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Simplifying Fuzzy Rule-Based Models
Using Orthogonal Transformation Methods
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Abstract—An important issue in fuzzy-rule-based modeling is model include as many rules as possible so that it can cover
how to select a set of important fuzzy rules from a given rule the input—output state space of the system with sufficient
base. E_ven though it is conceivable that removal of redun_dant “patches;” yet it is also desired that the model include as few
or less important fuzzy rules from the rule base can result in a | ible b h lizi bili fth del
compact fuzzy model with better generalizing ability, the decision U/€S @s possible because the generalizing ability of the mode
as to which rules are redundant or less important is not an decreases as the number of rules increases. When we speak
easy exercise. In this paper, we introduce several orthogonal here ofgeneralizationwe are referring to the system’s mean
transformation-based methods that provide new or alternative performance in terms of approximation accuracy evaluated

tools for rule selection. These methods include an orthogonal .0 come independent test data set. The tradeoff between
least squares (OLS) method, an eigenvalue decomposition (ED)

method, a singular value decomposition and QR with column goodness of fit and simplicity is a fundamental principle
pivoting (SVD-QR) method, a total least squares (TLS) method, underlying various general theories of statistical modeling and
and a direct_singular value decompo_sition (D-SVD) method. A inductive inference [1], [2].

common attribute of these methods is that they all work on a Several research efforts have been made in the fuzzy logic

firing strength matrix and employ some measure index to detect . . . -
the rules that should be retained and eliminated. We show the community to strike a balance between reducing the fitting

performance of these methods by applying them to solving a €Tor and increasing the model complexity. For example,
nonlinear plant modeling problem. Our conclusions based on an entropy criterionwas proposed in [35] to find a simple
analysis and simulation can be used as a guideline for choosingstructure of fuzzy model by minimizing the rate of interaction

a proper rule selection method for a specific application. between fuzzy rules. The number of fuzzy rules in this criterion

Index Terms—Fuzzy logic, fuzzy modeling, model reduction, was determined using ambiasedness criterio(UC) [27]. In

orthagonal transformation. order to calculate an UC value, the available training data

must be split into two subsets each of which is used to

I. INTRODUCTION gonstruct a fudzzy mo_del. Sri]nce two fuz_zy rlnodels ?ast(e: t_o

. . be constructed one time, the computational cost o is

UZZY-RULE-BASED modeling has hecome an ammf}gh. Further, UC essentially tries to find the model structure

. regearch field in rec;ent years be.causcle.of |_ts unique mey cross-validating two subsets of training data and does not
in solving complex nonlinear system identification and contr

. . ) ke int nt th mplexity of the resulting model. A
problems. Primary advantages of this approach include t e Ino accou e complexity of the resulting model. As

facility for the explicit knowledge representation in the fomP8Inted out in [3], if enough different model structures are

. L considered, UC can often find a model that has a low error
of If-=Then rules, the mechanism of reasoning in human - : .
on the two subsets of training data, but will not generalize

understandable terms, the capacity of taking linguistic |nfor—eII to new untrained data. In [4], aruning and merging

mation from human experts and combining it with numerica L .
. . " o2 . trategy was suggested to eliminate redundant fuzzy rules. This
information, and the ability of approximating compllcateg

. . L . . r‘pethod is complex, also the arbitrariness associated with some
nonlinear functions with simpler models. Unlike conventiona

: : . . redetermined parameters in the method may lead to improper
modeling, where a single model is used to describe the glol?a?dels. Genetic algorithmsbased methods have also been

behavior of a system, fuzzy rule-based modeling is essentiar;IF ed for extracting fuzzy rules for control and classification
a multimodelapproach in which individual rules (where eac roblems [12], [17], [19]. These methods Lee hoccriteria

rule acts like a “local model”) are combined to describe tHe the i : frul d t al th
global behavior of the system. When using a fuzzy mod assess the importance of rules and cannot always assure the

to approximate an unknown system, it is desired that tﬁgsulting models are simplest. Moreover, they are extremely
computation intensive and may not be well-suited to resource-

constrained applications.
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of the performance of these proposed methods. We expedterev; is thenormalized firing strengtbf the ith rule, which
that our work will communicate these methods to the fuzag defined by
logic community and provide a guideline for choosing a proper

m

method for a specific application. H exp <_ (zj — Cij)?)
2
=1 20”»

Vi = M m ( )2 ' (4)
[l. FORMULATION OF THE PROBLEM Z H < T — Cij )
0 .
i=1 j=1 20”'

A. Fuzzy Models ) ) ] )
) Equation (3) can be viewed as a special case of the linear
A fuzzy model is a set of fuzzy If-Then rules that map?egression model [33]

inputs to outputs. The basic structure of a fuzzy model consists

of three conceptual componentstude base which contains a M

set of fuzzy rules, adatabaseor dictionary, which defines y(k) = Z pi(k)0; + e(k) (5)
the membership functions used in the fuzzy rules, and a =1

reasoning mechanisrwhich performs the inference procedurgyith p,(k) and 6; given by

upon the rules and a given condition to derive a reasonable

output or conclusion. As Jang and Sun [14] pointed out, pi(k)=vi, 6= (6)
the spirit of fuzzy models quite resembles that of “divide

and conquer'—the antecedents of fuzzy rules partition tl)%here pi(k) are known as theregressors ¢; are the

input space into a number of local fuzzy regions, while th%arameters, and(k) is an error signal which is assumed

consequents describe the behavior within a given region \EPa bte utnC(irrelgted \]’;"th 'Zle ]Zegieslsog$(k). ](\Bflvenh N
various constituents. The consequent constituent could pd"gut-outpu pairsiz(k), y(k)}, = b5 ..., IV, WHETE
) = (@1(k), m2(k), ..., zp(k)), it is convenient to express

membership function [20], a constant [13], or a linear equati in th trix form:
[28]. Different consequent constituents result in different typé ) in the matrix form:

of fuzzy models, but their antecedents are always the same. y="Pl+e )
In this paper, we have adopted the fuzzy model with
constant consequent constituents to illustrate the proposetere y = [w(1), %(2), ..., y(N)]* € RN,
methods. This type of fuzzy model has the following forr® = [p, Py, ---, py] €  RVM with p, =
[13]: [pi(l), pi(2), RN pi(N)]T € §RN, 0= [91, 0o, ..., 9/\4]T S
RM ande = [e(1), e(2), ..., e(N)]T € RY. Note that each
R;: if x1is A;; and ... andz,, is A, column of P corresponds to one of the fuzzy rules in the rule
theny = b;, i=1,2,.... M 1) base. We will callP the firing strength matrixand P#é the

predictor throughout this paper for notational simplicity. In

wherem and M are the number of input variables and ruIeSbundmg a fuzzy model, the number of available training data

respectively:z; and y are the input and output variablespomts is usually larger than the number of fuzzy rules in the

respectively:A;, are the membership functions of input Vari:rule base. This implies that the row dimension of the matrix

. . hP is larger than its column dimension, that 1§, > M.
ables; andb; are the constant consequent constituents. The . .
- . - . In this paper, the centers;; and the widthss;; of the
membership functions of input variables are assumed to 86 . . . .
. aussian membership functions are predetermined uskig a
the Gaussian forrh : , : o
means clustering algorithrand anearest-neighbor heuristic
) respectively [21]. This means that the antecedents of fuzzy
Ajj(z;) = exp _M (2) rules are knowra priori. In this case the only unknown pa-
20;; rameters in (7) aré; and the problem isnear-in-parameters
Thus, many conventional linear optimization methods can be
where ¢;; and o;; are thecentersand widths of Gaussian used to solve this problem.
functions, respectively.
This is a multi-input and single-output fuzzy model. Usingg. SvD, Minimum 2-Norm Solution, and Fuzzy Rule Selection
the center average defuzzifiethe total output of the model

can be computed as [33] The singular value decompositio(SVD) of a matrix is a

factorization of the matrix into a product of three matrices.

Y For the firing strength matri¥’, the decomposition can be
Y= Z v;b; (3) Written as
=t pP=vuxv” (8)

1The one-dimensional Gaussian membership function for each input vaherel/ € VXN andV € RM*M gre orthogonal matrices,

able can be obtained by decomposingralimensional Gaussian membershipy: — diag(al Ga, ... UM) € RVXM s g diagonal matrix
function with a diagonal weighting matrix, wheme corresponds to the = . h N ’> ’ >’ > 0. The di | el of
number of input variables. This is a unique property of the Gaussif¥th o1 =202 2 ... > op 2 0. The diagonal elements

membership function, i.e., it i&ctorizable are called thesingular valuesof P.
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An important property of SVD is that it reveals thenk of suggested to select the most importéumtzy basis functions
P. From (8) it follows that rankP) = rank(>). Consequently, each of which was associated with a fuzzy rule. This method
the number of nonzero singular values indicates the rankwés also used in [31] to remove less significant consequent
the matrix P. Let s = rankP). Then (8) can be rewritten in terms in theTSK mode[28]. In this section, we first introduce

an alternative form the OLS method, and then provide several new orthogonal
s transformation-based rule selection methods. Comparison of
P= Z oauvy (9) these methods will be conducted in the next section.
=1
whereoy, o3, ..., o, are thes nonzero singular values d?, A. OLS Method

u;, andw; are theith column of U andV’, respectively. Sub- e |5 method involves the transformation of the regres-

stituting _(9) into (7) and after simple algebraic manipulationgmspb Pos ..., py (i.e., the column vectors of the firing
we obtain strength matrix P) into a set of orthogonal basis vectors
L uly denoted bywuy, us, ..., ups. In particular, using aclassi-
0= Z 0. Uit (10)  cal Gram-Schmidt orthogonalizatigsrocedure [8], the firing
=1 ' strength matrix? is decomposed into
It can be proved [8] that this solution minimizdg — P4||. P—UR (13)

and has the smallest 2-norm of all minimizers.

In practice, the minimum 2-norm solution is usually apwheret/ € R¥*¥ is a matrix with orthogonal columns,, and
proximated by R € RM*M is an upper triangular matrix with unity diagonal
elements. Substituting (13) into (7) yields

_i_l o; i y=UR0+e=Ug+e (14)
wherer < s is some numerically determined estimatesof Whereg = 6. Sincew; andw; are orthogonal fog # j, the
Note thaté’ minimizes|ly — P'¢'||. where sum of squares ofi(k) can be written as

T M
P = Z oiuivt (12) yly= Z gulu; +ele. (15)
=1 i=1
is the closest matrix ta@” that has rank- [8]. Dividing N on both side of (15), it can be seen that

ReplacingP by P’ amounts to filtering the small singularg,ulw;/N is the part of the output variancg’y/N
values and can make a great deal of sense in those situatiwhich can be explained by the regressors ahd/N is the
where P is derived from noise data. In our applicationunexplained variance @f. Thus,g,ulu;/N is the increment
however, the existence of small singular values implies the the output variance introduced ky, and arerror reduction
presence ofedundantor less important rulesamong the rules ratio due tou,; can be defined as [5]
that comprise the underlying model [22], [37]. In this case, we o .
are not interested in a predictor suchZ&#’ that involves all lerr, = w,
M rules. Instead, a predictd?é should be sought whegehas vy
at mostr nonzero components. The position of the nonzefhis ratio offers a simple means of seeking a subset of
entries determines which columns 8%, i.e., which rules in important regressors in a forward-regression manner. For
the rule base, are to be used in constructing the model &odzy modeling problem, the subset of important regressors
in approximating the observation vectgr How to pick these corresponds to a subset of important fuzzy rules. If it is decided
columns is the problem alule selectionand is the subject of that+ rules are used to construct a fuzzy model, then the first
this paper. 7 rules with the largest error reduction ratios will be selected.

The complete OLS algorithm is summarized as follows.
Ill. RULE SELECTION USING ORTHOGONAL TRANSFORMATION OLS Algorithm

1<i<M. (16)

Orthogonal transformation is one of the most useful arﬂ Forl <i< M. compute
powerful tools of numerical linear algebra and arises in many - = P

application areas particularly in control and signal processing UY) =Dp;
[9], [18]. It is known that orthogonal transformation can lead @) N7 T @)
to relative decorrelation and compaction of information into 91" = (ul ) Y <(u1 ) Uy )

salient modes in a data set. The first proposal of applying this ) .
technique to fuzzy modeling was offered in Wang and Mendel ler](? = (ggi)> (ugz)) u? /(yTy) 17)
[32] where anorthogonal least-square§OLS) method was Find

2The redundant rules can appear in a rule base when several rules (1) (%) .
have identical (or nearly identical) or linearly dependent (or nearly linearly [err]l = max{[e”]l ;1<e< M} (18)
dependent) firing strengths in the whole input space. The less important rugsd select
can occur in a rule base when several rules have zero (or near-zero) firing (i1) (i1)
strengths in the whole input space. w=u " =p;,.91=9; - (19)
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Q)For2<k<randl <i< M,i7# 41, ..., %% tk_1, B. Eigenvalue Decomposition (ED) Method
compute This method was proposed in Nisbet, Mulgrew, and
a(zk) =ulp,/(ulu;), 1 < j<k McLaughlin [24] to construct _reducedadia! basis fu_nction
ol (RBF) networksandVolterra series polynomialdn particular,
o —p, — Z o instead of considering the original linear equation, which has
¢ e gk the same form as (7), Nisbet al. focused on the following

normal equation

g = (ui))Ty / <(u§))Tu§>> B0 = Dy, (26)

N 2 T ;. _ T MXM _ T M
@ (& (@) @ ;T where®,, = P*P € & and ®,, = Py € & are
_[e”]’“ o (g’“ ) (uk ) w /(YY) (20) called thecorrelation matrixand thecross-correlation vector
Find ‘ ‘ respectively [9]. Computing theigenvalue decompositiawf
e = max{[er]\"’, 1 <i < M, i#i1, ..., i £ir 1} Ppp Yields
(21) ®,, = VAVT (27)
and select i MM .
G G 9 where A = diagA;, Az, ..., Ay) € RV is a diagonal
e =% 96 = 9 (22) " matrix whose diagonal entries are thigenvaluesf ¢,,, and
By these two steps we can establish the matfiand the V = [vi, w2, ..., vp] € RM>*M is an orthogonal matrix

parameters vectog. To obtain the original parameter vectonwhose columns are the correspondir@envectors Since
8, Wang and Mendel [32] suggested to solve the trianguldy,, is symmetric and nonnegative definite, the eigenvalues

equation A1, A2, ..., Ay are all real and nonnegative [9]. Thus, the
() a(r) ") decomposition can be arranged such that the eigenvalues
R0 =g (23) appear in a descending order, i.8;,> Ao > ... > Ap > 0.
where If the matrix ¢,, contains zero or near-zero eigenvalues,
o) (ia) i) the matrix isrank deficient[26]. Nisbetet al. just used this
1oogy” apg” o ag)f information to remove the redundant radial basis functions and
0 1 agigs) ag’f) \olterra terms which amounts to eliminating some entries in
R — ' (24) 6. In order to give an indication as to which entriegathould
I R o N be removed, Nisbett al defined the followingneasure index
0 0 1 ... oc,(fj?h,, vector Igp € RM
" 0 0 2 () 1 . Iep =[lIgp,, lep,, ---, Iep,,|" = diagV,V,")
g = [gla g?a R 91] ) 9 = [91, 92a R 91] (25) = diaquqﬁ1 —|— 1]21]%1 —|— R —|— 1]1,1]1qj) (28)
by back substitutiorisince R is upper triangular]. However, yhere v, = v, vy, ..., v,] € RM*" contains the firstr

the parameter vectat"”) obtained this way will still contain ¢ojumns of V. The position of ther largest indexes ifgp
information from all M initial rules, even though only the jhgicates the position of the entriesérihat should be retained,
most important- rules have been established by OLS. This ighije the position of the rest/ — r indexes inlwp indicates
due to the normalization step used in constructing the firigge position of the entries ifi that should be removed.

strength matrixP that has taken into account alll rules.  The resultingr-dimensional parameter vector, denoted by
A better solution is to construct a new firing strength matrix(-) _ [61, 6, ..., 6,]7, was solved from the reduced normal
P ¢ RN" by solely using the- most important rules and gquation R

then solved™) based onP{"¢(") = 4. This may be performed

by running the OLS a second time [11] or using the SVD 2o = o) (29)
method introduced in Section 1I-B. The latter method is used )
in this paper. where <I>§,’p) € R™" was obtained by removing the rows

The OLS method tries to select the most important fuzAnd columns of®,, that were associated with thé/ — r
rules based on their contributions of variance to the variansmallest indexes inlxp, and similarly, <I>§]2 € R was
of the output. This is quite similar to the strategy for selectingbtained by removing the rows ab,,. In this way, Nisbet
components inprincipal component regressiofil6] where et al obtained a reduced RBF network and a reduced Volterra
those components with large variances are remained in g&ies polynomial model that had better numerical property
regression modal and prediction performance.

3 L , . - Due to the functional similarity between RBF networks
Selecting principal components on the basis of variance reduction is a stan-

dard practice in principal component regression. However, some researclﬁ?l%psd fuzzy inference systems [15]' this method can also be
argue that low variance for a principal component does not necessarily impiged to construct a reduced fuzzy model. The removal of the

that the corresponding component is unimportant in the regression and deleigftries of@ and the associated rows and columns@gp as

based solely on variance can be dangerous if low-variance components have“ h iated : h
predictive value. For an interesting discussion of this controversy, we refff€ll as the associated rows %y amounts to removing the

the reader to Jolliffe [16]. redundant or less important rules from a rule base. However,
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unlike RBF and Volterra series polynomial modeling wherthese columns irP determines which rules in the rule base
no normalization step is done before forming the matriggs are to be used in approximating the observation vegtdihe
and¢,,,, fuzzy modeling does require such a step. This impligginciple of this method is introduced as follows.

that, after the removal of the associated rows and columns olet the SVD of P € RV*M pe given by (8), and define
@, as well as the associated rows®f,, the resultingd’;) the matrix P() € RVX" by

and <I>§,’7y) still contain information from the deleted rules. In
order to eliminate the effect, a new normalization step should
be implemented for the entries € and .. Note that
removing the rows and columns df,, as well as the rows
of &, is tantamount to eliminating the associated columns

P. Thus®y) and @) can be directly formed by computing

PII =[P  pM-7)]
r M—r (30)

erell €¢ RM*M s a permutation matrix Golub et al.
showed that if

(PCNHT ) and (PU) Ty, respectively, wherd@ (™) ¢ RN*r IV — Vii Vi T
corresponds to the columns of P which are associated with - |:V2/1 Vi, }M —r
the » most important rules in the rule base. The complete - M—r (31)
algorithm is given below.
ED Algorithm and v}, € RM*M s nonsingular, then
1) Compute the eigenvalue decomposition ®f, using
(27) and getA and V. Determine the number of () <O—,(p(r)) < 0.(P) (32)
fuzzy rules that should be retained (or equivalently V)l = -

that should be removed) by checking the eigenvalues .
A = diag 1, As, ..., Aar). The number of the first whereo,.(P) ando,.(P) are therth singular value of?(")

largest eigenvalues indicates the number of fuzzy rul@8d £’, respectively. _ _ N
that should be retained. This result suggests that in order to obtain a sufficiently

2) PartitionV into V = [V,, Vas_.], whereV,. and Vy;_, independent subset of columns (correspondingly the most
correspond to the first’columns and the last/ — » important subset of fuzzy rules), the permutation matiix
columns of V', respectively. should be chosen so that the resultiigy submatrix is as

3) Compute the measure index vecfa, using (28). The Well-conditioned as possible and herjig@;)~*(|- is as small
position of ther largest indexes ifgp indicates the S Possible. This implies that the computed subiet tends
position of the rows and columns d,,, as well as the 0 Mmaximize its minimal singular value, (P")). A heuristic
rows of ®,,,, (or equivalently the position of the columnsSelution to this problem, suggested by Goktl. is obtained
of the firing strength matri¥) that should be remained,PY computing theQRT W|tthqumn pivoting d%:orjgposmon
i.e., the position of the: most important rules in the [8] Of the matrix [Vi; V5], where Vi; e R**™ and

rule base. Vi € RIM=1xM gre defined by
4) Construct a reducedy-by-r firing strength matrixP(" Vi Vi .
based on the selectedmost important fuzzy rules, and V= [ }
Vor Va2 IM-—7r.

form ®%) and 5.
5) Solved™ from (29) using the SVD method introduced T M- (33)
in Section II-B.

: . . In particular, if we appl R with column pivoting to
Our computer simulations showed that the algorithm couE P pply Q P 9

: ) o mpute
usually result in a compact fuzzy model with low fitting
and prediction error. However, a possible drawback of this QT[VT VT]H _ [Rn Ry
algorithm is that it needs to form the correlation mattiy,, mwer2
and then computes its eigenvalue decomposition. It is known r M—r (34)

that such a procedure often causes numerical instability [18 . .
P [ here@ € R"*" is orthogonal Il € RM*M is the permu-

A better practice is to work directly on the firing strengtt i i dR Forxr i tri lar. then (31
matrix P and avoid explicitly forming the correlation matrix. .aton matnix, andhu, € is upper triangular, then (31)

The SVD based methods introduced in the following sectioH@pIIeS
can better meet the concern. [Vﬁ} _ {Vn} B |:R¥“1QT:| a5
Vi V2 RLQT |

C. SVD-QR with Column Pivoting Method

The SVD-QR with column pivoting algorithmas originally Note thatR;; is nonsingular and that(Vy;)=* |2 = || R 2.
proposed by Golub, Klema, and Stewart [7] for solving theleuristically, column pivoting tends to produce a well-
problem of subset selectionin regression analysis and wasonditionedR;;, and so the overall process tends to produce
suggested in Mouzouris and Mendel [22] to extract the mastwell-conditionedV/,.
important fuzzy rules from a given rule base. This basic ideaEach column ofll contains exactly one “1” (other entries
of this method is to replacé®d in (7) by P9() where are all 0’'s). The position of the entries 1's Tih determines
P() e RN*" consists ofr columns of P. The position of the position of columns of in PII as well as the position
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of the associated rules in the rule base [22]. To illustrate thif, the column interchange is the same as that of making the
suppose we have corresponding interchange in the column$igf V] before
the QR decomposition is begun [34], the permutation matrix

ﬁ; ﬁ;z 2;2 0 01 II can thus actually be determined by computing the measure
P= and II=|1 0 0|. (36) index vector
P31 P32 P33 01 0
P41 P42 P43
H Isvp-qr = [IsvD-qRr,: IsvD-QR.: - - - Isvp-qr,,|”
en
=[llwillz, llo2ll2, - - floarll2]
b a0 m = [0h) 2, (o) 72, . (oaewf) 2T (40)
PI— |P22 P23 P21 37)
Paz P33 Ps1 wherewv; € R" is theith column of [V} Vi]. The entry
P42 P4z P41

. _ “1” in each column ofIl corresponds to one of the indexes
If we want to build a model using two fuzzy rules, then thén Isyp-qr. For example, the entry “1” in the first column of

second and the third rules should be selected. IT corresponds to the largest index Bfvp-qr, and its row
The consequent constituents of thenost important fuzzy coordinate corresponds to the position of the largest index
rules can be solved from the reduced equation in Isyp-qr. In other words, if theith entry of Isvp-qr
PO =y (38) is the largest, thd:, 1)th entry of Il will be 1; if the jth
entry of Isyp-qr iS the second largest, thg, 2)th entry of
whered™) = [0y, 6, ..., 6,]%, and P(") needs to be renor- II will be 1, and so on. In particular, if we substitute (40)
malized as before by solely using themost important fuzzy with (28) or substitute (28) with (40), the two algorithms
rules. are essentially the same. Nevertheless, the SVD-QR algorithm
In summary, the SVD-QR with column pivoting consists ofloes not need to explicitly form the correlation matrix and thus
the following main steps. avoid the introduction of unnecessary numerical and rounding
SVD-QR Algorithm errors. Moreover, it is known that the singular values can be
1) Compute the SVD ofP, ie., P = UXVT. Save computed more efficiently with much greater numerical and
s andV. computational stability than the eigenvalues [18], and hence
2) Check the singular values in % — the SVD-QR algorithm is superior to the ED algorithm from
diag(oy, oa, ..., oar), and determine the number ofah implementation point of view.
fuzzy rules (denoted by) used to construct the model,
wherer < rank P). D. Total Least-Squares Method

3) Partition V' according to (33) and forn{V V]
Apply QR with column pivoting toVi% Vi ] and get
the permutation matriXI. The position of 1's in the
first » columns ofII indicates the position of the most
important fuzzy rules in the rule base.

4) Construct the normalized matrix(™ € ®V*" based on
the » most important fuzzy rules.

The total least-squaregTLS) methodis a technique de-
signed to compensate for data errors for linear parameter
estimation problem which has the form of (7). In solving such
a problem, the ordinaryeast-squareqLS) methodassumes
the matrix P (which is usually calledneasurement matrii
parameter estimation problems) to be free of error and all
5) Solve M8 — u for 67 usi he SVD hod errors to'be cpnfined to the obseryqtion vegtq‘riowever, this

) Sove o ylor using the metho assumption is frequently unrealistic: sampling error, human
introduced in Section II-B. errors, modeling errors, and instrument errors may imply

This method is closely related to the eigenvalue decomp@accuracies of the matri® as well. This is especially true
sition method introduced in the preceding section. This can g the parameter estimation problem of fuzzy models where
seen by substituting (8) inté,,, the matrix P is usually constructed based on the member-

®,, = PTP = (USVT)TUsv? = vs2vT. (39) ship functions provided by human. gxperts which ineyitaply

contains errors. TLS offers a promising parameter estimation

Comparing (39) and (27) and noticing that is identical toA method that is appropriate when there are errors in both the
(since ¢, is symmetric and nonnegative definite), we knowbservation vectogy and the measure matri®. A detailed
that the two algorithms are equivalent by this stage. The orihtroduction of the TLS, its theory, computing algorithms, and
difference between the two algorithms lies in the determinationany interesting applications, can be found in [30].
of the entries off (or equivalently the columns aP) that A subset selection method based on TLS was developed
should be retained: ED uses the measure index vdgigr in Van Huffel and Vandewalle [29] and used here to extract
while SVD-QR uses the permutation matrlt. However, the most important fuzzy rules from a given rule base. This
recalling that the implication of the QR with column pivotingmethod extends the SVD-QR with column pivoting method by
is to make column interchange during each orthogonalizatigncorporating information included in the observation vector
step of the QR decomposition of the matfiki Vii](= . In particular, the SVD is applied to aextended matrix
V') so that the columns with the largest 2-norms are firgefined by[P 4]
orthogonalized and the largest pivots are moved to the upper o
left-hand corner of R;; Rio], and noticing that the effect [P y]|=UxVT (41)
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where U € RNV and V. e RWMHDxMAL) 5 — 2) Check the singular values it = diagsy, 62,

diags1, 6o, ..., Garq1) € R+ partitionV as ..., &ap41), and determine the number of fuzzy rules
v v , (denoted byr) used to construct the model, where
1 12 r < rank([P 9]).

V=V Voo |M-—7r 3) Partition V" according to (42) and sav@;,? V5,71
Var  Vao 1 Apply QR with column pivoting to[Vi; ¥ V5,7] and
r M—r (42) get the permutation matrid. The position of 1's in the
firstr columns of indicates the position of the firstnost
wherer < ranKP y] corresponds to the number of fuzzy important fuzzy rules in the rule base. Alternatively,
rules which are selected to construct the model. Apply QR  the measure index vectdirg defined in (46) can also
with column pivoting to compute be used to determine the position of the firsmost
N N o . - - important fuzzy rules in the rule base with the same
Qv VAll=QT VT V] [Rll Ry } results.

r  M—r (43)  4) Construct the normalized matri(") ¢ RV*" based on
- e . N ) the » most important fuzzy rules.
where@ € R"*" is orthogonalll € & is a permutation, 5) Compute the SVD of using (49) and save ther 1)th

and Ry; € R™" is upper triangular. Set column of V. Solve 6() from (48).
PII =[P pM-)] The TLS method has taken into account the errors on all
r M—r. (44) variables. Also, by using the information provided by the
observation vectay, the accuracy of the selected subset model
Similarly to (32), it can be proved [29] with respect to parameter estimation and prediction can usually
) } be improved.
Tt <o, ([PY) ) <o([P oyl (45)

VD2 ~ _
Like the permutation matriXI in the SVD-QR method, E. Direct SVD Method

the permutation matrix]j orders the columns ofP (and The Orthogonal transformation methods introduced in the

correspondingly the rules in the rule base) such that tieost  Preceding sections share a common two-step procedure: 1)
important columns” ente®™ in (44). The most important determine the number of rules that should be retained or

columns can also be equivalently determined using a meastfgoved based on the singular values (eigenvalues), and 2)

index similar to that defined in (40), which is given by identify the position of these rules in the rule base (i.e., which
rules should be retained or deleted) based on some measure

Itrs =[Iis,, Itis,, - - Iris, )" index. An alternative method was proposed in [37] where,

=[lloLll2, l#2ll2s -« -5 N1Emll2]” besides indicating the number of the most important fuzzy
:[(1}11}?)1/27 (1}2175)1/27 o (ij]\ﬂ}%})l/Q]T (46) _rules, the. S|.ngular values themselves.served as a measure
index to picking these rules. Because this method uses a single

where#; € R is theith column of [VE V). SVD to determine both the number and position of the most

As before, the consequent constituents ofstheost impor- important fuzzy rules without resort to any additional measure
tant fuzzy rules can be solved from the reduced equation index, we call itdirect SVD method
The key of this method lies in the identification of the
(47) original position of the singular values in the firing strength
matrix P, since each singular value is related to one of
fuzzy rules and its position i indicates the position of the

Instead of seeking the LS solution, the TLS solutiord@? associated rule in the rule base. The SVD algorithm used in

has been advocated in Van Huffel and Vandewalle [29] me previous sections is based on that of Golub and Reinsch
particular, the solution can be computed by " [8]. This algorithm first usesiouseholder transformatioto

bidiagonalize the given matrix and then an iterative algo-
< . (01, 015 D2, 1015+ ooy Op g1 ] (4g) rithm, known as th&QR algorithm(not QR decomposition) to
Uptl,r41 ' ' compute the singular values of the resultant bidiagonal form.
This algorithm has been implemented in some well-established
numerical computation packages such as MATLAB. However,
the singular values produced using these packages usually
appear in a descending order. These ordered singular values
[p(r) yl = UAVT. (49) do not indicate the position where they appear in the matrix
P. This poses a difficulty if we want to relate these singular
In summary, the TLS method consists of the following maigajues with their corresponding rules.
steps. A different algorithm, known as th@acobi algorithmwas
TLS Algorithm , ~used in [37] to compute the SVD dP. This algorithm first
1) Compute the SVD ofP y] using (41). Savé& andV. applies a sequence ohe-sided Jacobi transformatidt0] to

PO — g

where P(") is reconstructed by solely using the most
important fuzzy rules.

g —

where é1 .41, U2, 41, ..., Ur. ~+1 are the entries of the last
column of V € R+UX+ which is obtained from the
SVD of [P 4], i.e.,
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P and get 1 . T
B=U'p (50)
05}
where B is row orthogonal and/ is both row and column
orthogonal, then computes the QR decompositioBéf and or
its transpose, that is .
B =(B")" = (QsRs)" = RLOL (51) oS

where Rp is actually a diagonal matrix whose entries consist

of the singular values ofP (Assume that a nonnegative Ar
handing step has been done). Let
S=R% and VT =0Q% (52) |
then from (50)—(52) a complete SVD - , , ) ) )
P= UEVT (53) 2 -15 = 05 0 0.5 1

y(k-2)
is formed. Using this algorithm we can obtain the singular :
values of the fi?ing stre?lgth matri® that appear in thgir%g' 1. Trajectory of the unforced system.
original order.

The main steps of the direct SVD method are summarized 3

as follows.

D-SVD Algorithm 2r

1) Compute the SVD ofP using the Jacobi method and
get the singular values that appear in their original order 1
in the matrix.

2) Selectr fuzzy rules to construct the model, where
7 corresponds to the largest singular values whose
position indicate the position of the most important
fuzzy rules in the rule base.

3) Construct the reduced firing strength mat#¥™ <
RY*" pased on the most important fuzzy rules.

4) Solve P = 4 for ) using the SVD method
introduced in Section II-B. 2 00 400 600 800 1000 1200

The advantage of this method is its simplicity and intu- k

itiveness; it uses a single SVD procedure to determine ba#f > output of the plant model.

the number and position of important fuzzy rules in the rule

base and does not need to introduce any additional measure ) ) .
index. Moreover, the Jacobi algorithm for SVD implementa- W& want to approximate the nonlinear compongnising

tion in this method is computationally more reliable than th'€ fuzzy model (1). For this purpose, 1200 simulated data
Golub—Reinsch algorithm [6]. points were generated from the plant model (54). The first 1000

data points were obtained by assuming a random input signal
u(k) uniformly distributed in the interval—1.5, 1.5], while
IV.- COMPARATIVE STUDY the last 200 data points were obtained by using a sinusoid
We have conducted numerous computer simulations to eviput signalu(k) = sin(2rk/25). The 1200 simulated data
uate the performance of the above five rule selection methqutsints are shown in Fig. 2.
[38], [39]. Here only one typical example is presented. We We used the first 1000 data points to build a fuzzy model.

Plant output
(=]

4

consider the second-order nonlinear plant The performance of the resulting model was tested using the
B — k= 1), y(k — 2)) + ulk), 54) remaining 200 data points. We chogét — 1) and y(k — 2)

y(k) = flu( ) )+ ulk) ®4) as the input variables and arbitrarily set the number of fuzzy
where _ rules to 25. The Gaussian functions defined in (2) were used
Flylke — 1), y(k — 2)) = y(k — 1)32/(k - 2)[y(k2_ 1)~ 0'0]_ to express the membership functionsék — 1) andy(k — 2)

L+y*(k = 1)+ y*(k —2) (55) with the parameters shown in Tablé .

. . . . . - . . . . .
The nonlinear componenf in this plant, which is usua”y In_mally, only 20 two_—dlmen5|ona| Gaussian membership funcno_ns were
considered, each of which can be seen as the product of two one-dimensional

called the “unforc_e_d _Sy5tem” n cqntrol literature (see, €.Onembership functions for the input variablgék — 1) andy(k — 2). The
[23]), has an equilibrium staté), 0) in the state space. ThiScenters:;; and the widths;; of the 20 Gaussian membership functions were

implies that while in equilibrium without an input, the Outpuﬁetermined using thé-means clustering algorithm and the nearest-neighbor
’ euristic, respectively [21]. We then introduced five additional Gaussian

of the pIant is the Sequ?n({@}' Fig' 1 shows the trajectory membership functions with artificially selected parameters in order to emulate
of the unforced system in the state space. the effect caused by the redundant and less important fuzzy rules.
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Fig. 3. Singular values of the 1000-by-25 firing strength matrix: (a) descending order and (b) original order.
TABLE | performance of the model significantly. The same observation
PARAMETERS OF GAUSSIAN MEMBERSHIP FUNCTIONS holds for rules 5 and 6 as well as rules 15 and 16, which
i o o on o correspond to the rows 5 and 6 as well as the rows 15 and 16,
1 0.0930 20.3630 0.7095 0.7095 respectively. The widths of the Gaussian functions in the rows
2 0.0933 -0.3632 0.7095 0.7095 10 and 20 have a small value of 0.01, and thus the resultant
i 11-38215; *?-563?91; 8-%2; gg;z; membership functions will have a low grade (geometrically,
5 :1:3‘1‘30 16470 13205 Pty the membership functions will become very “narrow” [25]).
6 -1.8125 -1.6469 1.3205 1.3205 This implies the rules 10 and 20 have a low firing strength
7 0.7776 -1.1555 0.7800 0.7800 and removal of the two rules will not sacrifice the accuracy
g 0.1898 1.0142 0.6141 0.614(1 of the model greatly.
1 A b POt PP For each of the 1000 input data pointg(k — 1), y(k —
1 0.6613 0.4846 0.7051 0.7051 D}, k= 1,2,...,1000 to the model, we computed the
g 0.9529 -0.3965 0.6313 0.6313 normalized firing str_e_ngths of the 25 fl_Jzzy_ruIes using (4) to
” g-zggg 8?;?8 gggz ggég fqrm a 1000-by-25 firing str_er!gth matrik. Fig. _3 shows the_
15 1.2940 10740 0.6474 0.6474 singular values of the matrix in both_des_cendlng and original
}g 1.2942 1.0738 0.6474 0.6474 o_rder. It can be seen that therg exist five zero or near-zero
18 0.6801 1.4083 0.6370 0.6370 singular values among the 25 singular values. This indicates
19 1.2656 0.2698 0.7156 0.7156 that five rules in the rule base are redundant or less important.
20 :(;:;ﬁjg _})"112;%); 8:(6)3(7"2) g:gzgg Based on the singular values, we determine to retain 20 rules
g 12642 01808 0.7907 0.7907 and eliminate five rules in the rule base. Table Il shows the
2 -0.9099 -1.1750 0.7728 0.7728 position of the retained 20 rules and that of the eliminated five
24 -0.1008 -1.1384 0.8046 0.8046 rules indicated by the five orthogonal transformation-based
25 11 7‘23]3 ?72(7)3; 8'222 3221’1; methods. The final four rows of this table also give thean
' ' - - squared error(MSE'’s) of the simplified models constructed
using the retained 20 rules and that of the original model
constructed using the complete 25 rules.
These 25 rules were labeled by the numbee, ..., 25 From Table Il, we observe the following results.

which indicated the position of the rules in the rule base asj)
well as the associated combinations of membership functions.
For example, the number “1” indicates the first rule in the
rule base which is associated with the membership functions
Combination{Au(azl), Am(ﬂ?g)} [Whereazl = y(/{}—l), To =
y(k—2)], while the number “25” indicates the 25th rule in the
rule base which is associated with the membership functions
Combination{A257 1(.’L’1), A2572(.’I}'2)}. 2)
Each row of Table | is associated with one of the fuzzy
rules in the rule base. The first two rows give the nearly same
parameters of membership functions, and correspondingly the
first two rules in the rule base will have the nearly same firing 3)
strengths. This implies that there exists redundancy between
the two rules and removing either of them will not affect the

Compared to the original model, the simplified models
give large MSE’s in the training stage, but smaller
MSE's in the testing stage. This implies that removal
of those redundant or less important rules from the rule
base can result in a fuzzy model with better general-
izing ability. This finding is consistent with the results

reported in several previous studies [12], [36].

OLS successfully detects the two less important rules
(rules 10 and 20) and a redundant rule (rule 1), but it
fails to find the other two redundant rules (5 or 6, and
15 or 16).

ED, SVD-QR, TLS, and D-SVD successfully detect

both the two less important fuzzy rules and the three
redundant fuzzy rules, although the position of the
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TABLE I
LOCATION OF THE RETAINED AND REMOVED Fuzzy RULES IN THE RULE BASE AND THE PERFORMANCE OF THERESULTANT MODELS

Rule & model | i OLS ED SVD-QR TLS D-SVD
calegory

1 5 25 25 25 2

2 24 4 4 17 5

3 25 7 7 8 4

4 16 19 19 12 8

5 8 3 3 3 3

6 21 24 24 24 11

7 23 8 8 18 13

8 11 23 23 7 9
Retained 9 3 14 14 22 7
rules 10 22 13 13 23 25

11 6 21 21 4 19

12 7 18 18 21 15

13 19 17 17 19 24

14 4 22 22 13 12

15 15 12 12 9 22

16 14 9 9 14 23

17 9 11 11 16 21

18 12 2 2 6 18

19 2 16 16 2 17

20 18 5 5 11 14

21 1 6 10 20 20
Eliminated 22 13 15 15 15 6
rules 23 17 I 20 10 16

24 10 20 6 5 1

25 20 10 1 1 10
Simplified MSE 2.5134e-4 6.8341e-4 6.8341e-4 6.8341e-4 6.8341e-4
models (Training)
(20 rules) MSE 3.9054¢-4 2.3836¢-4 2.3836¢-4 2.3836c-4 2.3836e-4

(Testing)
Original MSE 2.3092e-4
model (Training)
(25 rules) MSE 4.0717e-4

(Testing)

redundant fuzzy rules identified are somewhat different. The performance of the five methods has been evaluated us-
In particular, ED and SVD-QR identify the rules 1, Ging a simulated data set. Based on our analysis and simulation,
and 15 as the redundant fuzzy rules, while TLS and Qve draw the following conclusions.

SVD identify the rules 1, 5, and 15 and the rules 1, 6, 1)
and 16 as the redundant rules, respectively. Thus, the
four methods show the same performance in both the
training stage and the testing stage.

ED and SVD-QR select the same 20 rules that should
be retained with the exactly same position, while the
eliminated five rules are only different in their position.

V. CONCLUSIONS 2)
We have presented the following five orthogonal
transformation-based methods for selecting the most

important fuzzy rules from a given rule base in order to
construct a compact fuzzy model with good generalization
ability: orthogonal least squares (OLS) method, eigenvalue
decomposition (ED) method, singular value decomposition

and

QR with column pivoting (SVD-QR) method, total

least squares (TLS) method, and direct singular value
decomposition (D-SVD) method. A common attribute of 3)
these methods is that they all work on a firing strength matrix
P and employ some measure index (explicitly or implicitly)

to select the rules that should be retained or removed.

The OLS method may produce an inappropriate subset
of fuzzy rules. A possible reason behind this is that
the error reduction ratio defined in (16) is essentially
a measure that tries to minimize the fitting error rather
than simplify the model structure. If a redundant fuzzy
rule has a larger (hormalized) firing strength, it is quite
possible that the rule will be included in the retained
subset of fuzzy rules by the OLS because of its larger
contribution to the total output.

The ED and the SVD-QR methods are essentially the
same technique, although the measure indexes of two
methods are slightly different. However, considering
that explicitly forming the normal matrixt,,, may
introduce additional error and computing the eigenvalue
decomposition is numerically less reliable and com-
putationally less efficient than computing the singular
value decomposition, the SVD-QR method should be
preferred.

The TLS method shows the same performance as the
SVD-QR method in the present simulation. The sub-
sets of fuzzy rules selected by the two methods are
essentially the same, although the position of rules in



YEN AND WANG: SIMPLIFYING FUZZY RULE-BASED MODELS

4)

5)

6)

the selected subsets is different. However, since thg]
TLS method takes into account the possible errors on
both the firing strength matri¥> and the observation (g
vector y, it is expected that method should show su-
perior performance when the membership functions of]
input variables are not well designed or input—outpyio)
observations contain large noise. Moreover, the inclusion
of the observation vectoy in deriving the permu-
tation matrix II (or equivalently the measure index
vector I1s) should also aid in improving the selectionl12]
accuracy.

The D-SVD method is the simplest among the fiv@s]
methods, but its performance is as good as that of thﬁ]
other methods in the present simulation.

There is no essential difference in terms of perfofi5]
mance among the SVD-QR, TLS, and D-SVD methods.
Because these methods often provide slightly differig)
ent subset of fuzzy rules but with nearly the same
performance, it is difficult to gauge which method idt7]
the best. Also, it is difficult to say which subset ofj18]
fuzzy rules is the best. This observation indicates th@t
the “importance of fuzzy rules” should be viewed a

a relative measure. Sometimes it may be necessary to
use more than one method to reveal various properti&$
of fuzzy rules. From a scientific standpoint, examiningpy;
fuzzy rules from different viewpoints is healthy and aids
in intuitive upstanding and creative thinking. 22]
The number of fuzzy rules that should be retained or
removed is determined by the number of “big” singular
values or the number of “small” singular values i
the firing strength matrix. The decision as to how big
is big and how small is small is really a subjectivd24]
matter and there is no strict mathematical tool that cape
count on [26]. This decision has to be made based
on the application at hand, and sometimes trial and
error is inevitable. It can be helpful to introduce somgg)
“objective” criteria to help the choice [36].

The application of orthogonal transformation for the 004-27]
struction of fuzzy rule based models is just at its beginnings]

and

results in this paper as well as those reported in several recppf

publ
very

much work remains to be done. However, the presented

ications [22] and [37]-[39] show that this technique is

promising and should become a valuable addition to t%]
fuzzy modeling workers’ tool kit.
(31]
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