table in Fig. 5 shows the ‘total inconsistency’ index for each

rule.

The inconsistency values for each pairwise rule combi-

nation were recomputed using the proposed fuzzy matching

set approach. The results are presented in Fig. 6. The results

demonstrate the fact that we have a considerably finer map

of inconsistencies as discussed in Section 4. Therefore,

inconsistent rule pairs can be located with much better

accuracy.
using the possibility approach.



Fig. 6. Inconsistency matrix computed using the fuzzy matching set approach.
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Next, the redundancy concept developed in Section 4 is

tested for the proposed controller. The redundancy measure

(defined in Section 4) of all the combinations of the rule set

are also computed (using (21)) and presented in Fig. 7. The

last line in the redundancy index table shows the total

redundancy level for each rule with all the other rules in the

rule base.

In the implementation of the fuzzy controller, the rules

having the highest inconsistency and highest redundancy

levels are discarded from the rule base. In doing so, the

performance of the controller was expected to improve or
Fig. 7. Redundancy matrix of the rule base compu
remain unaffected in the worst case, since other rules could

compensate the missing redundant and inconsistent rule.

As a simple test for comparison, the controller outputs

for the ‘pipe blockage’ scenario is shown in Figs. 8 and 9.

Fig. 8 shows the suction power and brush speed outputs for

the controller utilizing all 14 rules of the rule base. In Fig. 9,

controller outputs are given with the most inconsistent and

the most redundant rule eliminated from the rule base.

These results show that the output of the controller has been

affected minimally when the most redundant rule is

eliminated.
ted using the fuzzy matching set approach.



Fig. 8. Output levels of the fuzzy controller with the original rule base for a

specific scenario.

Fig. 10. Evaluation of the redundancy measure. The error metric (defined in

(22)) values for the six different scenarios.
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As another test, experiments were performed for the

other five scenarios (Altasli & Ciliz, 1993) in order to

explicitly test the success of removing the most redundant

rule only. An error metric is introduced to compare the

difference between the output levels of the controllers

utilizing the original and the modified rule base. The error

metric is defined as,

error Z

PN
iZ1 jy0 Kymj

N
(22)

where y0 denotes the original outputs and ym denotes the

outputs of the modified controller and N is the number of

rules in the rule base. The error is computed for all sampling

instants. The total error values were normalized by dividing

with the largest possible error value. Hence an identical

controller output would yield 0.0 as the error metric and the

metric approaches to 1.0 as the difference between the

original output and modified output increases. The error

metric values obtained for six different scenarios are listed in

Fig. 10. Note that in all six cases, the error values are nearly

zero. These results clearly show that the outputs of the

controller do not depend on the most redundant rule, as

expected. Therefore, it may be concluded that the perform-

ance of the controller was not affected when the original rule

base is analyzed and tuned based on the redundancy

measure. Hence, the results of the experimental tests suggest

that the redundancy measure can be successfully used to

locate the unnecessary rules in the rule base. This tool is
Fig. 9. Output levels of the fuzzy controller without the most inconsistent

and the most redundant rule for the same scenario.
especially valuable when the fuzzy logic calculations are

performed on-line, that is, when the speed and/or memory of

the available hardware directly affect the performance of the

controller algorithm. Then minimization of the rule base is a

requirement.
6. Conclusions

A novel tuning and rule reduction algorithm is proposed

as a design tool for the development of knowledge-based

fuzzy controllers. The developed algorithm is applied to

the fuzzy rule-based control of a household vacuum

cleaner.

First a new equality measure is defined to compare the

equality of two fuzzy sets. This measure is first used in the

computation of inconsistency levels of the fuzzy rules so

that the inconsistent rules can be better distinguished.

Then a new measure, which is termed as the redundancy

level, is proposed so that the rules with higher redundancy

levels can be removed from the fuzzy rule base without

affecting the overall performance level of the fuzzy

controller. Experimental results are given for the

control of a household vacuum cleaner demonstrating the

efficient use of the proposed algorithm.
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