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Abstract

This paper presents a genetic programming (GP) approach to extract symbolic rules from data sets with continuous-valued classes,
called GPMCC. The GPMCC makes use of a genetic algorithm (GA) to evolve multi-variate non-linear models [Potgieter, G., & Enge-
Ibrecht, A. (2007). Genetic algorithms for the structural optimisation of learned polynomial expressions. Applied Mathematics and
Computation] at the terminal nodes of the GP. Several mechanisms have been developed to optimise the GP, including a fragment pool
of candidate non-linear models, k-means clustering of the training data to facilitate the use of stratified sampling methods, and special-
ized mutation and crossover operators to evolve structurally optimal and accurate models. It is shown that the GPMCC is insensitive to
control parameter values. Experimental results show that the accuracy of the GPMCC is comparable to that of NeuroLinear and Cubist,
while producing significantly less rules with less complex antecedents.
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1. Introduction

Knowledge discovery is the process of obtaining useful
knowledge from raw data or facts. Knowledge can be
inferred from data by a computer using a variety of
machine learning paradigms. Data mining is the generic
term given to knowledge discovery paradigms that attempt
to infer knowledge in the form of rules from structured
data using machine learning.

Knowledge discovery algorithms can be divided into
two main categories according to their learning strategies:

o Supervised learning algorithms attempt to minimise the
error between their predicted outputs and the target out-
puts of a given dataset. The target outputs can either be
— discrete, ie the supervised learning algorithm

attempts to predict the class of a problem, e.g.
whether it will be sunny, rainy or overcast in tomor-
row’s forecast,
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— or continuous, i.e. the supervised learning algorithm
attempts to predict the value associated with a class,
e.g. determining the price of a VCR.
o Unsupervised learning algorithms attempt to cluster a
dataset into homogeneous regions, according to some
characteristic present in the data.

Many knowledge discovery algorithms have been
developed which utilise machine learning and artificial
intelligence paradigms. The main classes of paradigms
include: artificial neural networks (Bishop, 1992; Zurada,
1992), classification systems (like ID3 (Quinlan, 1983),
CN2 (Clark & Boswell, 1991; Clark & Niblitt, 1989)
and C4.5 (Quinlan, 1993)), evolutionary computation
(Bédck, Fogel, & Michalewicz, 2000a, 2000b; Goldberg &
Deb, 1991), and regression systems (like M5 Quinlan,
1992).

One of the primary problems with current data mining
algorithms is the scaling of these algorithms for use on
large databases. Additionally, very little attention has been
paid to algorithms for mining with continuous target out-
puts, which requires non-linear regression.
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This paper presents a new approach to extract symbolic
rules from data sets where the consequents of the extracted
rules are non-linear models. The rule extraction process uti-
lises a genetic programming (GP) approach to evolve
model trees. In order to reduce computational effort, to
increase the accuracy of rules, and to reduce the complexity
of rules, a number of algorithms have been developed to
optimise the learning process. These algorithms include:

e specialized mutation and crossover operators to opti-
mise rule sets,

e a fast clustering algorithm (Potgieter & Engelbrecht,
2007) to facilitate stratified sampling of the training data
in order to reduce training time, and

e a fragment pool of candidate non-linear models to
evolve structurally optimal and accurate models as rule
consequents.

In addition to these algorithms, a genetic algorithm
(GA) is used to evolve structurally optimal polynomials.
These polynomials are used as the models in the fragment
pool. More detail on this GA can be found in Potgieter and
Engelbrecht (2002, 2007).

The remainder of this paper is organised as follows: Sec-
tion 2 provides a background to techniques that do not
implement greedy search algorithms to generate rules.
The structure and implementation specifics of the GPMCC
method are discussed in Section 3. Section 4 presents the
experimental findings of the GPMCC method for a number
of real-world and artificial databases. Finally, Section 5
presents the summarised findings and envisioned future
developments to the GPMCC method.

2. Background on mining continuous classes

Knowledge discovery algorithms like C4.5 (Quinlan,
1993 and M5 Quinlan, 1992) utilise metrics based on infor-
mation theory to partition the problem domain and to gen-
erate rules. However, these algorithms implement a greedy
search algorithm to partition the problem domain. For a
given attribute space, C4.5 and M5 attempt to select a test
that minimises the relative entropy of the subsets resulting
from the split. This process is applied recursively until all
subsets are homogeneous or some accuracy threshold is
reached. Due to their greedy nature, C4.5 and M5 may
not generate the smallest possible number of rules for a
given problem (Potgieter, 2003). A large number of rules
results in decreased comprehensibility, which violates one
of the prime objectives of data mining.

This paper discusses a regression technique that does
not implement a greedy search algorithm. The regression
technique utilises a genetic program for the mining of con-
tinuous-valued classes (GPMCC) which is suitable for min-
ing large databases. Although the majority of continuous
data is linear, there are cases for which a non-linear
approximation technique could be useful, e.g. time-series.
Therefore, the GPMCC method utilises the GA method

presented in Potgieter and Engelbrecht (2002, 2007) to
provide non-linear approximations (models) to be used as
the leaf nodes (terminal symbols) of a model tree.

This section presents a detailed discussion of two exist-
ing methods suitable for non-linear regression. A novel
method of generating comprehensible regression rules from
a trained artificial neural network is discussed in Section
2.1. Finally, Section 2.2 presents genetic programming
approaches for non-linear regression and model tree
induction.

2.1. Artificial neural networks

Artificial neural networks (ANNSs) are widely used as a
tool for solving regression problems. However, ANNs have
one critical drawback: the complex input to output map-
ping of the ANN is impossible for a human user to easily
comprehend. ANNs are thus one of a handful of black-
box methods that do not satisfy the comprehensibility
requirement of knowledge discovery. While much research
has been done on the extraction of rules from ANNs (Fu,
1994; Towell & Shavlik, 1994), these efforts concentrated
on classification problems where the target class has dis-
crete values. Not much research has been done for target
classes with continuous values. Such problems are usually
handled by discretizing the continuous-valued targets to
produce a set of discrete values. This section discusses
recent work by Setiono that allows decision rules to be gen-
erated for regression problems from a trained ANN, called
NeuroLinear (Setiono, 2001, Setiono, Leow, & Zurada,
2002). Setiono’s findings indicated that rules extracted
from ANNs were more accurate than those extracted by
various discretisation methods. The section is divided into
three parts. Section 2.1.1 discusses the training and pruning
strategy of the ANN used by Setiono. Section 2.1.2
describes how a piecewise linear approximation of the acti-
vation function is obtained, and Section 2.1.3 discusses the
algorithm for generating rules from a trained ANN.

2.1.1. Network training and pruning

The method starts by training an ANN that utilises
hyperbolic tangent activation functions in the hidden layer
(of size H). Training is performed on a training set of |P|
training points (x,y;), i=1,...,|P| where x; € R and
y; € R. Training, in this case, minimises the sum of squares
error Esg(w,v) augmented with a penalty term P(w,v).

1P|

Ess(w,v) = 3 (3, = 32) + P(w,v) (1)

i=1
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where €|, €; and n are positive penalty terms, and y? is the
predicted output for input sample x;, i.e.

yp =) tanh((x;)'v,) + 1, (3)

w,, € R" is the vector of network weights from the input
units to hidden unit m, w,, is the /th component of
W,., U, € R is the network weight from the hidden unit m
to the output unit and 7 is the output unit’s bias.

Setiono performed training using the BFGS optimisa-
tion algorithm, due to its faster convergence than gradient
descent (Dennis & Schnabel, 1983; Setiono & Hui, 1995).
After training, irrelevant and redundant neurons were
removed from the ANN using the N2PFA (Neural Net-
work Pruning for Function Approximation) algorithm
(Setiono & Leow, 2000). ANN pruning prevents the
ANN from overfitting the training data, and also reduces
the length of the rules extracted from the ANN (Viktor,
Engelbrecht, & Cloete, 1995). The length of the extracted
rules are reduced because the number of variables (weights,
input units and hidden units) affecting the outcome of the
ANN are reduced.

2.1.2. Activation function approximation

The complex input to output mapping of an ANN is a
direct consequence of using either the hyperbolic tangent
or the sigmoid function as artificial neuron activation func-
tions. In order to generate comprehensible rules, a 3-piece
linear approximation of the hyperbolic tangent activation
function is constructed. This entails finding the cut-off
points (nety and —nety), the slope (o and ;) and the inter-
section (0,07 and —ay) of each of the three line segments.
The sum squared error between the 3-piece linear approx-
imation and the activation function is minimised to obtain
the values for each of these parameters:

|P|
min = E
neto,fo,B1.01 pary

(tanh(net;) — L(net;))*

where net; = x| - w is the weighted input of sample i and

—oy + finet  if net < —net
L(net) = { Bynet if — nety < net < nety
oy + Bnet if net > net,

The intercept and slopes which minimises the sum squared
error are calculated as follows:

Bo = Z\nenlgnetonetz‘ tanh(net,)
Z\nen‘gnetonetlg
B, = Z\neti|>nezo(net,- — nety)(tanh(net,) ; tanh(net,))
Z‘"eﬁbnet{, (net; — nety)

a = (By — By)neto

The weighted input net; of each sample is checked as a pos-
sible optimal value for net, starting from the one that has
the smallest magnitude. Fig. 1 illustrates how the 3-piece
linear approximation is constructed.

2.1.3. Generation of regression rules

Linear regression rules are generated from a pruned
ANN once the network hidden unit activation functions
tanh(net) has been approximated by the 3-piece linear func-
tion described above. The regression rules are generated as
follows:

1. For each hidden unitm=1,..., H
(a) Generate a 3-piece linear approximation L,,(ner).
(b) Using the points —net,,p and net,,y from function
L,,(net), divide the input space into 3 subregions.
2. For each non-empty subregion r = 1,...,3" generate a
rule as follows:

L(net E
tan(net
sample-points ¢
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Fig. 1. A 3-piece linear approximation of the hidden unit activation function tanh(net) given 20 training samples ().
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(a) Define a linear equation that approximates the
ANN’s output for an input pattern i in subregion
r as the rule consequent:

"
V= Z UL (net,;) + 1
m=1

where net,; = xl.Twm,Um € R is the network weight
from the hidden unit m to the output unit and 7 is
the output unit’s bias.

(b) Generate the rule antecedent: ((C) A--- A(C,,) A
-+ AN (Cg)) where C,, is either net,,; < —net,;,
net,,; > net,,y or —net,,o < net,,; <net,,,. Each C,,
represents an attribute test. The antecedent is
formed by the conjunction of the appropriate tests
from each of the hidden units.

(c) Simplify the rule antecedent.

The rule antecedent ((C))A---A(C,)A---A(Cp))
defines the intersection of each subspace in the input space.
For a large number of hidden neurons, this antecedent
becomes large. If this antecedent is simplified, using formal
logic or by using an algorithm such as C4.5, then the rules
generated by the above algorithm will be much easier to
comprehend.

2.2. Genetic programming

The evolutionary computing paradigm of genetic pro-
gramming (GP) (Koza, 1992; Poli & Langdon, 2002) can
be used to solve a wide variety of data mining problems.
This section discusses GP methods for symbolic regression,
decision-, regression- and model tree induction, and scaling
problems associated with GP. GP satisfies the comprehen-
sibility requirement of knowledge discovery, because the
representation of an individual (or chromosome) can be
engineered to provide easily understandable results.

2.2.1. Symbolic regression

Unlike artificial neural networks, GP can be used to per-
form symbolic regression without the need for data trans-
formations. GP is also capable of regression analysis on
variables that exhibit non-linear relationships, as apposed
to linear regression techniques. GP is thus a useful tool
for regression analysis of non-linear data.

Regression problems are solved by fitting a function,
represented by a chromosome, to the dataset using a fitness
function that minimises the error between them. The termi-
nal set is defined as a number of constants and attributes,
e.g {32,2.5,0.833,x,y,z}, and describes a number of valid
states for the leaf nodes of a chromosome (in the form of a
tree). The function set is defined by a number of operators,
e.g. {+,—,%\,cos,sin}, and describes a number of valid
states for the internal nodes of a chromosome.

The constants used in the terminal set are an Achilles’
Heel of a symbolic regression genetic program. If a popu-

lation is liberally scattered with constants chosen from a
preset range, e.g. [—1,1], it may be difficult for a genetic
program to evolve the expression 300x. Abass et al. present
a concise overview of methods to correct this problem
(Abass, Saker, & Newton, 2002).

2.2.2. Decision-, regression- and model tree induction

A number of different classification systems that utilise
genetic programming (GP) have been developed. This
section discusses two interesting ones. Additionally, this
section shows how a genetic program can be devel-
oped to directly evolve decision-, regression- and model
trees.

Eggermont et al. present a GP approach that utilises a
stepwise adaptation of weights (SAW) technique in order
to learn the optimal penalisation factor for the GP fitness
function (Eggermont, Eiben, & van Hemert, 1999). Each
individual in the population represents a classification rule,
and utilises a function set of boolean connectives and a ter-
minal set of attribute tests, ie. either the rule condition
covers a training pattern, in which case it is asserted to
belong to a class, or it does not. The approach was shown
to have increased accuracy over the fixed penalisation fac-
tor case.

Freitas presents an interesting GP framework that
evolves SQL queries in order to increase scalability,
security and portability (Freitas, 1997). Each individual
consists of two parts: a tuple-set descriptor and a goal attri-
bute. The GP approach utilises a niching strategy in order
to force the method to produce innovative rules.

GP can also be used to directly build decision-, regres-
sion- and model trees. As was mentioned in Section 2.1,
artificial neural networks provide no comprehensible expla-
nation of how they classify or approximate a dataset. On
the other hand, classification systems, such as C4.5, and
regression systems, such as M5, generate overly complex
trees. GP is potentially capable of providing a compromise
between these two extremes.

For zero-order learning, the function set of the chromo-
some consists of a number of attribute tests. The terminal
set for the chromosome consists of either a number of clas-
ses for decision trees, or a number values for regression
trees, or a number of models for model trees. The models
for model trees can be obtained by linear regression, sym-
bolic regression or a population-based optimisation
method such as a GA (Potgieter, 2003; Potgieter & Enge-
Ibrecht, 2002, 2007).

The fitness function can either (1) evaluate the number
of cases that are correctly classified for a decision tree, or
(2) minimise the error between the predicted response of
the individual and the target response of a number of train-
ing patterns. Additionally, the fitness function should
implement a penalisation factor in order to penalise the
complexity of a chromosome. In this manner, genetic pro-
grams can be used to minimise both the bias and the vari-
ance of the model described by a chromosome (Geman,
Bienenstock, & Doursat, 1992).



G. Potgieter, A.P. Engelbrecht | Expert Systems with Applications 35 (2008) 1513-1532 1517

2.2.3. Scaling problems

GP has shown considerable promise in its problem solv-
ing ability over a wide range of applications, including data
mining (Geom, 1999; Kaboudan, 1999). However, prob-
lems exists in scaling GP to larger problems such as data
mining. Marmelstein and Lamont summarise many of
these difficulties (Marmelstein & Lamont, 1998). Some of
the most important scaling problems are:

o GP performance is very dependent on the composition
of the function and terminal sets.

e There is a trade-off between GP’s ability to produce
good solutions and parsimony.

e The size and complexity of GP solutions can make it dif-
ficult to understand. Furthermore, solutions can become
bloated with extrancous code (also known as introns).

Of the above difficulties, the most difficult to control is
the complexity of GP solutions, otherwise known as code
growth. Abass describes many methods for the removal
of introns, e.g. chromosome parsing, alternative selec-
tion methods and alternative crossover methods (Abass
et al., 2002). Rouwhorst et al. presented a building-block
approach to evolve decision trees (Engelbrecht, Schoeman,
& Rouwhorst, 2001). In this approach, the initial popula-
tion consists of very simple individuals which grows in
complexity when their current structure is not sufficient
to reduce the model error. Individuals are grown by adding
a random generated building-block to their current
structure.

3. GPMCC structure

This section discusses a genetic programming approach
for mining continuous-valued classes (GPMCC). Section
3.1 presents an overview of the GPMCC method and its
various components. An iterative learning strategy used
by the GPMCC method is discussed in Section 3.2. Section
3.3 describes, in detail, the fragment pool utilised by the
GPMCC method. Finally, the core genetic program for
model tree induction is discussed in Section 3.4.

3.1. Overview

The genetic program for the mining of continuous-val-
ued classes (GPMCC) consists of three parts:

1. An iterative learning strategy to reduce the number of
training patterns that are presented to the genetic
program.

2. A pool of non-linear fragments evolved using a GA
(Potgieter & Engelbrecht, 2002, 2007), which serve as a
terminal set for the terminal nodes of a chromosome
in a genetic program. This pool of fragments is evolved
using mutation and crossover operators.

3. A genetic program to evolve model trees.

Fig. 2 shows an overview of the GPMCC learning pro-
cess. In addition, the GPMCC learning process is summa-
rised below:

1. Let g = 0 be the generation counter
2. Initialise a population Ggp, of N individuals, ie.

Go={L|x=1,...,N}

3. While g < M, where M is the total number of genera-
tions, do
(a) Sample S, using an incremental training strategy,
from the remaining training patterns P, ie. P’ C P,
S=SuUP.
(b) Remove the sampled patterns from P, i.e. P = P/S.
(¢) Evaluate the fitness R2(I,) of each individual in pop-
ulation Ggp, using the patterns in S.
(d) Let Ggp, C Gy be the top x% of the individuals,
based on fitness, to be involved in elitism.
(e) Install the members of G, into the new generation
GGp g+
(f) Let Ggp, C Gop, be the top n% of the individuals,
based on fitness, to be involved in crossover.
(g) Run the fragment pool optimisation algorithm once.
(h) Perform crossover:
(i) Randomly select two individuals 7, and /5 from
Gip g
(ii) Produce offspring I, from /I, and I;.
(iii) Install Z, into Gp,.
(i) Perform mutation:
(i) Select an individual Z,, from G, .
(i) Mutate 7, by randomly selecting a mutation
operator to perform.
(iii) Install 7, into the new generation Ggp g+ 1.
(j) Evolve the next generation g:=g + 1.

3.2. Iterative learning strategy

The GPMCC method utilises an iterative learning strat-
egy to reduce the number of training pattern presentations
per generation. Additionally, the iterative learning strategy
should result in more accurate rules being generated (Enge-
Ibrecht & Brits, 2002; Quinlan, 1993). The strategy utilises
the k-means clustering algorithm (Forgy, 1965) to cluster
the training data.

A stratified random sample is selected from the available
training patterns during each generation of the genetic pro-
gram. The size, s, of the initial sample is chosen as a per-
centage of the total number of training patterns |P|. The
sampling strategy utilises an acceleration rate to increase
the size of the sample during every generation of the genetic
program. This size of the sample is increased until it equals
the total number of training patterns.

The stratified random sample is drawn proportionally
from each of the k clusters of the k-means clusterer, i.e.:

S =SUt,C,
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Fig. 2. Overview of the GPMCC learning process.

where

|Cs| - acceleration - s
1P|

C; Cc Cs: |Cl()| =

and |C;| is the (stratum) size of cluster Cj, |P| is the size of
the data set, s is the initial sample size and acceleration is
the acceleration rate. The acceleration rate increases the
size of the sample at each generation.

3.3. The fragment pool

A model tree is a decision tree that implements multi-
variate linear models at its terminal nodes. However, linear
models may not adequately describe time-series data or
non-linear data. In these cases, a model tree that imple-
ments multi-variate linear models at its terminal nodes will
perform a piecewise approximation of the problem space.
Although such a piecewise approximation may be accurate,
the number of rules induced by the approximation will be
large as indicated by the results in Section 4.3.

A number of techniques exist to perform non-linear
regression. Two obvious non-linear regression techniques
from the evolutionary computation field include

e using a genetic program to perform a symbolic regres-
sion of the data covered by the terminal nodes,

e or using a GA, such as the GASOPE method in Potgi-
eter and Engelbrecht (2002, 2007) to perform a non-lin-
ear regression of the data patterns covered by each
terminal nodes.

The GPMCC discussed in this section uses GASOPE
(Potgieter & Engelbrecht, 2002, 2007) as the approach to
perform non-linear regression. However, the use of both
of these methods can be shown to have a severe impact
on the time taken to construct a model tree.

As reported in Potgieter (2003) and Potgieter and Enge-
Ibrecht (2007), the largest training time of the GASOPE
method was approximately 1.5 s (considering a variety of
problems). Assuming a genetic program is used to con-
struct a model tree, if a model is generated by a mutation
operator, a 1.5 s time penalty will be incurred every time
that mutation operator is called. If, for example, there is
a 1% chance of the mutation operator being run on an indi-
vidual in a population of 100 individuals with, on average,
5 terminal nodes per individual, a 7.5 s time penalty will be
incurred per generation (0.01 x100x5x1.5=7.5). For
1000 generations this performance penalty is 7500 s (2 h
and 5Smin). In other words, a very large proportion of
the genetic program’s training time will be spent optimising
the models.

This section discusses the fragment pool, which is a col-
lection of multi-variate non-linear models. The fragment
pool is an evolutionary algorithm for improving the time
taken for a model to be generated, based on context mod-
elling. The fragment pool represents a belief space of termi-
nal symbols for a model tree. The remainder of this section
discusses the representation of the fragment pool, the ini-
tialisation of a fragment, the fragment mutation and cross-
over operators, and the fitness function.

The implementations of the fragment pool and the
genetic program of Section 3.4 to evolve model trees are
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heavily intertwined. Therefore, for the remainder of this
section assume that there is a genetic program that evolves
model trees, whose terminal nodes are models that are
obtained from the fragment pool.

3.3.1. Representation
Each fragment in the pool represents a model-lifetime

mapping
F(» = {]w - nw}

where I, is a GASOPE individual (i.e. a multi-variate non-
linear model) and =, is the lifetime of I,,. The lifetime 7,
represents the age of a fragment in the fragment pool.
When a fragment’s lifetime expires, it is removed from
the pool. The lifetime of a fragment can, however, be reset
if the fragment is deemed ‘““useful”. By counting the num-
ber of times a model appears as a terminal node in the
members of the crossover group of the genetic program,
the fragment usefulness can be determined. A model is
more likely to appear as a terminal node of members of
the crossover group if the model closely approximates the
subspace described by the training and validation patterns
covered by the path to the terminal node. Thus, the frag-
ment pool implements a kind of context modelling (Salo-
mon, 2000), because fragments that result in sub-optimal
approximations for these subspaces are eventually removed
and can no longer contaminate the pool.

3.3.2. Initialisation
The initialisation of the fragment pool Ggp proceeds as
follows:

—

. Let k = initial_clusters.
2. Perform k-means clustering to obtain k clusters Cj,
o=1,...,k
3. For each cluster Cs, 6 =1,... k.
(a) Use the GASOPE method to obtain a non-linear
regression I of the patterns in each cluster.
(b) Insert the fragment Fs = {I; — 0} into the fragment
pOOl GFP = GFP U F(s.
4. Divide k by the split factor i.e k := splil_l}actor'
5. Return to step 2 while k> 1.

Essentially, the above algorithm performs multiple
piecewise approximations of the problem space to build
an initial set of fragments. The number of initial clusters,
initial_clusters, and the split factor, split_factor, ultimately
control the total number of piecewise approximations
(models) that are generated. The algorithm starts by fit-
ting many highly specific approximations and then
increasing the approximation generality by decreasing
the available number of clusters k. Decreasing the avail-
able number of clusters results in an increase in the num-
ber of patterns covered by each cluster centroid. This, in

turn, results in a more general function approximation
per cluster.

The models contained within the fragments form part of
a terminal set for the genetic program. Whenever the
genetic program requires a model, the fragment pool ran-
domly selects a fragment and passes the fragment’s model
to the genetic program.

3.3.3. Mutation and crossover operators

The fragment pool mutation operators serve to inject
additional fragments into the fragment pool. The addition
of fragments to the fragment pool result in an increased
number of models in the terminal set of the genetic pro-
gram. Additional models in the terminal set prevent the
stagnation of the genetic program, by allowing the intro-
duction of models that approximate regions not covered
by the initialisation of the fragment pool. Additionally,
the mutation operators also serve to fine-tune the models
at the terminal nodes of the genetic program. Two muta-
tion operators exist for the fragment pool: The shrink oper-
ator (Potgieter & Engelbrecht, 2002, 2007) duplicates an
arbitrary fragment in the fragment pool to remove, arbi-
trarily, one of the term-coefficient pairs from the fragment.
The introduce operator calls the GASOPE optimisation
algorithm (Potgieter & Engelbrecht, 2002, 2007) on the
training and validation patterns covered by the path of a
terminal node of an arbitrary individual of the genetic pro-
gram to evolve a non-linear model. The path is defined as
the nodes traversed from the root of a tree to a specific
node in the tree. The model obtained from the GASOPE
optimisation algorithm is given a lifetime of 0 and is
inserted into the fragment pool.

The crossover operator of the fragment pool is an invo-
cation of the GASOPE crossover operator (Potgieter &
Engelbrecht, 2002, 2007). A fragment with a non-zero
usefulness factor and an arbitrary fragment are randomly
chosen from the fragment pool and their models are given
to the GASOPE crossover operator. The model obtained
from the GASOPE crossover operator is given a lifetime
of 0 and is inserted into the fragment pool. The reader is
referred to (Potgieter & Engelbrecht, 2007) for more detail.

A culling operator removes fragments from the fragment
pool, when those fragment’s fragment lifetimes have
expired, ie. when the fragment lifetimes are larger than
some upper-bound. The culling operator removes frag-
ments from the fragment pool that have not been useful
for a number of generations. This operator ensures that
the fragment pool does not become uncontrollably large.

The shrink operator and the crossover operator are uni-
formly, randomly applied once after the completion of a
generation of the genetic program. This ensures that the
size of the fragment pool increases at least once per gener-
ation, in order to counteract the effects of the fragment life-
time, ie. the removal of useless fragments. The introduce
operator is applied with a statistical probability whenever
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the genetic program requires a model, i.e. when the relevant
genetic program mutation operator is invoked. If the
fragment lifetime is too large or the introduce operator is
applied too often, the fragment pool will grow too quickly.

A large fragment pool results in a large number of termi-
nal symbols, which may have a negative consequence on the
convergence properties of the genetic program. Conversely,
a small fragment pool may lead to the stagnation of the
genetic program, because there may not be enough
variation in the terminal symbols described by the fragment
pool.

3.3.4. Fitness function

The fitness function rewards the usefulness of a fragment.
As was mentioned earlier, the fragment usefulness is deter-
mined by counting the number of times a fragment appears
as a terminal node of individuals in the crossover group of
the genetic program. The crossover group consists of the
top individuals in the genetic program, obtained through
tournament selection. Thus, the usefulness of a fragment
is determined by the number of times it appears as well as
where it appears, i.e. fragments not used as terminal symbols
of the crossover group are useless, because the overall fitness
of the individuals using those fragments is poor.

3.3.5. Fragment pool optimisation algorithm
The optimisation algorithm for the fragment pool is as
follows:

1. Obtain a set Gfp, of individuals from the crossover
group of a genetic program.

2. Evaluate the fitness of each fragment F, in the pool Gzp
using G’épﬁg, i.e. for each fragment F,, € Gpp:

(a) Count the number of times, n, that the individual 7,
appears as a terminal symbol in G/(/;P,g.
(b) Set the fitness of the individual Fgp(F,,) = n.
3. Select a crossover group from the pool G}, C Grp, where
Fp(F,) > 0,F, € Gyp (the fragments of G}, still reside
in GFP)-
4. Reset the fragment lifetime of all fragments in GP}, to 0,
as they were deemed useful.
5. Increase the fragment lifetime of all fragments in
GP/GP,;, by one.
6. Remove/cull any fragment from Grp whose fragment
lifetime has expired.
7. 1If U(0,1)<0.5
(a) Select a fragment F, from Gy, and a fragment Fj
from Gpp.

(b) Perform crossover to
F,={I,— 0}.

(c) Insert F, into Gpp

8. Otherwise,

(a) Select a fragment F,, from Gpp.
(b) Duplicate F,, to get F'.

(c) Perform mutation on F/ .

(d) Insert F into Ggp.

obtain a fragment

The fragment pool optimisation algorithm is invoked at
each generation by the genetic program.

3.4. Genetic program for model tree induction

This section discusses, in detail, a genetic program for
inducing model trees. The models for this genetic program
are obtained from the fragment pool discussed in Section
3.3.

3.4.1. Representation
Each individual /, in the population represents a model
tree such that:
1, = NODE
where

NODE:

(CONSEQUENT)|((ANTECEDENT — NODE)
V (=ANTECEDENT — NODE))

ANTECEDENT: (NOMINAL_ANTECEDENT)
|(CONT1NUO US_ANTECEDENT)

NOMINAL ANTECEDENT: (A: = v¢)

CONTINUOUS ANTECEDENT:

(Ae <ve)|(Ae > va)|(Ae = ve)|(As # ve)

CONSEQUENT: (1,)

A consequent, I, represents a GASOPE model from the
fragment pool, A; represents a nominal-, continuous- or
discrete-valued attribute and v; represents a possible value
of A.. For the continuous antecedents, operators such as <
and > are obtained by adjusting the attribute value v;.

3.4.2. Initialisation

The GPMCC initialise operator creates an individual 7,
by recursively adding nodes to that individual, up to a
maximum depth bound. The pseudo-code algorithm for
the initialisation is as follows, where CALLER is a calling
node initially set to Nil and depth is the maximum required
depth of the tree:

Initialise: with parameters CALLER and depth

1. If depth < maximum_depth and U(0,1) <0.5

(a) Select an attribute A¢, ¢ =1,...,I from the attribute
space of dimension 1.

(b) If A;is a continuous-valued attribute, select an oper-
ator op(¢) € {<,>,=, #}.

(c) Otherwise, op(¢) € {=}.

(d) Select an attribute value a;, for attribute 4; from a
training pattern i, such that v: = a;;, i € {1,...,|P|}.

(e) Create a node N, with antecedent ant, = (Az0p(&)ve)
and consequent con, = Nil.

(f) Call Initialise with the node covered by the anteced-
ent of N, (the left node), N, and depth depth + 1.

(g) Call Initialise with the node covered by the negation
of the antecedent of N, (the right node), N-,, and
depth depth + 1.
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2. Otherwise,
(a) Select an individual 7, from the fragment pool.
(b) Create a node N, with antecedent ant, = Nil and
consequent con, = I,,,.
(c) Set the node covered by the antecedent of N,

Noan, = Nil

(d) Set the node covered by the negation of the anteced-
ent of N,

N an, := Nil

3. Let CALLER := N, and return.

Once the procedure terminates, CALLER returns with
the head of the tree. Fig. 3 illustrates one outcome of the
initialisation of an individual /,. Each node in the diagram
is recursively initialised as NV, and the arrows show the path
taken by the initialisation method.

3.4.3. Mutation operators

The mutation operators serve to inject new genetic
material into the population. Additionally, the mutation
operators utilise domain specific knowledge in order to
improve the quality of the individuals in the population.
A large number of mutation operators have been devel-
oped for the GPMCC method.

¢ Expand-worst-terminal-node operator: The expand-
worst-terminal-node operator locates and partitions
the subspace for which a terminal node has a higher rel-
ative error than all other terminal nodes in the individ-
ual I,. The relative error of the terminal node is
determined by using the mean squared error Ejg
between the model described by the terminal node and
the training set covered by the path of that terminal
node. The operator attempts to maximise the adjusted
coefficient of determination R? (fitness) of the individual,
by partitioning the subspace described by a terminal
node into smaller subspaces. The pseudo-code for the
expand-worst-terminal-node operator is as follows:

Fig. 3. Illustration of GPMCC chromosome for an individual 7,.

Fig. 4. Illustration of the expand-worst-terminal-node operator for an
individual 7,.

1. Select N, (shown in Fig. 4) such that VN;e
L, : (con, # Nil) N (Eps(N,) < Eps(N)), ie.  select
the worst terminal node.

2. Select an attribute A;, £ =1,...,/ from the attribute
space of size [ (in order to turn the consequent into
an antecedent).

3. If A; is a continuous-valued attribute, select an oper-
ator op(¢) € {<,>, =, #}.

4. Otherwise, op(¢) € {=}.

5. Select an attribute value a;, for attribute A4; from
a training pattern i, such that v:=a;, i€ {l,...,
1P[}.

6. Set the antecedent ant, of node N, to (A:op(&)ve).

7. Set the consequent con,, of node N, to Nil (to satisfy
the termination criteria).

8. Create a node covered by the antecedent of N, (the
left node), N, with antecedent ant.,,, = Nil and
consequent cong,, = I,.

9. Set the node covered by the antecedent of N,

N = Nil
llnft

10. Set the node covered by the negation of the anteced-
ent of Np,:

Nant o, = Nil

11. Create a node covered by the negation of the anteced-
ent of N, (the right node), N, with antecedent
ant_,,;, = Nil and consequent con—,,;, = 1.

12. Set the node covered by the antecedent of N_,:

N-an,,, = Nil

13. Set the node covered by the negation of the anteced-
ent of N,

N ant-, = Nil

Intuitively, the expand-worst-terminal-node operator
attempts to increase the fitness of an individual, by
partitioning the subspace covered by the worst termi-
nal node (in terms of mean squared error) into two
more subspaces. A high mean squared error is an
indication of a poor function approximation. It is
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possible that by partitioning the subspace the accu-
racy of the function approximation can be increased.
Thus, this operator caters for discontinuities in the
input space.

Expand-any-terminal-node operator: The expand-any-
terminal-node operator partitions the subspace of a ran-
dom terminal node in an individual 7,. The pseudo-code
for the expand-any-terminal-node operator is identical
to the expand-worst-terminal-node operator, except that
step (1) should read:
1. Select N, from I, such that con, # Nil.
If the high mean squared error in the worst terminal
node is due to a large variance in the data, the expand-
worst-terminal-node operator will continually attempt
to partition the subspace of the worse terminal node to
no avail. This could lead to extremely slow convergence
of the GPMCC method. The expand-any-terminal-node
prevents this scenario from occurring by allowing any
terminal node to be expanded.

Shrink operator: The shrink operator replaces a non-

terminal node of an individual 7, with one of the non-

terminal node’s children. The pseudo-code for the
shrink operator is as follows:

1. Select N, (as shown in Fig. 5) from I, such that
(ant, # Nil).

2. If U(0,1)<0.5 then the current node becomes the
node covered by the antecedent (the left node)
Ny == N,

3. Otherw1se the current node becomes the node cov-
ered by the negation of the antecedent (the right
node) N, := N_y, (as shown in Fig. 5).

The shrink operator is responsible for removing
introns from an individual, which is necessary to pre-
vent code bloat.

Perturb-worst-non-terminal-node operator: The perturb-
worst-non-terminal-node operator selects and perturbs
a non-terminal node which has a higher relative error
than all other non-terminal nodes in an individual 7.
Once again, the relative error is determined using the
mean squared error, E;/g, on the training set. This oper-
ator gives the GPMCC method an opportunity to opti-
mise the partitions described by the non-terminal nodes
of an individual. The pseudo-code for the perturb-
worst-non-terminal-node operator is as follows:

Fig. 5. Illustration of the shrink operator for an individual 7.
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Fig. 6. Illustration of the perturb-worst-non-terminal-node operator for
an individual 7,.

L.

2.

Select N, (as shown that
VN; €L, : (ant, # Nil) N (Eys(N,) <
If U(0,1)< U, where U, €
parameter
(a) If 4. is a continuous-valued attribute

(1) If U0,1)< U, where U, €[0,1] is a user-
defined parameter, select an operator
op(&) € {<,>,=, #} (as shown in Fig. 6).
Otherwise (U(0,1) > U,), adjust the attribute
value vs according to a Gaussian distribution

in Fig. 6) such
Eus(Ny).
[0,1] is a user-defined

(ii)

_ (max—min)U(0, 1)2 s
Ve 1= V¢ +72u 0 where  Vag;,i=
1,...,[.(max> ag;) N (min < ag;),Us € R
is a user-defined parameter, min is the

minimum value for an attribute 4; and max
is the maximum value for an attribute A;.
The standard deviation 0.3 of the Gauss-
ian distribution provides an even distribu-
tion of the Gaussian function in the domain
[0,1].
(b) Otherwise (A4: is

attribute),

(i) Randomly, select an attribute value a:; for
attribute A: from a training pattern 7, and
let v =ag; i € { P}

not a continuous-valued

. Otherwise (U(0,1) > Ul),

(a) ,I from the attri-
(b)

(c)
(d)

Select an attribute A;, £ =1,...
bute space of size I.

If A; is a continuous-valued attribute, select an
operator op(¢) € {<,>,=, #}.

Otherwise, op(¢) € {=}.

Randomly select an attribute value a;, for attri-
bute A from a training pattern i, such that
ve=ag;, i€ {l,...,|P|}.

. Set the antecedent antx of node N, to (A4: op(&) ve).

Intuitively, the partition described by a non-terminal
node of an individual may not correctly partition the
subspace e.g. if a test should have been 4| <5, but is
actually A4; <4.6. The perturb-worst-non-terminal-
node operator specifically attempts to adjust the test
described by the worst non-terminal node (indicated
by the largest mean squared error).
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¢ Perturb-any-non-terminal-node operator: The perturb-
any-non-terminal-node operator selects and perturbs a
non-terminal node in an individual 7,. The perturb-
any-non-terminal-node operator is identical to the per-
turb-worst-non-terminal-node operator except that step
(1) should read:

1. Select N, such that (ant, # Nil).
This operator allows for the perturbation of any non-
terminal node, in order to prevent slow convergence in
the case that the high mean squared error of the worst
non-terminal node is due to high variation in the
dataset.

o Perturb-worst-terminal-node operator: The perturb-
worst-terminal-node operator selects and perturbs a ter-
minal node which has a higher relative error than all
other non-terminal nodes in an individual 7,. This oper-
ator gives the GPMCC method an opportunity to opti-
mise the non-linear approximations for the subspace
covered by the training and validation patterns
described by the path to a terminal node. The perturb-
worst-terminal-node operator is as follows:

1. Select N, (as shown in Fig. 7) such that
VN; €L, : (con, # Nil) A (Eps(N,) < Epys(N)).

2. Select an individual [, from the fragment pool.

3. Set the consequent con, of node N, to I,.

Intuitively, the model described by the terminal node of

an individual may be a poor fit of the data covered by

the path of that terminal node. The perturb-worst-ter-

minal-node operator randomly selects a new individual

from the fragment pool to replace the current model.

¢ Perturb-any-terminal-node operator: The perturb-any-
terminal-node operator selects and perturbs a terminal
node in an individual /,. The perturb-any-terminal-node
operator is identical to the perturb-worst-terminal-node
operator except that step (1) should read:

1. Select N, such that (con, # Nil).

This operator allows for the perturbation of any termi-
nal node, in order to prevent slow convergence in the
case that the high mean squared error of the worst ter-
minal node is due to high variation in the dataset.

o Reinitialise operator: The reinitialise operator is a re-
invocation of the initialisation operator.

Fig. 7. Illustration of the perturb-worst-terminal-node operator for an
individual 7,.

Fig. 8. Illustration of the crossover operator for individuals 7,, Iz and I,.

3.4.4. Crossover operator

The crossover operator implements a standard genetic
program crossover strategy. Two individuals (/, and I)
are chosen by tournament selection from the population
and a crossover point is chosen for each individual. The
two crossover points are spliced together to create a new
individual 7,. The pseudo-code for the crossover operator
is as follows (as illustrated in Fig. 8):

1. Select an individual I, € Ggp from the population
Gep.

2. Select an individual Iz € Ggp from the population

GGP-

. Select a non-terminal node N, from I,.

. Select a node Ng from 1.

5. Create a new individual 7, from I, and I by installing
Npg as a child of N,,.

W

3.4.5. Fitness function

As for all evolutionary computation paradigms, the fit-
ness function is a very important aspect of a genetic pro-
gram, in that it serves to direct the algorithm toward
optimal solutions. The fitness function used by the genetic
program is an extended form of the adjusted coefficient of
determination:

e S s
T SLbi-by sk

4)

where s is the size of the sample set, b, is the actual output
of pattern i, b;yj is the predicted output of individual 7, for
pattern i, and the model complexity d is calculated as
follows:
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|| 1T¢

I74] : .
1+ e if com, # Nil

d="7 &k 2 (5)
= if con, = Nil

where 7, is an individual in the set Gp of individuals, |7,| is
the number of nodes in I,,/, is the model at a terminal
node, T: is a term of I, and A, is the order of term 7.
This fitness function penalises the complexity of an individ-
ual I, by penalising the size of an individual and the
complexity of each of the non-terminal nodes of that indi-
vidual, i.e. the number of nodes and the complexity of each
leaf node, given as (Potgieter, 2003)

d= Z S s (6)

4. Experimental results

This section discusses the experimental procedure and
results of the GPMCC method, compared with NeuroLin-
ear and Cubist, as applied to various data sets obtained
from the UCI machine learning repository and a number
of artificially created datasets. Section 4.1 presents the var-
ious data sets. The experimental procedure and parameter
initialisation are discussed in Section 4.2. Section 4.3 pre-
sents the experimental results for the functions listed in
Section 4.1. The quality of the generated rules is discussed
in Section 4.4.

4.1. Datasets

The GPMCC method was evaluated on a number of
benchmark approximation databases from the machine
learning repository as well as a number of artificial data-
bases (Blake, Keogh, & Merz, 1998). Table 1 describes each
of the UCI databases used in this paper. The artificial dat-
abases were created to analyse various approximation
problems not sufficiently covered by the UCI machine
learning repository, e.g. time-series, and to provide a num-
ber of large databases, exceeding 10,000 patterns, with
which to analyse the performance of the GPMCC method.

The function describing the Machine data set in Table 1
is piecewise linear. Therefore, the GPMCC method is not
expected to perform substantially better, in terms of the
number of rules generated, than other methods.

Table 1

In addition to the problems listed in Table 1, the follow-
ing problems were also used:

e The function example database represents a discontinu-
ous function, defined by a number of standard polyno-
mial expressions:

1.5 = 7x +2 if (pe =‘C") A (x > 1)

x* +400 if (hpe="C)A(x<1)
y= U(_17 1) +

2x if (type ="°4")

—2x if (type ="B’)

where x € [—10,10] and type € {‘4’, ‘B’, ‘C’}. The data-
base consists of 1000 patterns, with three attributes per
pattern.
The Lena Image database represents a 128 x 128 grey-
scale version of the famous “Lena’” image, which is used
for comparing different image compression techniques
(Salomon, 2000). The data consists of 11 continuous-
valued attributes, which represents a context (or
footprint) for a given pixel. The objective of an approxi-
mation method is to infer rules between the context
pixels and the target pixel. The database is large and
consists of 16,384 patterns.
e The Mono Sample database represents an approximately
4 s long sound clip, sampled in mono at 8000 hertz (the
chorus of U2’s “Pride (In the name of love)”’). The data-
base consists of 31,884 patterns, with five attributes per
pattern. The objective of an approximation method is to
infer rules between a sample and a context of previous
samples.

The Stereo Sample database represents an approxi-

mately 4 s long sound clip, sampled in stereo at 8000

hertz (the chorus of U2’s “Pride (In the name of love)”).

The database consists of 31,430 patterns, with nine attri-

butes per pattern. The objective of an approximation

method is to infer rules between a sample in the left
channel and a number of sample points in the left and
right channels.

e The Time-series database represents a discontinu-
ous application of components of the Rossler and
Lorenz attractors, the Henon map and a polynomial
term:

Databases obtained from the UCI machine learning repository (Attributes: N = Nominal, C = Continuous)

Dataset Samples Attributes Prediction task

Abalone 4177 IN, 7C Age of abalone specimens

Auto-mpg 392 7C Car fuel consumption in miles per gallon
Elevators 16,599 18C Action taken for controlling an F16 aircraft
Federal Reserve Economic Data 1049 16C 1-Month credit deficit rate

Housing 506 13C Median value of homes in Boston suburbs
Machine 209 6C Relative CPU performance

Servo 167 2N, 2C Response time of a servo mechanism
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Wnil = XuVuZn

Xp =1 —a-xi—I—b-y,,
Yong1 =Xn — A ),

Zntl = XnYy — bz,

Xpo1 if (x, = 0)
<

(
- Va1 i (5, <0) A (y, = 0)
=vO.D+ Zper  Af (6, <0) A (y, <O0) A (z, = 0)
(x, < 0) A

W <0)A (2, <0)

Wil

where xg, yo, zg, wo ~ U(—5,5). The database consists of
1000 patterns, with four attributes per pattern, gener-
ated using the Runga—Kutta method with order 4 (Bur-
den & Faires, 1997).

4.2. Experimental procedure

Each of the databases was split up into a training set, a
validation set and a generalisation set. The training set was
used to train the GPMCC method, the validation set was
used to validate the models of the GASOPE method and
the generalisation set was used to test the performance of
the GPMCC method on unseen data. The training set for
each database consisted of roughly 80% of the patterns,
with the remainder of the patterns split evenly among the
validation and generalisation sets (80%:10%:10%). The
GPMCC initialisation as used for each of the databases
is shown in Table 2. For all datasets the maximum polyno-
mial order was set to 5, except for the house-16H dataset,
for which the maximum polynomial order was set to 10.

Generally speaking, the parameters prefixed by “Func-
tion” in Table 2 control the behaviour of the model optimi-
sation algorithm of the fragment pool (Potgieter, 2003).
These parameters are soft options for the GPMCC
method, because they are automatically adjusted if they
violate any of the restrictions of the GASOPE method.
The parameters prefixed by “Decision” control the behav-
iour of the genetic program for generating model trees. In
general, “consequent” refers to terminal nodes and “‘ante-
cedent” refers to non-terminal nodes. The mnemonic
“CA” stands for continuous antecedent, “NA” stands for
nominal antecedent, “ME”’ stands for mutate expand and
“MN” stands for mutate node (perturb).

The GPMCC method utilises a variable mutation rate.
The mutation rate is initially set to a default parameter
(“DecisionMutationRatelnitial”’). Every time the accuracy
of the best individual in a generation does not increase, the
mutation rate is increased (by the amount specified by
“DecisionMutationRatelncrement™) up to a maximum
mutation rate (given by “DecisionMutationRateMax”’).

This variable mutation rate helps to prevent stagnation.
If the accuracy of the best individual does not improve over
a number of generations, the increase in mutation rate
injects more new genetic material into the population.
However, if the accuracy of the best individual does

Table 2

GPMCC initialisation parameters

Parameter Value
SyntaxMode 1
Clusters 30
ClusterEpochs 10
FunctionMutationRate 0.1
FunctionCrossoverRate 0.2
FunctionGenerations 100
FunctionIndividuals 30
PolynomialOrder 5
FunctionPercentageSampleSize 0.01
FunctionMaximumComponents 10
FunctionElite 0.1
FunctionCutOff 0.001
DecisionMaxNodes 30
DecisionMEWorstVsAnyConsequent 0.5
DecisionMECreateVsRedistributeLeafNodes 0.5
DecisionMNAntecedentVsConsequent 0.5
DecisionMNWorstVsAnyAntecedent 0.5
DecisionMNWorstVsAnyConsequent 0.5
DecisionReoptimizeVsSelectLeaf 0.1
DecisionMutateExpand 0.3
DecisionMutateShrink 0.3
DecisionMutateNode 0.3
DecisionMutateReinitialize 0.1
DecisionNAAttributeVsClassOptimize 0.2
DecisionCA AttributeOptimize 0.1
DecisionCAClassOptimize 0.6
DecisionCAConditionOptimize 0.3
DecisionCAClassVsGaussian 0.1
DecisionCAClassPartition 0.1
DecisionCAConditionalPartition 0.1
DecisionPoolNoClustersStart 30
DecisionPoolNoClustersDivision 2
DecisionPoolNoClusterEpochs 1000
DecisionPoolFragmentLifeTime 50
DecisionInitialPercentageSampleSize 0.1
DecisionSampleAcceleration 0.005
DecisionNolndividuals 100
DecisionNoGenerations 10
DecisionElite 0.0
DecisionMutationR atelnitial 0.2
DecisionMutationRatelncrement 0.01
DecisionMutationRateMax 0.6
DecisionCrossoverRate 0.1
CrossValidation 0

improve, then the mutation rate is reset to the initial muta-
tion rate.

The influence of GPMCC parameters on performance
was empirically investigated in Potgieter (2003), where it
was shown that performance is insensitive to different
parameter values.

4.3. Method comparison

Although a large number of initial parameters were
introduced in the previous section, the GPMCC method
appears to be fairly robust in that different values for
parameters do not have a significant effect on accuracy
(Potgieter, 2003). This section compares the GPMCC
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Table 3

Comparison of Cubist, GPMCC and NeuroLinear

Dataset Method GMAE OGMAE rules O rules conds O conds terms O torms

Abalone Cubist 1.4950 0.0609 12.6500 4.1056 2.6545 0.5700 4.7560 0.4978
GPMCC 1.6051 0.0156 2.5400 0.6264 1.3407 0.3688 8.3213 1.0634
NL 1.5700 0.0600 4.1000 1.4500 n/a n/a n/a n/a

Auto-Mpg Cubist 1.8676 0.2536 5.1000 1.3890 2.0816 0.4225 3.0013 0.4972
GPMCC 2.1977 0.3703 2.1800 0.6724 1.0765 0.4985 7.2195 1.6180
NL 1.9600 0.3200 7.5000 5.0800 n/a n/a n/a n/a

Housing Cubist 1.7471 0.2633 12.6700 3.3727 3.2125 0.4542 5.2164 0.6068
GPMCC 2.8458 0.5217 2.8200 0.7962 1.5103 0.4534 7.6613 1.4220
NL 2.5300 0.4600 25.3000 17.1300 n/a n/a n/a n/a

Machine Cubist 26.9280 7.5873 4.8800 1.4162 1.9367 0.4106 4.6818 0.7785
GPMCC 34.3228 17.0849 3.4600 0.9773 1.8770 0.4983 3.4095 0.9773
NL 20.9900 11.3800 3.0000 3.0000 n/a n/a n/a n/a

Servo Cubist 0.3077 0.1252 9.6100 1.9638 2.7298 0.3027 2.1033 0.2890
GPMCC 0.4496 0.1755 5.1500 1.9456 2.6247 0.8876 2.7935 0.8482
NL 0.3400 0.0800 4.7000 2.3100 n/a n/a n/a n/a

GMAE is the average generalisation mean absolute error, ogas4£ is the standard deviation for the generalisation mean absolute error, rules represents the
average number of rules, a,,,, represents the standard deviation for the number of rules, conds represents the average number of rule conditions, .., 1S
the standard deviation for the number of rule conditions, ferms represents the average number of rules per term and a,,,,,,; is the standard deviation for the

number of rules per term.

method to two other methods discussed earlier in this

paper.

The first comparison method is Setiono’s NeuroLinear

method from Section 2.1. Setiono presents a table of
results, obtained by running NeuroLinear on five databases
from the UCI machine learning repository (Setiono, 2001).
The databases used by Setiono are the Abalone, Auto-
Mpg, Housing, Machine and Servo databases discussed
in Section 4.1. Setiono performed one 10-fold cross valida-
tion evaluation on each of the previously mentioned data-
sets. The predictive accuracy of NeuroLinear was tested in
terms of the generalisation mean absolute error:

L
E,, — 2=l =7 |

1P|
Setiono also provided the average number of rules gener-
ated for each dataset.

The second comparison method is a commercial version
of the M5 algorithm called Cubist (Quinlan, 1992). Cubist
internally utilises model trees with linear regression models.
Cubist presents these model trees in the form of a produc-
tion system. Both Cubist and the GPMCC method were
used to perform ten 10-fold cross validation evaluations
(equivalent to 100 simulation runs) on the datasets men-

Table 4
Comparison of Cubist and GPMCC
Dataset Method GMAE OGMAE rules O rules conds O conds terms O rorms
Elevators Cubist 0.0019 0.0001 18.0400 2.3047 2.9669 0.3206 2.9493 0.3229
GPMCC 0.0018 0.0000 3.3200 0.9522 1.7929 0.5161 8.8217 0.8498
House-16H Cubist 16355.2840 375.0254 35.7100 4.7637 4.4092 0.4649 4.1570 0.4291
GPMCC 24269.8000 3889.8900 5.1300 1.2032 2.6361 0.5451 7.2623 1.5700
Federal Cubist 0.0999 0.0137 17.0300 4.0613 2.5765 0.3249 4.8203 0.4984
Reserve ED GPMCC 0.1514 0.0366 2.8700 0.6765 1.5553 0.4031 7.6408 1.1640
Function Cubist 0.9165 1.4499 41.4600 5.3756 2.8032 0.2843 1.1384 0.1221
Example GPMCC 1.3713 1.8050 4.1700 0.5695 2.0916 0.2158 2.1400 0.1654
Lena Cubist 5.0160 0.2102 32.8000 4.5969 4.3619 0.4775 3.9577 0.3999
Image GPMCC 6.4107 0.2466 6.5500 1.6229 3.0743 0.5332 7.4953 1.0319
Mono Cubist 13.3550 0.1749 35.2700 4.5480 3.6664 0.3942 4.4224 0.4533
Sample GPMCC 13.7162 0.1762 4.5300 1.1845 24217 0.5613 4.7366 0.4293
Stereo Cubist 11.2470 0.1507 11.5500 2.8298 2.9741 0.4580 4.9500 0.5000
Sample GPMCC 11.2498 0.1923 2.6100 0.7092 1.3883 0.4392 7.8308 0.6162
Time- Cubist 0.7664 0.1853 30.2400 3.8379 3.5024 0.3778 3.1646 0.3315
series GPMCC 0.6442 0.3718 3.6700 0.8996 2.0062 0.4271 5.0386 1.6865
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tioned previously, in order to determine the generalisation
mean absolute error. The average number of generated
rules, rule conditions (the length of the path from the root
to the terminal node) and rule terms (the number of terms
in the model) were also obtained for each dataset.

Table 3 shows the results for Cubist, the GPMCC
method and NeuroLinear for the five databases mentioned
above. In all the cases the GPMCC method was the least
accurate of the three methods in terms of generalisation
accuracy (but not significantly). Cubist, on the other hand,
was the most accurate of the three methods. However, the
number of rules generated by the GPMCC method was
significantly less than that of the other methods, with the
exception of the Servo and Machine datasets. Also,
the total complexity of the GPMCC method, in terms of
the average number of rules, the average number of rule
conditions and the average number of rule terms was sig-
nificantly less than that of Cubist.

The GPMCC method and Cubist were also compared
on the remaining problems. Once again, ten 10-fold cross
validation evaluations were performed in order to obtain
the generalisation mean absolute error. Additionally, the
average number of generated rules, rule conditions and rule
terms were obtained for each database.

Table 4 shows the results for Cubist and the GPMCC
method for the remaining databases not used in Table 3.
In all cases the GPMCC method outperformed Cubist in
terms of the average number of rules generated and the
total complexity. In fact, the average number of rules gen-
erated by the GPMCC method and the total complexity of
the GPMCC method were significantly less than that of
Cubist. Additionally, the GPMCC method even managed
to outperform Cubist in terms of the generalisation mean
absolute error on some of the datasets, i.e. Elevators and
Time-series. However, there is no statistically significant
difference in accuracy.

4.4. Rule quality

This section discusses the quality of the rules inferred by
the GPMCC method for a selection of the datasets in Sec-
tion 4.1 (the reader is referred to (Potgieter, 2003) for
results of the other problems). Each model tree represents
the best outcome of ten 10-fold cross validation evaluations
in terms of the mean squared error on the generalisation
set. The GPMCC method was initialised using Table 2.
For the best model trees given below, values between
parenthesis show how many patterns are covered by the
antecedent of a rule. Values between angle brackets indi-
cate the mean squared error of the rule on patterns covered
by the antecedent of that rule. For both types of parenthe-
sis, the first value between parenthesis represents the out-
come for the training set and the second value represents
the outcome for the validation set.

e The best model tree describing the Abalone dataset is as
follows:

if (Sex == "F") {
if (Viscera > 0.545792) {

Rings = 13.6301*pow(Shell,1)

-16.1805*pow (Viscera,1)
-26.6776*pow (Shucked, 1)
+13.0827*pow (Whole, 1)
+8.99643;

//(1, 0) <48.201, 0>

} else {

Rings =-44.7887*pow(Shell,1)*pow(Length,1)
+42.2753*pow (Shell, 1)
+132.724x*pow(Viscera, 3) *pow(Diameter,2)
-21.1746*pow(Viscera,1)
+22.7078*pow (Shucked, 2)
-45.8945*pow (Shucked, 1)
-6.61542*pow (Whole,2)
+28.4355*pow (Whole, 1)
+0.782952*pow (Height,1)
+4.46808;

//(1027, 130) <6.01941, 5.99693>

}
} else {
Rings = 13.1915%pow(Shell, 1)
+17.8778*pow (Viscera, 1) *pow(Whole, 1) *pow(Diameter, 1)
-40.99*pow(Viscera, 1) *pow(Length, 1)
+59.2038*pow (Shucked, 2)
-35.4237*pow (Shucked, 1) *pow (Whole, 1)
-42.489*pow (Shucked, 1)
+0.10544*pow (Whole,4)
+27.2256*pow (Whole, 1)
+4.30859*pow (Diameter,1)
+3.96395;
//(2313, 288) <3.83083, 3.1415>
}
TMSE: 4.51687
VMSE: 4.02955
GMSE: 4.904

The largest order used by the models of the model tree is
5. Also, the first rule represents an outlier. Obviously
this outlier skewed the coefficients of the GPMCC
method so drastically that the GPMCC method had
no choice but to isolate it. This indicates that this train-
ing pattern should be removed from the dataset.

e The best model tree describing the Auto-mpg dataset is
as follows:

if (displacement > 97.2829) {
mpg = -0.061885%pow(model_year,1)*pow(cylinders,1)
+0.933105*pow (model_year, 1)
+0.00151765*pow (weight, 1) *pow(cylinders,1)
-0.0147998+*pow (weight, 1)
-0.037649*pow (horsepower, 1) ;
//(251, 30) <7.37801, 7.72467>
} else {
mpg = -1.18039*pow(origin,1)
+0.0479332*pow (model_year,2)
-0.0172612*pow (model_year, 1) *pow (cylinders,2)
-5.99653*pow (model_year,1)
-0.00545806*pow (weight, 1)
-0.0244613*pow (horsepower, 1)
-0.0546243*pow (displacement, 1)
+14.5401*pow(cylinders,1)
+192.894;
//(61, 10) <17.2217, 3.97088>
}
TMSE: 9.30258
VMSE: 6.78622
GMSE: 3.48597

Only two non-linear rules where generated. The largest
order utilised by the models of the model tree is 3.

e The best model tree describing the Elevators dataset is as
follows:
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if (SaTimel < -0.000562935) { A large number of terms were utilised by the models of

if (diffRollRate > -0.011995) { 1 1
Goal = 0.0848297+pow (Sa, 1) *pow(ditfClb, 1) the model tree. The maximum polynomial order of the

—56.4038*pow(Sa,1) models in the tree iS 2

-9511.27*pow (SaTime4,2) e The best model tree describing the Function Example
-0.00331258*pow (SaTime3, 1) *pow(climbRate, 1) ; .

14311 T4poy (SaTine1 1) dataset is as follows:

+0.747046*pow(diffRollRate, 1)
+0.00236211*pow (absRoll, 1)
+0.00547074%pow (p,1)
+0.0106479;

if (type == "A") {
, /{(29%5, 372) <7.957126-06, 5.633566-06> g o 5 o01245wpoulx, 1)
else
+0.512857;
Goal = :2?65522:1’“’222‘%9 " //(266, 22) <0.0912585, 0.0873773>
. poW alilme4, } else {

-0.00368597*pow (SaTime3, 1) *pow(climbRate, 1)
+0.0014319*pow (SaTime2,1) *pow (Sgz, 1)
+0.463288*pow (diffRollRate, 1)
+0.00154505*pow (absRoll,1)
+0.00781973%pow(q,1)

if (type == "C") {
if (x > 0.997578) {
y = 1.48816%pow(x,2)
-6.83703*pow(x,1)

+0.00305086%pow (p,1) 22991685
: POwEP, //(66, 9) <0.0959942, 0.0494538>
+0.0123348; } else {
, //(1189, 151) <3.92677e-06, 3.27794e-06> y = 1.01387%pow(x,3)
} dlee 1 +400.504;
eise //(204, 31) <0.100298, 0.0883689>
Goal = -25.0523*pow(Sa,1) }
+0.116456*pow (SaTime4, 1) *pow(diffClb,1) } else {
-0.00669548*pow (SaTime3, 1) *pow(climbRate, 1) _
: y = -1.9986xpow(x,1)
+0.433775*pow (diffRollRate, 1) +0.512857:
+0.00126904*pow (absRoll,1) //(264, 38) <0.0853964, 0.0836496>
+0.00372367*pow (p,1) 3
+0.016304; }
. //(2886, 353) <4.34178e-06, 4.54399e-06> TMSE: 0.0920197

VMSE: 0.0828551

TMSE: 5.78198e-06 GMSE: 0.0811045

VMSE: 4.78845e-06
GMSE: 4.41977e-06

A large number of terms were utilised by the models of

the model tree. However, the maximum polynomial What is interesting to note, is that the model tree is
order of the models in the model tree is 4. almost identical to the generating function of Section
e The best model tree describing the Federal Reserve Eco- 4.1.
nomic Data dataset is as follows: o The best model tree describing the Housing dataset is as
follows:

if (Y3TCMR > 15.8756) {
M1CDR = 0.04954*pow (TWEIMC,1)
+0.00308282%pow (M3TBRAA,2) ;
//(3, 1) <0.246856, 0.641734>

} else { if (DIS < 1.81274) {
if (M3TBRSM > 11.1668) { MEDV = 0.0311044%pow (LSTAT,2)

M1CDR = -0.132345%pow (TLLACB, 1) -0.0852524*pow (LSTAT, 1) *pow (PTRATIO, 1) *pow (NOX, 1)
+0.0941262%pow (TCD, 1) -0.596869*pow (LSTAT, 1)
+0.56461*pow (M1MS, 1) +0.431583*pow (RAD, 1) *pow (CHAS , 1)
-0.162584*pow (BCACB, 1) -1.35841*pow(DIS, 1)
+0.206319*pow (Y3TCMR, 1) +0.119659*pow (RM, 3)
-0.0400925*pow (M3TBRAA, 1) -11.7921%pow(RM, 1)
+0.446434*pow (Y30CMR, 1) ; -0.108755*pow (CRIM, 1)

//(82, 8) <0.11477, 0.0222504> +83.3143;

} else { //(63, 8) <33.3665, 3.50684>

M1CDR = 0.450881*pow (M1MS,1) } else {

-0.0102812%pow (DDCB, 1) MEDV = -0.767679%pow (LSTAT, 1) *pow (NOX, 1)
+0.00126507*pow (CCMS, 1) -0.729239%pow (PTRATIO, 1)
+0.0538425%pow (BCACB, 1) -0.0137382*pow (TAX, 1)
-0.00205841*pow (YSTCMR, 2) -0.255243%pow (RAD, 1) *pow (RM, 1)
-0.356311*pow (Y5TCMR, 1) +1.71962*pow (RAD, 1)
+0.00877064*pow (Y3TCMR,2) -0.59144*pow(DIS, 1)
+0.00308282*pow (M3TBRAA,2) +2.81649*pow (RM, 2)
+0.69845*pow (Y30CMR, 1) -30.0403%pow (RM, 1)
-0.11687; +1.5585*pow (CHAS, 1)
//(754, 96) <0.0422099, 0.0382938> +124.502;
¥ //(341, 43) <10.7152, 7.98617>

} }

TMSE: 0.0500334 TMSE: 14.2475

VMSE: 0.0428185 VMSE: 7.28353

GMSE: 0.0250136 GMSE: 6.29143
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Only two non-linear rules were obtained. The maximum
order of the models of the model tree is 3.
e The best model tree describing the Lena Image dataset is

as follows:

if (blend[7] < 203.273)

{

intensity = -0.0123416xpow(across,1)
+0.00189951*pow(blend[7],2)
-0.0477566*pow (blend[6],1)
+0.326583*pow(blend[5],1)
+0.694096*pow (blend [4],1)
-0.00194599*pow(blend [3],2)
+0.22087*pow(blend[3],1)
-0.132875*pow(blend[2],1)
-0.0649604*pow (blend[1],1)

+1.96046;
//(12328, 1532) <127.
} else {

918, 120.595>

if (blend[3] > 118.928) {
if (blend[0] > 49.8796) {
if (across < 55.2729) {
intensity = 0.507778*pow(blend[7],1)

-0.
+0
+0.
-0
-0
//(38, 6) <351.
} else {

0444378*pow (blend[6],1)

.354999%pow(blend[5],1)

659356*pow (blend[4],1)

.303265*pow (blend[3],1)
.176485%pow(blend[2],1);

494, 62.1143>

intensity = 0.0105132*pow(blend[7],2)

-0.
-0.
+0.
+0
+5
-0.

0205424*pow (blend[7],1)*pow(blend[4],1)
00172814*pow(blend[5],2)
00143276*pow (blend [5],1) *pow(blend[1],1)

.317081*pow(blend[5],1)
.42638xpow(blend[4],1)

543182*pow (blend[1],1)

-0.167443*pow(blend[0],1)
-391.867;
//(734, 100) <150.048, 128.225>
}
} else {

intensity = 1.94436xpow(blend[2],1);
//(2, 0) <1.63576, 0>

}
} else {

intensity = 1.47793*pow(blend[5],1)
-0.62556*pow (blend[2],1)
+0.263644*pow (blend[1],1);
//(4, 1) <0.00493363, 1451.8>

}
}
TMSE: 129.747
VMSE: 121.659
GMSE: 106.126

Essentially, the rules consist of linear blends of the con-
text pixels to obtain the predicted pixel value. One of the
rules represents an outlier. Also, the maximum polyno-
mial order of the models is 2.

e The best model tree describing the Machine dataset is as

follows:

if (CACH < 128.391) {

if (MMIN < 25112.4) {

PRP = 0.0347948*pow (CHMAX, 1) *pow (CACH, 1)
-0.14693%pow (CHMIN, 2)
+0.00117564%pow (CHMIN, 1) *pow (MMIN, 1)
+0.00558463*pow (MMAX , 1)
-0.0010641*pow (MMIN, 1) ;

//(160, 21) <1212.63, 568.998>

} else {

PRP = 31.0917*pow (CHMIN,1)
+0.00430516%pow (MMIN, 1) ;

//(1, 0) <127.71, 0>

}

} else {

PRP = -2.33197*pow (CHMAX,1)
+30.9474*pow (CHMIN, 1)
+0.00440527*pow (MMIN, 1) ;

//(6, 0) <736.413, 0>

¥

TMSE: 1189.02
VMSE: 568.998
GMSE: 333.024

A small number of linear rules where generated. The
largest order utilised by the models of the model tree
is 2. Once again one of the rules represents an outlier.

e The best model tree describing the Mono Sample dataset
is as follows:

if (t < 10566.2) {
if (buf[0] > 130.813) {

y = 0.869102*pow (buf [2],1)
-0.398713*pow (buf [1],1)
+0.436347*pow (buf [0] ,1)
+11.8149;

//(3932, 497) <307.129, 311.468>

} else {

y = 0.8834*pow (buf[2],1)
-0.454296%pow (buf [1],1)
+0.475617*pow (buf [0],1)
+12.0682;

//(4510, 540) <314.362, 334.597>

}
} else {
if (¢ < 20022.7) {

if (buf[1] < 145.598) {

y = -0.00243541*pow (buf [2],1) *pow (buf [1],1)
+1.17106*pow (buf [2],1)
+0.00179399%pow (buf [1],2)
-1.04915*pow (buf [1],1)
+0.721939*pow (buf [0],1)
+28.1399;

//(5460, 692) <332.485, 356.925>

} else {

y = 0.00263594*pow (buf [2],2)
-0.447044xpow (buf [1],1)
+0.566219%pow (buf [0] ,1)
+61.1108;

//(2109, 235) <286.787, 252.748>

}

} else {

y = 1.08554*pow (buf [2],1)
-0.646192%pow (buf [1],1)
+0.366292*pow (buf [0],1)
+24.683;

//(9495, 1225) <263.164, 249.476>

¥
}
TMSE: 295.787
VMSE: 297.108
GMSE: 294.327

A small number of linear rules where generated. The
largest order utilised by the models of the model tree is 2.
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e The best model tree describing the Servo dataset is as
follows:

if (motor == "D") {
class = -0.343752*pow(pgain,1)
+2.13126;
//(17, 2) <0.267481, 0.999964>
} else {
if (motor == "E") {
if (screw == "A") {
class = -0.0971804*pow(vgain,1)*pow(pgain,1)
+0.59491*pow (vgain, 1)
-0.489579*pow (pgain,3)
+7.57494*pow (pgain,2)
-38.6539*pow (pgain, 1)
+65.5058;
//(6, 1) <1.43629, 0.00659144>
} else {
class = -0.343752*pow(pgain,1)
+2.13126;
//(19, 2) <0.126267, 0.00564462>
}
} else {
class = -0.122795*pow(vgain,1)*pow(pgain,1)
+0.730519*pow (vgain, 1)
-0.447423*pow (pgain, 3)
+7.05858+*pow (pgain, 2)
-36.4128*pow (pgain, 1)
+61.5672;
//(91, 12) <0.39332, 0.016951>
}
}
TMSE: 0.386136
VMSE: 0.13066
GMSE: 0.0315292

A small number of rules where generated, however some
of the rules are non-linear. The maximum order of the
models of the model tree is 3.

o The best model tree describing the Stereo Sample dataset
is as follows:

if (t > 23500.3) {

y = 0.510853*pow(left[3],1)
+0.754001*pow (right [2],1)
-0.0890549*pow (left[2],1)
-0.677194*pow (right [1],1)
+0.333603*pow (left[1],1)
+0.393169%pow (right [0],1)
-0.180878*pow(left [0],1)

-5.84898;
//(6356, 797) <198.139, 195.359>
} else {

if (¢ > 7772.91) {
if (left[1] < 167.104) {

y = 0.595663*pow(left[3],1)
+0.584884*pow (right [2],1)
-0.14832*pow(left[2],1)
-0.646768*pow (right[1],1)
+0.375642*pow(left[1],1)
+0.477733*pow (right [0],1)
-0.185438*pow (left [0],1)
-6.5451;

//(11317, 1434) <219.241, 215.915>

} else {

y = 0.616402*pow(left[3],1)
+0.603696*pow (right [2],1)
-0.18247*pow(left[2],1)
-0.623408*pow (right [1],1)
+0.39671*pow(left[1],1)
+0.452291*pow (right [0],1)
-0.199426%pow (left [0],1)
-8.13588;

//(1241, 133) <211.091, 152.021>

}

} else {

y = 0.716837*pow(left[3],1)
+0.639319*pow(right [2],1)
-0.394613*pow(left[2],1)
-0.560577*pow (right[1],1)
+0.459409*pow (left [1],1)
+0.430266*pow(right [0],1)
-0.211955*pow(left[0],1)
-9.64711;

//(6230, 779) <173.144, 164.914>
¥

}

TMSE: 202.083

VMSE: 195.358

GMSE: 189.556

Essentially, the rules consist of linear blends of the left
and right channels to obtain the predicted sample.

e The best model tree describing the Time-series dataset is
as follows:

if (t2 < -0.0185124) {
if (t1 < 0.0263429) {
if (t0 > 0.00343757) {

y = -2.63082*pow(t0,1)
+0.972257*pow (t1,1) *pow(t2,1)
-0.0932611%pow(t2,1)
+0.326075;

//(101, 12) <0.123809, 0.0717015>

} else {

y = 1.00471*pow(t0,1)*pow(tl,1)*pow(t2,1)
+0.669822;

//(97, 8) <0.102582, 0.037943>

}

} else {

y = -0.19592%pow(t1,1)
+0.979469*pow (t2,1)
+0.342466;

//(193, 25) <0.0924138, 0.0926662>

}
} else {
y = 0.305796%pow(tl,1)

-1.39869*pow (t2,2)

+1.4918;

//(409, 55) <0.0823577, 0.0943271>
}
TMSE: 0.0924692
VMSE: 0.086686
GMSE: 0.0857686

What is interesting to note, is that the model tree is
almost identical to the generating function of Section 4.1.

For a large proportion of the above solutions, the uti-
lised polynomial order was no greater than 3. This indi-
cates that cubic surfaces sufficiently describe most
databases, including time-series.

For some of the above results, outliers in the dataset
were detected and isolated by rules. This indicates that
there is still redundancy to be removed from the model tree
solutions. Also, the removal of these outliers will improve
the generalisation accuracy of the models. These outliers
should be removed by some heuristic, e.g. rules that cover
a smaller number of patterns than some threshold should
be removed and the patterns covered by the rules should
be discarded from the training set. Thus, further improve-
ments in accuracy and complexity are possible.
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5. Conclusion

This paper presented a genetic program for mining con-
tinuous-valued classes (GPMCC). The performance of the
GPMCC was evaluated against other algorithms such as
Cubist and NeuroLinear for a wide variety of problems.
Although the generalisation ability of the GPMCC method
was slightly worse than the other methods, the complexity
and number of generated rules were significantly smaller
than that of other methods. The GPMCC method was also
fairly robust, in that the parameter choices did not signifi-
cantly effect any outcomes of the GPMCC method. The suc-
cess of the GPMCC method can be attributed to the
specialized mutation and crossover operators, and can also
be attributed to data clustering. Another important aspect
to the GPMCC method is the development of a fragment
pool, which served as a belief space for the genetic program.
The fragments of the fragment pool resulted in structurally
optimal models for the terminal nodes of the GPMCC
method. The fitness function was also crucial, because it
penalised chromosomes with a high level of complexity.

Although the genetic program presented in this chapter
seems to be fairly effective both in terms of rule accuracy
and complexity, the algorithm was not particularly fast.
The speed of the algorithm is seriously affected by the
recursive procedures used to perform fitness evaluation,
crossover and mutation on the chromosomes (model trees).
This problem can be solved in two ways: implement a
model tree as an array or change the model tree represen-
tation to a production system.

If the model trees of the genetic program are represented
as an array, clever indexing of the array will negate the
need for any recursive functions. However, the array would
have to represent a full binary tree which could unnecessar-
ily waste system memory if the model trees are sparse. If
the model tree representation is changed to a production
system, the mutation and crossover operators will have to
be re-investigated.

Envisioned future developments to the GPMCC method
include the revision of the attribute tests. These attribute
tests could be revised to implement non-linear separation
boundaries between continuous classes. The GASOPE
method could then be used to efficiently approximate these
non-linear separation boundaries. The fragment pool
discussed in this chapter could be used to implement a
function set for the separation boundaries, in a manner
similar to that of the terminal set.
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