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Abstract—An important issue in fuzzy-rule-based modeling is
how to select a set of important fuzzy rules from a given rule
base. Even though it is conceivable that removal of redundant
or less important fuzzy rules from the rule base can result in a
compact fuzzy model with better generalizing ability, the decision
as to which rules are redundant or less important is not an
easy exercise. In this paper, we introduce several orthogonal
transformation-based methods that provide new or alternative
tools for rule selection. These methods include an orthogonal
least squares (OLS) method, an eigenvalue decomposition (ED)
method, a singular value decomposition and QR with column
pivoting (SVD-QR) method, a total least squares (TLS) method,
and a direct singular value decomposition (D-SVD) method. A
common attribute of these methods is that they all work on a
firing strength matrix and employ some measure index to detect
the rules that should be retained and eliminated. We show the
performance of these methods by applying them to solving a
nonlinear plant modeling problem. Our conclusions based on
analysis and simulation can be used as a guideline for choosing
a proper rule selection method for a specific application.

Index Terms—Fuzzy logic, fuzzy modeling, model reduction,
orthagonal transformation.

I. INTRODUCTION

FUZZY-RULE-BASED modeling has become an active
research field in recent years because of its unique merits

in solving complex nonlinear system identification and control
problems. Primary advantages of this approach include the
facility for the explicit knowledge representation in the form
of If–Then rules, the mechanism of reasoning in human
understandable terms, the capacity of taking linguistic infor-
mation from human experts and combining it with numerical
information, and the ability of approximating complicated
nonlinear functions with simpler models. Unlike conventional
modeling, where a single model is used to describe the global
behavior of a system, fuzzy rule-based modeling is essentially
a multimodelapproach in which individual rules (where each
rule acts like a “local model”) are combined to describe the
global behavior of the system. When using a fuzzy model
to approximate an unknown system, it is desired that the
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model include as many rules as possible so that it can cover
the input–output state space of the system with sufficient
“patches;” yet it is also desired that the model include as few
rules as possible because the generalizing ability of the model
decreases as the number of rules increases. When we speak
here ofgeneralizationwe are referring to the system’s mean
performance in terms of approximation accuracy evaluated
over some independent test data set. The tradeoff between
goodness of fit and simplicity is a fundamental principle
underlying various general theories of statistical modeling and
inductive inference [1], [2].

Several research efforts have been made in the fuzzy logic
community to strike a balance between reducing the fitting
error and increasing the model complexity. For example,
an entropy criterion was proposed in [35] to find a simple
structure of fuzzy model by minimizing the rate of interaction
between fuzzy rules. The number of fuzzy rules in this criterion
was determined using anunbiasedness criterion(UC) [27]. In
order to calculate an UC value, the available training data
must be split into two subsets each of which is used to
construct a fuzzy model. Since two fuzzy models have to
be constructed one time, the computational cost of UC is
high. Further, UC essentially tries to find the model structure
by cross-validating two subsets of training data and does not
take into account the complexity of the resulting model. As
pointed out in [3], if enough different model structures are
considered, UC can often find a model that has a low error
on the two subsets of training data, but will not generalize
well to new untrained data. In [4], apruning and merging
strategy was suggested to eliminate redundant fuzzy rules. This
method is complex, also the arbitrariness associated with some
predetermined parameters in the method may lead to improper
models. Genetic algorithmsbased methods have also been
used for extracting fuzzy rules for control and classification
problems [12], [17], [19]. These methods usead hoccriteria
to assess the importance of rules and cannot always assure the
resulting models are simplest. Moreover, they are extremely
computation intensive and may not be well-suited to resource-
constrained applications.

Recently, several researchers have appliedorthogonal trans-
formation methods for selecting important fuzzy rules from
a given rule base [22], [32], [37]–[39]. However, the perfor-
mance and usage of these methods are unknown for most fuzzy
modeling workers. This paper will provide a more thorough
analysis of these existing methods and introduce several new
methods. In particular, we will conduct a comparative study
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of the performance of these proposed methods. We expect
that our work will communicate these methods to the fuzzy
logic community and provide a guideline for choosing a proper
method for a specific application.

II. FORMULATION OF THE PROBLEM

A. Fuzzy Models

A fuzzy model is a set of fuzzy If–Then rules that maps
inputs to outputs. The basic structure of a fuzzy model consists
of three conceptual components: arule base, which contains a
set of fuzzy rules, adatabaseor dictionary, which defines
the membership functions used in the fuzzy rules, and a
reasoning mechanism, which performs the inference procedure
upon the rules and a given condition to derive a reasonable
output or conclusion. As Jang and Sun [14] pointed out,
the spirit of fuzzy models quite resembles that of “divide
and conquer”—the antecedents of fuzzy rules partition the
input space into a number of local fuzzy regions, while the
consequents describe the behavior within a given region via
various constituents. The consequent constituent could be a
membership function [20], a constant [13], or a linear equation
[28]. Different consequent constituents result in different types
of fuzzy models, but their antecedents are always the same.

In this paper, we have adopted the fuzzy model with
constant consequent constituents to illustrate the proposed
methods. This type of fuzzy model has the following form
[13]:

if is and and is

then (1)

where and are the number of input variables and rules,
respectively; and are the input and output variables,
respectively; are the membership functions of input vari-
ables; and are the constant consequent constituents. The
membership functions of input variables are assumed to be
the Gaussian form1

(2)

where and are thecentersand widths of Gaussian
functions, respectively.

This is a multi-input and single-output fuzzy model. Using
the center average defuzzifier, the total output of the model
can be computed as [33]

(3)

1The one-dimensional Gaussian membership function for each input vari-
able can be obtained by decomposing anm-dimensional Gaussian membership
function with a diagonal weighting matrix, wherem corresponds to the
number of input variables. This is a unique property of the Gaussian
membership function, i.e., it isfactorizable.

where is thenormalized firing strengthof the th rule, which
is defined by

(4)

Equation (3) can be viewed as a special case of the linear
regression model [33]

(5)

with and given by

(6)

where are known as theregressors, are the
parameters, and is an error signal which is assumed
to be uncorrelated with the regressors . Given
input–output pairs , where

, it is convenient to express
(5) in the matrix form:

(7)

where ,
with

,
, and . Note that each

column of corresponds to one of the fuzzy rules in the rule
base. We will call the firing strength matrixand the
predictor throughout this paper for notational simplicity. In
building a fuzzy model, the number of available training data
points is usually larger than the number of fuzzy rules in the
rule base. This implies that the row dimension of the matrix

is larger than its column dimension, that is, .
In this paper, the centers and the widths of the

Gaussian membership functions are predetermined using ak-
means clustering algorithmand anearest-neighbor heuristic,
respectively [21]. This means that the antecedents of fuzzy
rules are knowna priori. In this case the only unknown pa-
rameters in (7) are and the problem islinear-in-parameters.
Thus, many conventional linear optimization methods can be
used to solve this problem.

B. SVD, Minimum 2-Norm Solution, and Fuzzy Rule Selection

The singular value decomposition(SVD) of a matrix is a
factorization of the matrix into a product of three matrices.
For the firing strength matrix , the decomposition can be
written as

(8)

where and are orthogonal matrices,
diag is a diagonal matrix

with . The diagonal elements of
are called thesingular valuesof .
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An important property of SVD is that it reveals therank of
. From (8) it follows that rank rank . Consequently,

the number of nonzero singular values indicates the rank of
the matrix . Let rank . Then (8) can be rewritten in
an alternative form

(9)

where are the nonzero singular values of,
, and are the th column of and , respectively. Sub-

stituting (9) into (7) and after simple algebraic manipulations,
we obtain

(10)

It can be proved [8] that this solution minimizes
and has the smallest 2-norm of all minimizers.

In practice, the minimum 2-norm solution is usually ap-
proximated by

(11)

where is some numerically determined estimate of.
Note that minimizes where

(12)

is the closest matrix to that has rank [8].
Replacing by amounts to filtering the small singular

values and can make a great deal of sense in those situations
where is derived from noise data. In our application,
however, the existence of small singular values implies the
presence ofredundantor less important rules2 among the rules
that comprise the underlying model [22], [37]. In this case, we
are not interested in a predictor such as that involves all

rules. Instead, a predictor should be sought wherehas
at most nonzero components. The position of the nonzero
entries determines which columns of, i.e., which rules in
the rule base, are to be used in constructing the model and
in approximating the observation vector. How to pick these
columns is the problem ofrule selectionand is the subject of
this paper.

III. RULE SELECTION USING ORTHOGONAL TRANSFORMATION

Orthogonal transformation is one of the most useful and
powerful tools of numerical linear algebra and arises in many
application areas particularly in control and signal processing
[9], [18]. It is known that orthogonal transformation can lead
to relative decorrelation and compaction of information into
salient modes in a data set. The first proposal of applying this
technique to fuzzy modeling was offered in Wang and Mendel
[32] where anorthogonal least-squares(OLS) method was

2The redundant rules can appear in a rule base when several rules
have identical (or nearly identical) or linearly dependent (or nearly linearly
dependent) firing strengths in the whole input space. The less important rules
can occur in a rule base when several rules have zero (or near-zero) firing
strengths in the whole input space.

suggested to select the most importantfuzzy basis functions
each of which was associated with a fuzzy rule. This method
was also used in [31] to remove less significant consequent
terms in theTSK model[28]. In this section, we first introduce
the OLS method, and then provide several new orthogonal
transformation-based rule selection methods. Comparison of
these methods will be conducted in the next section.

A. OLS Method

The OLS method involves the transformation of the regres-
sors (i.e., the column vectors of the firing
strength matrix ) into a set of orthogonal basis vectors
denoted by . In particular, using aclassi-
cal Gram–Schmidt orthogonalizationprocedure [8], the firing
strength matrix is decomposed into

(13)

where is a matrix with orthogonal columns , and
is an upper triangular matrix with unity diagonal

elements. Substituting (13) into (7) yields

(14)

where . Since and are orthogonal for , the
sum of squares of can be written as

(15)

Dividing on both side of (15), it can be seen that
is the part of the output variance

which can be explained by the regressors and is the
unexplained variance of. Thus, is the increment
to the output variance introduced by, and anerror reduction
ratio due to can be defined as [5]

err (16)

This ratio offers a simple means of seeking a subset of
important regressors in a forward-regression manner. For
fuzzy modeling problem, the subset of important regressors
corresponds to a subset of important fuzzy rules. If it is decided
that rules are used to construct a fuzzy model, then the first

rules with the largest error reduction ratios will be selected.
The complete OLS algorithm is summarized as follows.

OLS Algorithm

1) For , compute

err (17)

Find

err err (18)

and select

(19)
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2) For and ,

compute

err (20)

Find

err err

(21)

and select

(22)

By these two steps we can establish the matrixand the
parameters vector. To obtain the original parameter vector

, Wang and Mendel [32] suggested to solve the triangular
equation

(23)

where

(24)

(25)

by back substitution[since is upper triangular]. However,
the parameter vector obtained this way will still contain
information from all initial rules, even though only the
most important rules have been established by OLS. This is
due to the normalization step used in constructing the firing
strength matrix that has taken into account all rules.
A better solution is to construct a new firing strength matrix

by solely using the most important rules and
then solve based on . This may be performed
by running the OLS a second time [11] or using the SVD
method introduced in Section II-B. The latter method is used
in this paper.

The OLS method tries to select the most important fuzzy
rules based on their contributions of variance to the variance
of the output. This is quite similar to the strategy for selecting
components inprincipal component regression[16] where
those components with large variances are remained in the
regression model3.

3Selecting principal components on the basis of variance reduction is a stan-
dard practice in principal component regression. However, some researchers
argue that low variance for a principal component does not necessarily imply
that the corresponding component is unimportant in the regression and deletion
based solely on variance can be dangerous if low-variance components have
predictive value. For an interesting discussion of this controversy, we refer
the reader to Jolliffe [16].

B. Eigenvalue Decomposition (ED) Method

This method was proposed in Nisbet, Mulgrew, and
McLaughlin [24] to construct reducedradial basis function
(RBF) networksandVolterra series polynomials. In particular,
instead of considering the original linear equation, which has
the same form as (7), Nisbetet al. focused on the following
normal equation:

(26)

where and are
called thecorrelation matrixand thecross-correlation vector,
respectively [9]. Computing theeigenvalue decompositionof

yields

(27)

where diag is a diagonal
matrix whose diagonal entries are theeigenvaluesof , and

is an orthogonal matrix
whose columns are the correspondingeigenvectors. Since

is symmetric and nonnegative definite, the eigenvalues
are all real and nonnegative [9]. Thus, the

decomposition can be arranged such that the eigenvalues
appear in a descending order, i.e., .

If the matrix contains zero or near-zero eigenvalues,
the matrix isrank deficient[26]. Nisbet et al. just used this
information to remove the redundant radial basis functions and
Volterra terms which amounts to eliminating some entries in
. In order to give an indication as to which entries ofshould

be removed, Nisbetet al. defined the followingmeasure index
vector

diag

diag (28)

where contains the first
columns of . The position of the largest indexes in
indicates the position of the entries inthat should be retained,
while the position of the rest indexes in indicates
the position of the entries in that should be removed.

The resulting -dimensional parameter vector, denoted by
, was solved from the reduced normal

equation

(29)

where was obtained by removing the rows
and columns of that were associated with the
smallest indexes in , and similarly, was
obtained by removing the rows of . In this way, Nisbet
et al. obtained a reduced RBF network and a reduced Volterra
series polynomial model that had better numerical property
and prediction performance.

Due to the functional similarity between RBF networks
and fuzzy inference systems [15], this method can also be
used to construct a reduced fuzzy model. The removal of the
entries of and the associated rows and columns of as
well as the associated rows of amounts to removing the
redundant or less important rules from a rule base. However,
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unlike RBF and Volterra series polynomial modeling where
no normalization step is done before forming the matrices
and , fuzzy modeling does require such a step. This implies
that, after the removal of the associated rows and columns of

as well as the associated rows of , the resulting
and still contain information from the deleted rules. In
order to eliminate the effect, a new normalization step should
be implemented for the entries of and . Note that
removing the rows and columns of as well as the rows
of is tantamount to eliminating the associated columns of

. Thus and can be directly formed by computing
and , respectively, where

corresponds to the columns of which are associated with
the most important rules in the rule base. The complete
algorithm is given below.

ED Algorithm
1) Compute the eigenvalue decomposition of using

(27) and get and . Determine the number of
fuzzy rules that should be retained (or equivalently
that should be removed) by checking the eigenvalues

diag . The number of the first
largest eigenvalues indicates the number of fuzzy rules
that should be retained.

2) Partition into , where and
correspond to the first columns and the last
columns of , respectively.

3) Compute the measure index vector using (28). The
position of the largest indexes in indicates the
position of the rows and columns of as well as the
rows of (or equivalently the position of the columns
of the firing strength matrix ) that should be remained,
i.e., the position of the most important rules in the
rule base.

4) Construct a reduced -by- firing strength matrix
based on the selectedmost important fuzzy rules, and
form and .

5) Solve from (29) using the SVD method introduced
in Section II-B.

Our computer simulations showed that the algorithm could
usually result in a compact fuzzy model with low fitting
and prediction error. However, a possible drawback of this
algorithm is that it needs to form the correlation matrix
and then computes its eigenvalue decomposition. It is known
that such a procedure often causes numerical instability [18].
A better practice is to work directly on the firing strength
matrix and avoid explicitly forming the correlation matrix.
The SVD based methods introduced in the following sections
can better meet the concern.

C. SVD-QR with Column Pivoting Method

TheSVD-QR with column pivoting algorithmwas originally
proposed by Golub, Klema, and Stewart [7] for solving the
problem of subset selectionin regression analysis and was
suggested in Mouzouris and Mendel [22] to extract the most
important fuzzy rules from a given rule base. This basic idea
of this method is to replace in (7) by where

consists of columns of . The position of

these columns in determines which rules in the rule base
are to be used in approximating the observation vector. The
principle of this method is introduced as follows.

Let the SVD of be given by (8), and define
the matrix by

(30)

where is a permutation matrix. Golub et al.
showed that if

(31)

and is nonsingular, then

(32)

where and are the th singular value of
and , respectively.

This result suggests that in order to obtain a sufficiently
independent subset of columns (correspondingly the most
important subset of fuzzy rules), the permutation matrix
should be chosen so that the resulting submatrix is as
well-conditioned as possible and hence is as small
as possible. This implies that the computed subset tends
to maximize its minimal singular value . A heuristic
solution to this problem, suggested by Golubet al. is obtained
by computing theQR with column pivoting decomposition
[8] of the matrix , where and

are defined by

(33)

In particular, if we apply QR with column pivoting to
compute

(34)

where is orthogonal, is the permu-
tation matrix, and is upper triangular, then (31)
implies

(35)

Note that is nonsingular and that .
Heuristically, column pivoting tends to produce a well-
conditioned , and so the overall process tends to produce
a well-conditioned .

Each column of contains exactly one “1” (other entries
are all 0’s). The position of the entries 1’s in determines
the position of columns of in as well as the position
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of the associated rules in the rule base [22]. To illustrate this,
suppose we have

and (36)

Then

(37)

If we want to build a model using two fuzzy rules, then the
second and the third rules should be selected.

The consequent constituents of themost important fuzzy
rules can be solved from the reduced equation

(38)

where , and needs to be renor-
malized as before by solely using themost important fuzzy
rules.

In summary, the SVD-QR with column pivoting consists of
the following main steps.

SVD-QR Algorithm
1) Compute the SVD of , i.e., . Save

and .
2) Check the singular values in

diag , and determine the number of
fuzzy rules (denoted by) used to construct the model,
where rank .

3) Partition according to (33) and form .
Apply QR with column pivoting to and get
the permutation matrix . The position of 1’s in the
first columns of indicates the position of the most
important fuzzy rules in the rule base.

4) Construct the normalized matrix based on
the most important fuzzy rules.

5) Solve for using the SVD method
introduced in Section II-B.

This method is closely related to the eigenvalue decompo-
sition method introduced in the preceding section. This can be
seen by substituting (8) into

(39)

Comparing (39) and (27) and noticing that is identical to
(since is symmetric and nonnegative definite), we know
that the two algorithms are equivalent by this stage. The only
difference between the two algorithms lies in the determination
of the entries of (or equivalently the columns of ) that
should be retained: ED uses the measure index vector,
while SVD-QR uses the permutation matrix. However,
recalling that the implication of the QR with column pivoting
is to make column interchange during each orthogonalization
step of the QR decomposition of the matrix

so that the columns with the largest 2-norms are first
orthogonalized and the largest pivots are moved to the upper
left-hand corner of , and noticing that the effect

of the column interchange is the same as that of making the
corresponding interchange in the columns of before
the QR decomposition is begun [34], the permutation matrix

can thus actually be determined by computing the measure
index vector

- - - -

(40)

where is the th column of . The entry
“1” in each column of corresponds to one of the indexes
in - . For example, the entry “1” in the first column of

corresponds to the largest index of - , and its row
coordinate corresponds to the position of the largest index
in - . In other words, if the th entry of -
is the largest, the th entry of will be 1; if the th
entry of - is the second largest, the th entry of

will be 1, and so on. In particular, if we substitute (40)
with (28) or substitute (28) with (40), the two algorithms
are essentially the same. Nevertheless, the SVD-QR algorithm
does not need to explicitly form the correlation matrix and thus
avoid the introduction of unnecessary numerical and rounding
errors. Moreover, it is known that the singular values can be
computed more efficiently with much greater numerical and
computational stability than the eigenvalues [18], and hence
the SVD-QR algorithm is superior to the ED algorithm from
an implementation point of view.

D. Total Least-Squares Method

The total least-squares(TLS) method is a technique de-
signed to compensate for data errors for linear parameter
estimation problem which has the form of (7). In solving such
a problem, the ordinaryleast-squares(LS) methodassumes
the matrix (which is usually calledmeasurement matrixin
parameter estimation problems) to be free of error and all
errors to be confined to the observation vector. However, this
assumption is frequently unrealistic: sampling error, human
errors, modeling errors, and instrument errors may imply
inaccuracies of the matrix as well. This is especially true
for the parameter estimation problem of fuzzy models where
the matrix is usually constructed based on the member-
ship functions provided by human experts which inevitably
contains errors. TLS offers a promising parameter estimation
method that is appropriate when there are errors in both the
observation vector and the measure matrix . A detailed
introduction of the TLS, its theory, computing algorithms, and
many interesting applications, can be found in [30].

A subset selection method based on TLS was developed
in Van Huffel and Vandewalle [29] and used here to extract
the most important fuzzy rules from a given rule base. This
method extends the SVD-QR with column pivoting method by
incorporating information included in the observation vector

. In particular, the SVD is applied to anextended matrix,
defined by

(41)
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where and ,
diag . Partition as

(42)

where rank corresponds to the number of fuzzy
rules which are selected to construct the model. Apply QR
with column pivoting to compute

(43)

where is orthogonal, is a permutation,
and is upper triangular. Set

(44)

Similarly to (32), it can be proved [29]

(45)

Like the permutation matrix in the SVD-QR method,
the permutation matrix orders the columns of (and
correspondingly the rules in the rule base) such that the“most
important columns” enter in (44). The most important
columns can also be equivalently determined using a measure
index similar to that defined in (40), which is given by

(46)

where is the th column of .
As before, the consequent constituents of themost impor-

tant fuzzy rules can be solved from the reduced equation

(47)

where is reconstructed by solely using the most
important fuzzy rules.

Instead of seeking the LS solution, the TLS solution of
has been advocated in Van Huffel and Vandewalle [29]. In
particular, the solution can be computed by

(48)

where are the entries of the last
column of , which is obtained from the
SVD of , i.e.,

(49)

In summary, the TLS method consists of the following main
steps.

TLS Algorithm
1) Compute the SVD of using (41). Save and .

2) Check the singular values in diag
, and determine the number of fuzzy rules

(denoted by ) used to construct the model, where
rank .

3) Partition according to (42) and save .
Apply QR with column pivoting to and
get the permutation matrix . The position of 1’s in the
first columns of indicates the position of the firstmost
important fuzzy rules in the rule base. Alternatively,
the measure index vector defined in (46) can also
be used to determine the position of the firstmost
important fuzzy rules in the rule base with the same
results.

4) Construct the normalized matrix based on
the most important fuzzy rules.

5) Compute the SVD of using (49) and save the th
column of . Solve from (48).

The TLS method has taken into account the errors on all
variables. Also, by using the information provided by the
observation vector, the accuracy of the selected subset model
with respect to parameter estimation and prediction can usually
be improved.

E. Direct SVD Method

The orthogonal transformation methods introduced in the
preceding sections share a common two-step procedure: 1)
determine the number of rules that should be retained or
removed based on the singular values (eigenvalues), and 2)
identify the position of these rules in the rule base (i.e., which
rules should be retained or deleted) based on some measure
index. An alternative method was proposed in [37] where,
besides indicating the number of the most important fuzzy
rules, the singular values themselves served as a measure
index to picking these rules. Because this method uses a single
SVD to determine both the number and position of the most
important fuzzy rules without resort to any additional measure
index, we call itdirect SVD method.

The key of this method lies in the identification of the
original position of the singular values in the firing strength
matrix , since each singular value is related to one of
fuzzy rules and its position in indicates the position of the
associated rule in the rule base. The SVD algorithm used in
the previous sections is based on that of Golub and Reinsch
[8]. This algorithm first useshouseholder transformationto
bidiagonalize the given matrix and then an iterative algo-
rithm, known as theQR algorithm(not QR decomposition) to
compute the singular values of the resultant bidiagonal form.
This algorithm has been implemented in some well-established
numerical computation packages such as MATLAB. However,
the singular values produced using these packages usually
appear in a descending order. These ordered singular values
do not indicate the position where they appear in the matrix

. This poses a difficulty if we want to relate these singular
values with their corresponding rules.

A different algorithm, known as theJacobi algorithmwas
used in [37] to compute the SVD of . This algorithm first
applies a sequence ofone-sided Jacobi transformation[10] to
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and get

(50)

where is row orthogonal and is both row and column
orthogonal, then computes the QR decomposition of and
its transpose, that is

(51)

where is actually a diagonal matrix whose entries consist
of the singular values of (Assume that a nonnegative
handing step has been done). Let

and (52)

then from (50)–(52) a complete SVD

(53)

is formed. Using this algorithm we can obtain the singular
values of the firing strength matrix that appear in their
original order.

The main steps of the direct SVD method are summarized
as follows.

D-SVD Algorithm
1) Compute the SVD of using the Jacobi method and

get the singular values that appear in their original order
in the matrix.

2) Select fuzzy rules to construct the model, where
corresponds to the largest singular values whose

position indicate the position of the most important
fuzzy rules in the rule base.

3) Construct the reduced firing strength matrix
based on the most important fuzzy rules.

4) Solve for using the SVD method
introduced in Section II-B.

The advantage of this method is its simplicity and intu-
itiveness; it uses a single SVD procedure to determine both
the number and position of important fuzzy rules in the rule
base and does not need to introduce any additional measure
index. Moreover, the Jacobi algorithm for SVD implementa-
tion in this method is computationally more reliable than the
Golub–Reinsch algorithm [6].

IV. COMPARATIVE STUDY

We have conducted numerous computer simulations to eval-
uate the performance of the above five rule selection methods
[38], [39]. Here only one typical example is presented. We
consider the second-order nonlinear plant

(54)

where

(55)
The nonlinear component in this plant, which is usually
called the “unforced system” in control literature (see, e.g.,
[23]), has an equilibrium state in the state space. This
implies that while in equilibrium without an input, the output
of the plant is the sequence . Fig. 1 shows the trajectory
of the unforced system in the state space.

Fig. 1. Trajectory of the unforced system.

Fig. 2. Output of the plant model.

We want to approximate the nonlinear componentusing
the fuzzy model (1). For this purpose, 1200 simulated data
points were generated from the plant model (54). The first 1000
data points were obtained by assuming a random input signal

uniformly distributed in the interval , while
the last 200 data points were obtained by using a sinusoid
input signal . The 1200 simulated data
points are shown in Fig. 2.

We used the first 1000 data points to build a fuzzy model.
The performance of the resulting model was tested using the
remaining 200 data points. We chose and
as the input variables and arbitrarily set the number of fuzzy
rules to 25. The Gaussian functions defined in (2) were used
to express the membership functions of and
with the parameters shown in Table I.4

4Initially, only 20 two-dimensional Gaussian membership functions were
considered, each of which can be seen as the product of two one-dimensional
membership functions for the input variablesy(k � 1) and y(k � 2). The
centerscij and the widths�ij of the 20 Gaussian membership functions were
determined using thek-means clustering algorithm and the nearest-neighbor
heuristic, respectively [21]. We then introduced five additional Gaussian
membership functions with artificially selected parameters in order to emulate
the effect caused by the redundant and less important fuzzy rules.
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(a) (b)

Fig. 3. Singular values of the 1000-by-25 firing strength matrix: (a) descending order and (b) original order.

TABLE I
PARAMETERS OF GAUSSIAN MEMBERSHIP FUNCTIONS

These 25 rules were labeled by the number
which indicated the position of the rules in the rule base as
well as the associated combinations of membership functions.
For example, the number “1” indicates the first rule in the
rule base which is associated with the membership functions
combination [where

], while the number “25” indicates the 25th rule in the
rule base which is associated with the membership functions
combination .

Each row of Table I is associated with one of the fuzzy
rules in the rule base. The first two rows give the nearly same
parameters of membership functions, and correspondingly the
first two rules in the rule base will have the nearly same firing
strengths. This implies that there exists redundancy between
the two rules and removing either of them will not affect the

performance of the model significantly. The same observation
holds for rules 5 and 6 as well as rules 15 and 16, which
correspond to the rows 5 and 6 as well as the rows 15 and 16,
respectively. The widths of the Gaussian functions in the rows
10 and 20 have a small value of 0.01, and thus the resultant
membership functions will have a low grade (geometrically,
the membership functions will become very “narrow” [25]).
This implies the rules 10 and 20 have a low firing strength
and removal of the two rules will not sacrifice the accuracy
of the model greatly.

For each of the 1000 input data points
to the model, we computed the

normalized firing strengths of the 25 fuzzy rules using (4) to
form a 1000-by-25 firing strength matrix. Fig. 3 shows the
singular values of the matrix in both descending and original
order. It can be seen that there exist five zero or near-zero
singular values among the 25 singular values. This indicates
that five rules in the rule base are redundant or less important.
Based on the singular values, we determine to retain 20 rules
and eliminate five rules in the rule base. Table II shows the
position of the retained 20 rules and that of the eliminated five
rules indicated by the five orthogonal transformation-based
methods. The final four rows of this table also give themean
squared error(MSE’s) of the simplified models constructed
using the retained 20 rules and that of the original model
constructed using the complete 25 rules.

From Table II, we observe the following results.

1) Compared to the original model, the simplified models
give large MSE’s in the training stage, but smaller
MSE’s in the testing stage. This implies that removal
of those redundant or less important rules from the rule
base can result in a fuzzy model with better general-
izing ability. This finding is consistent with the results
reported in several previous studies [12], [36].

2) OLS successfully detects the two less important rules
(rules 10 and 20) and a redundant rule (rule 1), but it
fails to find the other two redundant rules (5 or 6, and
15 or 16).

3) ED, SVD-QR, TLS, and D-SVD successfully detect
both the two less important fuzzy rules and the three
redundant fuzzy rules, although the position of the
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TABLE II
LOCATION OF THE RETAINED AND REMOVED FUZZY RULES IN THE RULE BASE AND THE PERFORMANCE OF THERESULTANT MODELS

redundant fuzzy rules identified are somewhat different.
In particular, ED and SVD-QR identify the rules 1, 6
and 15 as the redundant fuzzy rules, while TLS and D-
SVD identify the rules 1, 5, and 15 and the rules 1, 6,
and 16 as the redundant rules, respectively. Thus, the
four methods show the same performance in both the
training stage and the testing stage.

4) ED and SVD-QR select the same 20 rules that should
be retained with the exactly same position, while the
eliminated five rules are only different in their position.

V. CONCLUSIONS

We have presented the following five orthogonal
transformation-based methods for selecting the most
important fuzzy rules from a given rule base in order to
construct a compact fuzzy model with good generalization
ability: orthogonal least squares (OLS) method, eigenvalue
decomposition (ED) method, singular value decomposition
and QR with column pivoting (SVD-QR) method, total
least squares (TLS) method, and direct singular value
decomposition (D-SVD) method. A common attribute of
these methods is that they all work on a firing strength matrix

and employ some measure index (explicitly or implicitly)
to select the rules that should be retained or removed.

The performance of the five methods has been evaluated us-
ing a simulated data set. Based on our analysis and simulation,
we draw the following conclusions.

1) The OLS method may produce an inappropriate subset
of fuzzy rules. A possible reason behind this is that
the error reduction ratio defined in (16) is essentially
a measure that tries to minimize the fitting error rather
than simplify the model structure. If a redundant fuzzy
rule has a larger (normalized) firing strength, it is quite
possible that the rule will be included in the retained
subset of fuzzy rules by the OLS because of its larger
contribution to the total output.

2) The ED and the SVD-QR methods are essentially the
same technique, although the measure indexes of two
methods are slightly different. However, considering
that explicitly forming the normal matrix may
introduce additional error and computing the eigenvalue
decomposition is numerically less reliable and com-
putationally less efficient than computing the singular
value decomposition, the SVD-QR method should be
preferred.

3) The TLS method shows the same performance as the
SVD-QR method in the present simulation. The sub-
sets of fuzzy rules selected by the two methods are
essentially the same, although the position of rules in
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the selected subsets is different. However, since the
TLS method takes into account the possible errors on
both the firing strength matrix and the observation
vector , it is expected that method should show su-
perior performance when the membership functions of
input variables are not well designed or input–output
observations contain large noise. Moreover, the inclusion
of the observation vector in deriving the permu-
tation matrix (or equivalently the measure index
vector ) should also aid in improving the selection
accuracy.

4) The D-SVD method is the simplest among the five
methods, but its performance is as good as that of the
other methods in the present simulation.

5) There is no essential difference in terms of perfor-
mance among the SVD-QR, TLS, and D-SVD methods.
Because these methods often provide slightly differ-
ent subset of fuzzy rules but with nearly the same
performance, it is difficult to gauge which method is
the best. Also, it is difficult to say which subset of
fuzzy rules is the best. This observation indicates that
the “importance of fuzzy rules” should be viewed as
a relative measure. Sometimes it may be necessary to
use more than one method to reveal various properties
of fuzzy rules. From a scientific standpoint, examining
fuzzy rules from different viewpoints is healthy and aids
in intuitive upstanding and creative thinking.

6) The number of fuzzy rules that should be retained or
removed is determined by the number of “big” singular
values or the number of “small” singular values in
the firing strength matrix. The decision as to how big
is big and how small is small is really a subjective
matter and there is no strict mathematical tool that can
count on [26]. This decision has to be made based
on the application at hand, and sometimes trial and
error is inevitable. It can be helpful to introduce some
“objective” criteria to help the choice [36].

The application of orthogonal transformation for the con-
struction of fuzzy rule based models is just at its beginning
and much work remains to be done. However, the presented
results in this paper as well as those reported in several recent
publications [22] and [37]–[39] show that this technique is
very promising and should become a valuable addition to the
fuzzy modeling workers’ tool kit.
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