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SUMMARY

Fuzzy systems based on fuzzy if-then rules have
been applied to various problems. The main application
area has been fuzzy control problems. In many cases, such
fuzzy systems can handle only a few input variables. This
is because the number of fuzzy if—then rules exponentially
increases as the number of input variables increases. In this
paper, we try to design fuzzy classification systems based
on fuzzy if-then rules for multidimensional pattern classi-
fication problems with many attributes. For designing such
fuzzy classification systems, we compare two frameworks
in the area of genetics-based machine learning: the Michi-
gan approach and the Pittsburgh approach. The perform-
ance of fuzzy rule-based classification systems is also
compared with that of various pattern classification meth-
ods. In computer simulations, we use a wine classification
problem with 13 attributes, a cancer diagnosis problem with
9 attributes, and a credit approval problem with 14 attrib-
utes. © 1997 Scripta Technica, Inc. Electron Comm Jpn Pt
3, 80(12): 10-19, 1997
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1. Introduction

Fuzzy systems based on fuzzy if-then rules have
been applied to various problems. Those applications have
been mainly in the field of control problems [1, 2]. Fuzzy
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if—then rules used for control problems have often been
derived from human experts as linguistic knowledge. Auto-
matic rule generation methods from numerical data have
also been proposed. For example, Wang and Mendel [3]
proposed a method for generating fuzzy if-then rules with
highest compatibility grades with numerical data. Abe and
Lan {4] proposed a method for generating hyperrectangle
fuzzy if-then rules that covered numerical data. Some
methods based on genetic algorithms [5, 6] were also
proposed for generating fuzzy if-then rules and adjusting
them. For example, Nomura and colleagues [7] and Ishi-
gami and colleagues {8] adjusted the number of fuzzy
if—then rules and the shape of the membership function of
each antecedent fuzzy set. Valenzuela-Rend6n [9] automat-
ically generated fuzzy if—then rules using a fuzzy classifier
system.

For pattern classification problems, a fuzzy if—then
rule can be generated for each fuzzy subspace after fuzzily
partitioning a pattern space into fuzzy subspaces with vari-
ous sizes. Ishibuchi and colleagues [10, 11] proposed a
pattern classification method based on fuzzy if—then rules
generated from various fuzzy partitions. In their method,
the number of fuzzy sets for each axis was the same in a
fuzzy partition. While this method utilized the restriction
that the number of fuzzy sets for each axis should be the
same, the number of fuzzy if-then rules exponentially
increased as the dimensionality of the pattern space in-
creased.

A rule selection problem has been studied for obtain-
ing a compact and high-performance classification system
by selecting only significant fuzzy if-then rules from a
large number of generated rules. For such a rule selection
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problem of fuzzy if-then rules, Ishibuchi and colleagues
[12-14] proposed a genetic-algorithm-based method and
obtained a compact rule set that could correctly classify
many training patterns. In their method, arule set was coded
as a string (i.e., as an individual) by assigning a bit to each
candidate fuzzy if—then rule. Thus, the string length was the
same as the number of candidate fuzzy if—then rules. This
limited the use of their method to low-dimensional pattern
classification problems (e.g., pattern classification prob-
lems with fewer than five attributes).

In this paper, we compare two approaches to the
construction of fuzzy classification systems for multidi-
mensional pattern classification problems with many attrib-
utes. One is the Pittsburgh approach, which handles a rule
set of a certain number of fuzzy if—then rules as an individ-
ual. The other is the Michigan approach, where each fuzzy
if—then rule is handled as an individual [15]. These two
approaches are examined herein with respect to the classi-
fication ability for training data and the generalization
ability for test data by performing computer simulations on
multidimensional pattern classification problems: a wine
classification problem with 13 attributes [16], a cancer
diagnosis problem with 9 attributes [17], and a credit ap-
proval problem with 14 attributes [18].

2. Fuzzy If-Then Rules and Pattern
Classification Problems

2.1. Generating fuzzy if-then rules

Let us assume that m training patterns
Xp = (Xpls - o o5 Xpn)s P = 1...., m,are given forann-dimen-
sional c-class pattern classification problem. We also as-
sume that the n-dimensional pattern space is normalized as
the unit hypercube [0, 1]". The following fuzzy if—then
rules are employed for such a pattern classification prob-
lem:

Rule R; : If zp1 is Aj1 and...and Tpn is Ajn
then Class C; with CF = CFj,
=127 1D

where R; is the label of the rule, Aji, . . ., Aj, are fuzzy sets
on the unit interval [0, 1}, C; is a consequent class, CF; 1s
the grade of certainty of the fuzzy if~then rule R;, and r is
the number of fuzzy if-then rules in the fuzzy classification
system. The maximum value of r is the total number of
possible fuzzy if-then rules (say, N). As the antecedent
fuzzy sets A;, ..., Aj,, We can use any fuzzy sets with
arbitrary shapes. For example, we can use trapezoidal fuzzy
sets and bell-shape fuzzy sets as well as triangular fuzzy
sets in Fig. 1. In this paper, we use the six fuzzy sets in Fig.
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Fig. 1. Antecedent fuzzy sets.

1 as the antecedent fuzzy sets of fuzzy if—then rules. In this
case, the total number of fuzzy if-then rules N is
N = (1 +5)" = 6". Each fuzzy set in Fig. 1 corresponds to a
linguistic value, namely, S: small, MS: medium small, M:
medium, ML: medium large, L: large, and DC: don’t care.
The consequent class C; and the grade of certainty
CF; in (1) can be determined by the following procedure
[10-14]. First, the sum of the compatibility grades of
training patterns with the fuzzy if—then rule R; is calculated
for each class. Then, the consequent class C; of fuzzy
if—then rule R; is specified as the class with the maximum
sum of the compatibility grades. If such a class cannot be
determined uniquely (i.c., if multiple classes have the same
maximum sum), the fuzzy if-then rule R; becomes a
dummy rule that has no influence on the classification. The
grade of certainty CF; of the fuzzy if—then rule R, is deter-
mined from the sum of the compatibility grades of training
patterns from each class (for detail, see Refs. 10 to 14).

2.2. Fuzzy reasoning

Let arule set S be a set of fuzzy if-then rules generated
by the above procedure. This rule set S can be arbitrarily
specified as any subset (or the universal set) of generated
fuzzy if-then rules. The classification of a pattern x,, is done
by the following procedure, using fuzzy if—then rules in the
rule set S (for details, see Refs. 10 to 14). First, we calculate
the product of the compatibility grade of the pattern x,, with
each fuzzy if—then rule and its grade of certainty. Then,
pattern X, is classified as the consequent class of the fuzzy
if—then rule with the maximum product. If such a class
cannot be determined uniquely (i.e., if multiple consequent
classes involve the same maximum product), the classifica-
tion of pattern X, is rejected.



2.3. Learning of the grade of certainty

In Ref. 19, the following procedure was used for
adjusting the grade of certainty of each fuzzy if—then rule
used in the fuzzy classification system. First, a training
pattern X, is classified by the above fuzzy reasoning method
using fuzzy if-then rules in rule set S. This training pattern
X, is classified by the fuzzy if-then rule R; that has the
maximum product of the compatibility grade with x, and
the grade of certainty. When x,, is correctly classified, the
grade of certainty CF; of that rule is increased as follows:

CFM™ = CF 4y - (1 - CFY) )

where #, is a learning constant. On the other hand, when
x, is misclassified, the grade of certainty CF} is decreased
as follows:

CFE™ =CF) —my - CFR 3)

where 7, is a learning constant.

3. Rule Selection Based on Michigan
Approach

3.1. Coding of individuals

In a rule selection method based on a fuzzy classifier
system proposed by Ishibuchi and colleagues [15], each
fuzzy if-then rule was handled as an individual. Thus, their
method can be viewed as a rule selection method based on
the Michigan approach. Fuzzy if-then rules are coded as
strings by assigning the integers 0, 1, 2, 3, 4, and 5 to the
antecedent fuzzy sets DC (don’t care), S (smail), MS (me-
dium small), M (medium), ML (medium large), and L
(large), respectively. For example, the following fuzzy if-
then rule R; is coded as R; = 5132:

If x,; is L and x5 is S and x,,3 is M and x4 is MS
then Class 2 with CF = 0.6.

The consequent class and the grade of certainty of each
fuzzy if-then rule are not coded (i.e., not included in a
string) because they can be determined when the antecedent
fuzzy sets are specified. The consequent class and the grade
of certainty are determined by the rule generation method
in section 2.1.

3.2. Definition of fitness

In the Michigan approach, each rule corresponds to
an individual, and a rule set S used in a fuzzy classification
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system corresponds to a population. For calculating the
fitness of each fuzzy if—then rule, we first classify training
patterns by means of all fuzzy if-then rules included in a
current population. As mentioned in section 2.2, each train-
ing pattern is classified by the fuzzy if—then rule with the
maximum product of the compatibility grade and the grade
of certainty. Then we assign a fitness value to each fuzzy
if-then rule as follows:

f(Rj)=WNCP'NCP(Rj)—wNMP-NMP(Rj)(4)
where NCP(R)) is the number of training patterns that are
correctly classified by the fuzzy if—thenrule R;, NMP(R)) is
the number of training patterns that are misclassified by

Rj, and wycp and wiyp are nonnegative weights for
NCP(R;) and NMP(R)), respectively.

3.3. Crossover and mutation operations

In the previous subsection, a fitness value was as-
signed to each individual (i.e., each fuzzy if—then rule).
Each individual is selected as a parent with the following
probability:

f(RJ) - fmin(S)
P(R;) = (5)
E {f(R:) = fmin(S)}

R;€S

where f,;n(5) is the minimum fitness value of the fuzzy
if—then rules in population S.

Two fuzzy if—then rules are generated from a pair of
selected fuzzy if—then rules by a uniform crossover opera-
tion as illustrated in Fig. 2(a). Then, a mutation operation
illustrated in Fig. 2(b) is applied to the generated fuzzy
if-then rules. The rule generation procedure in section 2. 1
is employed for determining the consequent class and the
grade of certainty of each fuzzy if—then rule whose antece-
dent fuzzy sets have been specified by the crossover and
mutation operations.

3.4. Algorithm

Our fuzzy classifier system can be expressed as the
following algorithm:

(i) Randomly generate N, fuzzy if—then rules as an
initial population. Each fuzzy if-then rule is generated by
randomly selecting its antecedent fuzzy sets and determin-
ing its consequent class and its grade of certainty by the rule
generation procedure in section 2.1. Let us denote the set
of the generated fuzzy if—then rules as S.
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Fig. 2. Genetic operations.

(ii) Apply the learning algorithm of the grade of cer-
tainty in section 2.3 to the fuzzy if—then rules in rule set S.

(iii) Assign a fitness value to each fuzzy if—then rule
in rule set S by (4).

(iv) Select fuzzy if-then rules as parents from the
current population S according to the selection probability
in (5). Generate two fuzzy if-then rules from each pair of
selected fuzzy if—then rules by the crossover operation.
Then apply the mutation operation to the generated fuzzy
if—then rules.

(v) Replace poor fuzzy if-then rules in the current
population (i.e., in rule set S) with the generated fuzzy
if—then rules whose antecedent fuzzy sets have been deter-
mined in (iv). In this replacement procedure, the worst
Py Ny fuzzy if—thenrules with the smallest fitness values
in the current population are replaced with the generated
Prep Ny fuzzy if-then rules where Py, is the replacement
rate (i.e., generation gap).

(vi) Return (ii)if a prespecified stopping condition of
the algorithm is not satisfied.

4. Rule Selection Based on Pittsburgh
Approach

In this section, for making the Pittsburgh approach
applicable to high-dimensional pattern classification prob-
lems, we propose arule selection method where the number
of fuzzy if—then rules included in each rule set is fixed as a
prespecified number. That is, each rule set with the prespe-
cified number of fuzzy if-then rules is handled as an
individual of a genetic algorithm in the proposed method.
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4.1. Definition of fitness

We used the following fitness function in the pro-
posed method:

f(S) = NCP(S) (6)

That is, the fitness value of rule set S is defined only in terms
of the number of correctly classified training patterns
NCP(S).

4.2. Coding of individuals

In the same manner as in section 3, antecedent fuzzy
sets of fuzzy if—then rules in a rule set are denoted by the
integers 0 to 5. The consequent class and the grade of
certainty of each fuzzy if—then rule are not coded (i.e., not
included in a string) because they are determined by the rule
generation method in section 2.1 when its antecedent fuzzy
sets are specified. Let us denote the prespecified number of
fuzzy if-then rules in each rule set by Ny,.. Because the
number of antecedent fuzzy sets of each fuzzy if—then rule
is equal to the dimensionality n of the pattern space, the
length of a string corresponding to arule set is n-Npe. Thus,
the string length does not exponentially increase as the
dimensionality of the pattern space increases. The string
length increases proportionally to the dimensionality of the
pattern space.

4.3. Crossover and mutation operations

Each rule set S; whose fitness is defined by (6) is
selected as a parent for a crossover operation with the
following probability:

{£(S6) = fmin(¥)}
P(S:) = (7
Y {F(S5) — fmin(¥))
SjE\l’

where f,,;,(¥) is the minimum fitness value of rule sets in
the current population V.

After selecting a pair of parents from the current
population ¥ with the selection probability in (7), we apply
a uniform crossover operation to the selected pair with a
prespecified crossover probability P.. There are two ver-
sions for defining crossover points in the implementation
of the uniform crossover, both of which are examined in
this paper. In one version, crossover points lie only between
rules (see Fig. 3). In the other version, strings can be cut at
any points (see Fig. 4). In the first version, a substring of n
integers is handled as a block as shown in Fig. 3, where n
=3.
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Fig. 3. Uniform crossover with crossover points
between rules.

With a prespecified mutation probability Py, a muta-
tion operation is applied to new individuals generated by
the crossover. In the mutation, antecedent fuzzy sets of
fuzzy if-then rules included in each individual are replaced
with randomly selected other fuzzy sets [see Fig. 2(b)].

4.4. Algorithm

Our rule selection method based on the Pittsburgh
approach can be expressed as the following algorithm:

(i) Generate an initial population. That is, randomly

generate N, rule sets (i.e., N, individuals), each of which
consists of Ny fuzzy if—then rules. In this procedure, each
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Fig. 4. Uniform crossover with arbitrary crossover
points.
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fuzzy if-then rule is generated in the same manner as in
section 3. Let us denote each of the generated rule sets by
S;(i=1,2,..., Ng). We also denote the current popula-
tion by ¥. That is, ¥ is the population of the generated rule
sets.

(ii) Apply the learning procedure in section 2.3 to
each rule set.

(iii) Assign the fitness value in (6) to each rule set.

(iv) Select each rule set as a parent for the crossover
with the selection probability in (7). Apply the uniform
crossover to each pair of selected rule sets. Apply the
mutation operation to the antecedent fuzzy sets of fuzzy
if-then rules included in each rule set generated by the
crossover. Using the rule generation procedure in section
2.1, determine the consequent class and the grade of cer-
tainty of each fuzzy if-then rule whose antecedent fuzzy
sets have been specified by the crossover and the mutation.

(v) Randomly select an individual from the newly
generated population, and replace it with the elite individual
in the previous population.

(vi) Return (ii) if a prespecified stopping condition of
the algorithm is not satisfied.

5. Similarities and Dissimilarities of the
Two Approaches

The two approaches described in sections 3 and 4
have the following similarities.

(1) The crossover operations in the two approaches
are basically the same when the uniform crossover in the
Pittsburgh approach has no restriction on crossover points
(i.e., when the uniform crossover in Fig. 4 is used).

(2) Both approaches use the same mutation operation.

(3) The same procedure is employed for generating
initial rule sets.

On the other hand, the dissimilarities between the two
approaches can be summarized as follows:

(1) In the Michigan approach, a fitness value is as-
signed to each fuzzy if-then rule. On the contrary, a fitness
value is assigned to each rule set in the Pittsburgh approach.

(2) In the Michigan approach, the current population
(i.e., a rule set) is updated by replacing fuzzy if—then rules
that have low fitness values. That is, fuzzy if-then rules
with high fitness values are inherited by the next population
with no change. On the contrary, half of the fuzzy if-then
rules in each rule set are replaced with those in another rule
set on average in the Pittsburgh approach when each rule is
handled as a block in the crossover (i.e., when the uniform
crossover in Fig. 3 is used). Such replacement is done



randomly, regardless of the fitness value of each fuzzy
if—then rule. When the uniform crossover has no restriction
(i.e., when the uniform crossover in Fig. 4 is used), almost
all of the fuzzy if—then rules in each rule set are replaced
with new rules in the Pittsburgh approach.

(3) In the Michigan approach, the mutation is applied
only to new fuzzy if-then rules generated for replacing
current rules whose fitness values are low. The mutation is
not applied to current rules with high fitness values, which
are inherited by the next population with no change. On the
contrary, the mutation is applied to all fuzzy if-then rules
in the Pittsburgh approach, because each rule set is handled
as an individual.

As we can see from these dissimilarities, the main
characteristic feature of the Pittsburgh approach is that the
performance of each rule set is directly utilized in the
genetic algorithm. On the other hand, the main charac-
teristic feature of the Michigan approach is that good fuzzy
if—then rules are inherited by the next generation with no
change. Good fuzzy if-then rules are aiso utilized for
generating new rules. Such handling of good fuzzy if—then
rules is realized by evaluating the performance of each
fuzzy if—then rule in the Michigan approach.

We will now examine how these dissimilarities influ-
ence the performance of each approach by computer simu-
lations.

6. Computer Simulations

The two rule selection methods are applied to real-
world pattern classification problems in order to evaluate
their classification performance. One method, described in
section 3, is based on the Michigan approach, and the other
method, described in section 4, is based on the Pittsburgh
approach. First, the classification performance of each rule
selection method is examined by a wine classification prob-
lem [16], using all patterns as training data. The wine data
set is a 13-dimensional three-class pattern classification
problem with 178 patterns (59 from Class 1, 71 from Class
2, and 48 from Class 3). Next we examine the classification
performance of each rule selection method on test data in
order to evaluate its generalization ability. As test problems
for examining the performance on test data, we use wine
data, cancer data [17], and credit approval data [18]. The
cancer data set is a 9-dimensional two-class pattern classi-
fication problem with 85 patterns from Class 1 and 201
patterns from Class 2. The credit approval data set is a
14-dimensional two-class pattern classification problem
with 383 patterns from Class 1 and 307 patterns from Class
2. In the following, we explain each computer simulation
and report its results in detail.
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6.1. Classification performance on training
data

We examined the classification performance of each
rule selection method on training data using the wine data
in computer simulations of this subsection. First we per-
formed a computer simulation by the rule selection method
based on the Michigan approach, with the following pa-
rameter specifications: the number of fuzzy rules in each
population, 60; the number of iterations of the learning
algorithm for the grade of certainty, 5; the learning rates
(111, 112) = (0.001, 0.1); the weights (wncp, wamp) = (1, 5);
the crossover probability P, = 1.0; the mutation probability
P,,=0.1; the replacement rate P, = 0.2; and the stopping
condition, 500 generations. We used the six fuzzy sets in
Fig. 1 as antecedent fuzzy sets. This computer simulation
was iterated 10 times using the given 178 patterns as
training data. The following classification rates were ob-
tained from the 10 trials:

Best result: 100%, Average result: 100%, Worst re-
sult: 100%

This means that all 178 training patterns were correctly
classified in all 10 trials.

Next, we performed a computer simulation by the
rule selection method based on the Pittsburgh approach,
with the following parameter specifications: crossover
probability P, = 0.8, number of rule sets 10. In the computer
simulation, we examined the two versions of uniform cross-
over: one version had crossover points only between rules
(see Fig. 3) and the other version had arbitrary crossover
points (see Fig. 4). The other conditions were specified in
the same manner as in the rule selection method based on
the Michigan approach. We used the elitist strategy: the best
rule set in each generation was always inherited by the next
generation. This computer simulation was iterated 10 times
using the given 178 patterns as training data. The following
classification rates were obtained from the 10 trials.

(i) In the case of crossover points between rules:

Best result: 66.9%, Average result: 62.1%, Worst
result: 47.2%

(ii) In the case of arbitrary crossover points:

Best result: 83.7%, Average result: 67.4%, Worst
result: 60.7%

From the comparison between the above results ob-
tained by the Michigan approach and the Pittsburgh ap-
proach, we can see that the rule selection method based on
the Michigan approach has a high search ability. That is,



this method found rule sets that could correctly classify all
of the given training patterns by examining 500 rule sets
(i.c., 500 generations). In contrast, the rule selection method
based on the Pittsburgh approach found a rule set with an
83.7% classification rate in the best case by examining 5000
rule sets (i.e., 500 generations x 10 individuals).

For comparison, we show the classification rates
reported in Corcoran and Sen [20] as simulation results
produced by their genetics-based machine learning algo-
rithm for the wine data:

Best result: 100%, Average result: 99.5%, Worst re-
sult: 98.3%

These results were obtained in Ref. 20 by 10 trials, using
all of the given patterns as training data. In their genetics-
based machine learning system, which was based on the
Pittsburgh approach, an individual consisted of 60 non-
fuzzy if—then rules, and a population with 1500 individuals
was updated for 300 generations. Thus, 1500 x 300 =
450,000 rule sets with 60 nonfuzzy if-then rules were
examined in each trial. Even though such a large number of
rule sets was examined, the obtained classification rates are
inferior to those given by our rule selection method based
on the Michigan approach.

As mentioned in section 5, an advantage of the rule
selection method based on the Michigan approach is that
high-performance fuzzy if—then rules are inherited by the
next generation with no change. In order to clarify this
advantage, we performed a computer simulation by speci-
fying the replacement rate P, as Py = 1.0. That is, we
intentionally removed this advantage by specifying the
replacement rate as P, = 1.0 so that all fuzzy if-then rules
were replaced in the generation update. From 10 iterations
of this computer simulation, the following classification
rates were obtained:

Best result: 88.2%, Average result: 79.7%, Worst
result: 71.3%

From these results, we can see that the search ability dete-
riorated significantly when the above-mentioned advantage
was intentionally removed from the rule selection method
based on the Michigan approach.

6.2. Classification performance on test data

In the previous subsection, we examined the perform-
ance of each rule selection method for training data in the
wine classification problem. The classification rate for
training data, however, does not always correctly indicate
the true classification performance. Therefore, we examine
the generalization ability of each rule selection method by
evaluating the classification performance on test data after
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dividing the given patterns into training data and test data.
In this subsection, we use the 10-fold cross-validation
method (10CV method [17, 18]).

First we performed computer simulations on the wine
data using the same parameter specifications as in the
previous subsection. In the Pittsburgh approach, we exam-
ined the two versions: one with crossover points between
rules (Pitt 1) and the other with arbitrary crossover points
(Pitt 2). In computer simulations, the classification rate and
the error rate for test data were examined after selecting a
rule set that gave the maximum classification rate on train-
ing data by each method. The 10CV was iterated 10 times
for the method based on the Michigan approach, and 2 times
for the method based on the Pittsburgh approach. Simula-
tion results are summarized in Table 1.

Next we examined the classification performance of
each rule selection method using the cancer data. In com-
puter simulations, we used only three linguistic values (i.e.,
S: small, L: large, DC: don’t care) for binary discrete
attributes with {0, 1}, and only four linguistic values (i.e.,
S: small, M: medium, L: large, DC: don’t care) for ternary
discrete values with {0, 0.5, 1}.

After such modification, we applied the Michigan
approach and the Pittsburgh approach to the cancer data.
We used the same parameter specifications as in the appli-
cation to the wine data, except that the weights in the
Michigan approach were specified as (wncp, wamp) = (1, 0),
the number of fuzzy if-then rules in each rule set was 100
in each method, and the number of iterations of the learning
algorithm for the grade of certainty was 0. In the same
manner as in the computer simulations on the wine data, we
examined the classification performance of each method for
test data using the cancer data. Simulation results are sum-
marized in Table 2.

The cancer data were also used in Grabisch and
Dispot [21] and Weiss and Kulikowski [17} for performance
evaluation. In Grabisch and Dispot [21], the generalization
abilities of various fuzzy classification methods were evalu-
ated by dividing the cancer data into 50% training patterns
and 50% test patterns. Grabisch and Dispot [21] reported
simulation results by nine fuzzy classification methods,
based on fuzzy integrals, fuzzy pattern matching, fuzzy

Table 1. Performance for test patterns (wine data)

Method Classification rate Error rate Rejection rate

Michigan 94.2% 5.7% 0.1%
Pitt 1 54.8% 29.5% 15.7%
Pitt 2 59.9% 19.5% 20.6%




Table 2. Performance for test patterns (cancer data)

Method Classification rate Error rate Rejection rate

Michigan 74.5% 25.5% 0.0%
Pitt 1 71.5% 26.9% 1.6%
Pitt 2 68.8% 28.4% 2.8%

nearest neighbor, fuzzy clustering, and so on. Those results
can be summarized as follows:

Maximum error rate: 45.1%
Average error rate: 39.4%
Minimum error rate: 32.0%

In Weiss and Kulikowski [17], the generalization
abilities of various nonfuzzy classification methods were
evaluated by dividing the cancer data into 70% training
patterns and 30% test patterns. Weiss and Kulikowski [17]
reported simulation results for 10 nonfuzzy classification
methods, such as linear discriminant functions and neural
networks. Those results can be summarized as follows:

Maximum error rate: 34.7%
Average error rate: 29.1%
Minimum error rate: 22.9%

From a comparison of Table 2 with those reported results,
we can see that the rule sets of fuzzy if—then rules selected
by the Michigan approach and the Pittsburgh approach have
high generalization abilities (i.e., low error rates) in com-
parison with various classification methods examined in
Grabisch and Dispot [21] and Weiss and Kulikowski [17].

We also examined the classification performance of
each rule selection method on credit approval data [18]. The
simulation results in Table 3 were obtained by computer
simulations with the same parameter specifications as in the
case of the cancer data.

The credit approval data were also used in Quinlan
[18] for evaluating the performance of his C4.5 algorithm.

Table 3. Performance for test patterns (credit approval)

Method Classification'rate Error rate Rejection rate

Michigan 85.3% 14.7% 0.0%
Pitt 1 59.9% 38.9% 1.2%
Pitt 2 64.6% 33.8% 1.6%
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The error rates by the C4.5 algorithm with various parame-
ter specifications were reported as 17.5% (worst), 15.7%
(average), and 14.2% (best), as evalvated by the 10CV
procedure. From a comparison of Table 3 with these re-
ported results, we can see the effectiveness of the Michigan
approach.

7. Conclusions

Two frameworks of genetics-based machine learning
(i.e., the Michigan approach and the Pittsburgh approach)
were applied to rule selection problems of fuzzy if—then
rules. The performance of each approach was evaluated for
multidimensional pattern classification problems. For the
Michigan approach, we used our fuzzy classifier system
[15]. For the Pittsburgh approach, we proposed a new
algorithm. In the rule selection method based on the Michi-
gan approach, each fuzzy if-then rule was handled as an
individual. On the other hand, each rule set was handled as
an individual in the rule selection method based on the
Pittsburgh approach. A high classification ability for train-
ing data and high generalization ability for test data were
obtained by the Michigan approach when we applied both
approaches to real-world pattern classification problems
with many attributes (i.e., wine data, cancer data, and credit
approval data). Simulation results showed that the Michi-
gan approach could search for rule sets more efficiently
than the Pittsburgh approach. This is because good fuzzy
if—then rules in a current generation were inherited by the
next generation with no change, and poor fuzzy if—then
rules were replaced with newly generated rules. On the
other hand, rule sets were updated regardless of the classi-
fication performance of each fuzzy if-then rule in the
Pittsburgh approach. The Michigan approach is also effi-
cient from the point of view of computation time and
memory storage. This is because a population in the Michi-
gan approach corresponds to a single rule set, while the
Pittsburgh approach has a number of rule sets as a popula-
tion. Thus, computation time and memory storage in the
Michigan approach are generally much smaller than in the
Pittsburgh approach.

The search in the Michigan approach, however, does
not always work well when we use inappropriate specifica-
tions of the two weights in the definition of the fitness value
of each fuzzy if-then rule (i.e., the reward for correct
classification wycp, and the penalty for misclassification
wnme). Appropriate specifications of these weights are very
important, especially for pattern classification problems
with high error rates due to overlaps between different
classes. As an example, we show simulation results on the
cancer data in Fig. 5 where all of the given patterns were
used as training data. Figure 5 shows how the error rate of
the rule set at each generation changed when we specified
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Fig. 5. Simulation results with different specifications
of the misclassification penalty wyyp.

the misclassification penalty as wyyp = 0 and wypmp = 10
(the reward for correct classification was specified as
wnep = | in both cases). From Fig. 5, we can see that the
search for rule sets was not efficient in the case of
wnmp = 10. This is because the genetic search in the Michi-
gan approach sometimes goes in the direction of decreasing
classification rates, because the performance of a rule set is
not evaluated. In contrast, the genetic search in the Pitts-
burgh approach never goes in such a direction because the
performance of each rule set is evaluated. These discussions
suggest the necessity of fusion of the Michigan approach
and the Pittsburgh approach.
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