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Identification of Key Variables Using Fuzzy Average
With Fuzzy Cluster Distribution
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William S. Marras, and Kermit Davis

Abstract—Identification of the significance of input variables is
very important for complex systems with high-dimensional input
space. In this paper, a method using fuzzy average with fuzzy cluster
distribution is proposed. To avoid the interference of different dis-
tributions of the sampling data, the distribution of fuzzy clusters in
the sampling data is considered, instead of the original data set. To
discover the input–output relationship, the methods of fuzzy rules
and fuzzy C-means are first used to partition the original sampling
data set into fuzzy clusters. A new data set with the same distribu-
tion of the fuzzy clusters is produced. The fuzzy average method is
then applied to the new data set. By doing so, the interference of
distribution of the original sampling data is removed. This method
is straightforward and computationally easy. The performance is
tested on both benchmark data and real-world data.

Index Terms—Fuzzy cluster, variable identification.

I. INTRODUCTION

I N modeling of complex systems whose input–output rela-
tionship is not well understood, it is very helpful to find out

the significance of each variable to the output of the system. If
inputs that have little or no influence on the output can be re-
moved and emphasis is put on the important variables, a more
parsimonious and more effective model can be built. Moreover,
a better understanding to those systems can be achieved if how
individual inputs affect the EMG/forces is discovered.

A. Problem Statement

The problem being investigated can be stated as follows.
For a system with one output variable and associated input

variables, sampling data points are obtained. Each data point
represents a joint measurement of all variables involved. The
input data vectors are of such form

(1)

Manuscript received February 21, 2005; revised February 18, 2006 and May
2, 2006. This work was supported by the National Institute for Occupational
Safety and Health under a research grant on the “Development of a Neuro-Fuzzy
System to Predict Spinal Loading as a Function of Multiple Dimensions of
Risk.”

Y. Hou and J. M. Zurada are with the Department of Electrical and Com-
puter Engineering, University of Louisville, Louisville, KY 40292 USA (e-mail:
y0hou002@louisville.edu; jacek.zurada@louisville.edu).

W. Karwowski is with the Department of Industrial Engineering, University
of Louisville, Louisville, KY 40292 USA (e-mail: karwowski@louisville.edu).

W. S. Marras is with the Institute for Ergonomics, The Ohio State University,
Columbus, OH, 43210 USA (e-mail: marras.1@osu.edu).

K. Davis is with the Department of Environmental Health, University of
Cincinnati, Cincinnati, OH, 45267 USA (e-mail: kermit.davis@uc.edu).

Digital Object Identifier 10.1109/TFUZZ.2006.889897

where denotes the th measurement of input variable
.

The output data vectors are of the following form:

(2)

where denotes the th measurement of the
output variable .

From the above sampling data of input–output pairs, the re-
lationship between each input variable and the output variable
(the relationship, ) should be found.

The difficulty of finding the relationship resides in that
the change of is caused by the joint influence of all the input
variables, instead of only the influence of .

B. Related Work

This problem has a broad applicability and some methods
have been proposed. In [1], Bartlett used a neural network
method. During training, the algorithm automatically constructs
an appropriate neural network architecture. The importance of
each input variable is provided as a by-product. This method
cannot determine in what way each input variable affects the
outputs. Also, different neural networks need to be developed,
which is time consuming.

Yuan and Klir used the full class of Mahalanobis distances
to search by an evolutionary algorithm for the optimal dis-
tance—one under which the fuzzy c-means algorithm produces
a fuzzy partition of the given data set that is as close as pos-
sible to the given crisp partition [2]. The contribution of each
variable to this partition is then inferred from parameter values
of the optimal Mahalanobis distance. This method employs
evolutionary computation and is computationally intensive.
The result obtained is not straightforward. Also, it brings no
information on how input variables affect the outputs.

Sugeno and Takahiro proposed an iterative algorithm for the
input identification [3]. Different models are generated to search
for the optimal combination of variables. The total number of
combinations is 2 1, where is the number of input variables.
For a high-dimensional system with many input variables, the
number of models needed will be very large.

Chiu used a backward selection procedure that starts with all
possible variables and reduces one variable at each stage [4].
Premises in the fuzzy rules of an initial model are systemati-
cally removed to search for the best simplified model. However,
after the iteration process of searching, different results may be
obtained when three different criteria for model selection are
used. Then a Takagi–Sugeno type model needs to be generated
for each solution. The final conclusion is made based on the
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comparison of the model errors, which makes the method com-
plicated and time consuming.

In [5] and [6], Lin et al. proposed their “fuzzy curves”
method. For each input variable data points are plotted
in the space. A fuzzy rule is defined according to each
sampling data point
in the following form:

IF is THEN is

where is a Gaussian membership function of .
A “fuzzy curve” can be produced using the defuzzification
method, which stands for the relationship. The signifi-
cance of the input variables is ranked according to the ranges
covered by the fuzzy curves.

This method is easy to understand and to calculate. The re-
sult obtained is straightforward. Lin et al. used this method in
fuzzy-neural system modeling to determine model structure and
set the initial weights in the model [5]. This method was also
used in many other papers such as [6]–[13]. In [6], the method
is used to eliminate spurious inputs and dependent inputs. In
[7], this method was used to set the initial parameters of the
neurofuzzy model. In [8], it was used to rank the input vari-
ables and determine the optimal rules describing the behavior
of the system. In [9], it was used to generate fuzzy models for
short-term load forecasting.

When trying to apply this method to the electromyographic
(EMG) signal estimation system for manual lifting tasks, it is
found that it did not always work well. The distribution of the
sampling data set will affect the result. In other words, signifi-
cance of the input variables obtained from this method may vary
from sampling to sampling. Obviously, this should not happen
because influence of each input variable is an inherent property
of a system, regardless of the distribution of the sampling data.

In Section II, limitation of the fuzzy curve method is pointed
out and is improved with fuzzy average with fuzzy cluster dis-
tribution (FAFCD). In Section III, the proposed method is tested
on benchmark data and the EMG estimation system.

II. METHODS

As mentioned in the prior section, in the method of fuzzy
curves, a fuzzy rule is defined according to each sampling data
point . From data points, fuzzy rules can be ob-
tained. The fuzzy membership functions for input variable
are Gaussian membership functions centered at

(3)

where and are center and width of the membership func-
tion, respectively.

Then the fuzzy curve is produced from defuzzification

(4)

The authors of [5] demonstrated and validated this method
using a nonlinear system defined as

(5)

Fig. 1. (A) The x � y relationship from defuzzification. (B) The x � y

relationship from defuzzification. (C) The distribution of inputs x and x .

where and are two input variables and is the output
variable.

Here the defuzzified curves of in and space
are plotted in Fig. 1(A) and (B), respectively. The sample data
were generated using formula (5) with and uniformly dis-
tributed in the interval [0,3] in Fig. 1(C). in the figure is the
ratio of the range of covered by the curve to the whole range of

. It is used to represent significance of the corresponding input
variable instead of using the ranges covered by the fuzzy curves
as in [5].

It can be seen that the curves can correctly reflect the
relationship and relationship. However, can this still work
if the distribution of the sample data changes? Fig. 2(A) gives us
a different result of the relationship when the data were
generated with and shown in Fig. 2(B). It seems that if
the sampling data are not uniformly distributed, the curves will
be distorted. This example shows that the fuzzy curve method
puts restrictions on the distribution of sampling data. Below the
reason will be pointed out and a new approach will be derived.

A. The Method Depends on Distribution of Sampling Data

As stated before, the importance of the input variables is
ranked according to the ratio of the range of covered by the
curve produced from defuzzification to the whole range of

. Let us define the ratio as influence rate ; then for input
variable

(6)

where is the highest point on the curve and is the
lowest point on the curve. is the whole range of .

and are calculated from (4). The membership
of each value of to all the membership functions is cal-
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culated for (4). In (3), the width of the Gaussian membership
function is often taken as about 20% of the length of the input
interval of . If the width is very small, only those mem-
bership functions with a center (mean of the Gaussian function)
close to current value of will have a significant value, while
the membership functions far from it will have a value close to
zero. When

(7)

Substituting (3) and (4) into (7) yields

(8)

when , only those membership functions with their cen-
ters equal to and need to be taken into account. The mem-
berships of and to the other membership functions are
zero. Suppose there are membership functions with a center
equal to and membership functions with a center equal to

; then (8) becomes

(9)

where are the values of when
; and are the values of when .
Equation (9) indicates that the range of the curve (when

) is the difference between the average value of at
and the average value of at .

If is not approaching zero, the value of at takes
into account those data points around . But it is still a
weighted average. Since it has a meaning of average carried in a
fuzzy sense, we call it fuzzy average. After expressing the value
of the defuzzified curve for at as a weighted average
that takes the points around into account, the next thing
needed is to find out what determines the value of this average.
For simplicity, the condition when is considered. In
this condition, the value of the fuzzy average at is the
arithmetical average of at

(10)

is the fuzzy average value of at in the
space. The value of depends on the values of

at (the values of ). The values of are decided by
both the system function and the values of the input variables.

Let us define the system function as

(11)

where is the system function and is the output vector.
From (10), the average value of at in the

space is

(12)

where , assuming data points at . For
easier notation, fuzzy average of in the space is con-
sidered. Using to represent , the fuzzy
average of in the space becomes

(13)

where is the number of data points at each value of (they
are not the same for different values of ).

From (13), it can be seen that only when vectors
are the same for all is determined only

by , so that function (13) can reflect the relationship.
Otherwise is determined by all the input variables, and
therefore cannot reflect the relationship between and .

Fig. 1 is the two-dimensional example with two input vari-
ables and , in which has the same values at each value
of [Fig. 1 (C)]. The fuzzy average of in the space
reflects the relationship correctly. While in Fig. 2,
does not have the same values at each value of . Therefore,
the fuzzy average of cannot correctly reflect the rela-
tionship.

Thus it can be stated that to find out the relationship
using fuzzy average method, each of the input variables should
have the same values along the axis of , respectively. For the
real-world data, this requirement is normally hard to meet. How-
ever, if many sampling data points spread all the range of , the
fuzzy average of in space can reflect the relation-
ship as long as has roughly the same distribution at any value
of . Fig. 3 shows the result of this condition. In Fig. 3(B),
was generated randomly using Matlab command “rand” with
uniform distribution. The fuzzy average method works in this
situation [Fig. 3(A)].

For many practical applications, it cannot be assumed that all
input variables have the same distribution along axis. This
means for a certain system, if different sampling data sets are
used, the fuzzy average may be different. Then the conclusion
for the importance of input variables may be different. There-
fore, a more representative data set is needed to determine the
influence of input variables.

B. Change the Distribution of Sampling Data Using Fuzzy
Clustering

Using fuzzy average method, the significance of variable
can be correctly evaluated without the interference of other input
variables only when all other input variables have the same dis-
tribution along axis. To transform the sampling data set into
this form, fuzzy clustering is used to change the distribution of
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Fig. 2. (A) The x � y relationship from defuzzification. (B) The altered dis-
tribution of inputs.

Fig. 3. (A) The x � y relationship from defuzzification. (B) The random dis-
tribution of inputs.

the data set. Again the example of the system with two input
variables and shown in Fig. 1 is used.

Suppose more data points fall into a small region than into
other regions in the space [as in Fig. 2(B)]. Fuzzy
clustering methods are considered to divide the data points into
groups. The number of data points in each group (fuzzy cluster)
will be different since the distribution of the data is uneven. If
one data point (for instance, the fuzzy cluster center) is used
to represent each group, a new data set with the distribution of
fuzzy clusters can be obtained. Since a different number of sam-
pling data in small regions will be replaced by the same number
of cluster center, a new data set with better distribution may be
obtained.

Below, the fuzzy C-means method is used to cluster the data.
Then, after discussing the drawback in this application, an im-
proved method is proposed.

1) Fuzzy C-Means Method: Each of the data points repre-
sents a point in the -dimensional Euclidean space ( is the
input dimension). The purpose of clustering is to partition the
data set into clusters in such a way that data points in each cluster
are highly similar to each other, while data points assigned to
different clusters have low degrees of similarity.

Fuzzy C-means (FCM) allows one data point to belong to two
or more clusters [14], [17]. It provides a method that groups
data points in multidimensional space into a specific number of
clusters. It is based on minimization of the following objective
function:

(14)

Fig. 4. Clusters generated using FCM. “X” is the original data point; “O” is
the fuzzy cluster center.

where is the number of clusters, is the degree of member-
ship of in the cluster is the th of -dimensional mea-
sured data, is the -dimensional center of the cluster, and
is a norm expressing the distance between measured data and
cluster center.

FCM is used to cluster the data shown in Fig. 2(B). The
number of clusters is predefined as 50. Then the produced 50
centers of the clusters are used to form a new data set. After this
process, the distribution of the obtained new data set is shown
in Fig. 4. The crosses are the original data points and the circles
are the centers of the clusters.

Apparently, the distribution of the data did not change. Why
can FCM clustering not change the distribution? It is known that
during the iteration process of FCM, the membership is updated
though

(15)

and the cluster centers are updated though

(16)

The membership and the cluster centers are updated to min-
imize the total weighted distance between data points and the
cluster centers of the fuzzy partition. Thus it is reasonable that
in areas where more data points exist, there must be more cluster
centers in order to make the total weighted distance between all
data points and the cluster centers smaller. Therefore the data
distribution cannot be changed only using FCM.

2) Generate Even Cluster Distribution: To generate better
cluster distribution, the input space is partitioned using fuzzy
rules before applying FCM. A fuzzy rule base is built for the
nonlinear system. Those data points that can excite a particular
fuzzy rule with high firing strength are grouped to the same
partition. The fuzzy rule base is in the following form.

IF is and is and and is THEN
is .
IF is and is and and is THEN
is .
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Fig. 5. Partitions generated by fuzzy rules (with fixed width � ).

IF is and is and and is THEN
is

where and are fuzzy
sets of and , respectively.

The fuzzy partitions generated by the fuzzy rules are shown
in Fig. 5. If the width of Gaussian membership function is
the same for all the fuzzy sets, the partition is an even partition.

The method is implemented as follows: the first sampling data
point is taken as the center of a cluster, and a corresponding
fuzzy rule is built. The parameters are chosen as follows:

(17)

(18)

where is the range of the input variables (normalized to the
same range).

For every sampling data point, the firing strength (degree of
fulfillment) of each existing rule is calculated

(19)

AND operation is used in (19).
If the firing strength

(20)

then the sampling data point is close to the data points in the
partition. Thus it belongs to this partition. is a predefined
threshold as the least acceptable degree, and it determines the
extent of the similarity to be classified into the partition. If the
firing strength is less than the threshold , then a new fuzzy rule
(a new partition) should be created.

After all the data are partitioned, FCM algorithm is used to
cluster data points in each small partition. The same number of
clusters is set for each small partition. Or, if the partition is small
enough, only one cluster is set for each partition, and its center is
found by FCM. It would be nice to use the centers of the clusters
to represent the clusters. But for real-world systems, the corre-
sponding output of the system to the centers are not available,
if the centers are not coincident to the existing data points. So
the closest sampling data point to the center of a cluster is used
to represent the cluster. The closest data point is decided by its
Euclidean distance to the center

(21)

Fig. 6. Procedure of FAFCD.

There is a loss of information during this process, but the
number of partitions can be controlled to make sure only redun-
dant data points are removed while keeping enough data points
to represent all the sampling data in the input space. This is done
by adjusting . If , then each sampling data point is a
partition; if , only one partition obtained.

When only one cluster is set for each partition, the number of
clusters is the same as the number of partitions. So if is too
small, the distribution may not change and the number of clus-
ters will be large; if is too large, some clusters may be com-
bined into other clusters and their representation is lost when
only the cluster center is kept. is taken as 1/30 of the range
of the normalized input variables. This can partition the input
space into many small partitions, which can represent the input
space adequately, and at the same time the redundant sampling
data points in each partition are removed.

The procedure of FAFCD is shown in Fig. 6.
Distribution of the data in Fig. 2(B) becomes better after

being processed by the above method [see Fig. 7(B)]. Hence the
fuzzy average of in space can reflect the relation-
ship correctly now [Fig. 7(A)]. These results are very similar to
those generated in Fig. 1, which is a uniform distribution.

C. Other Considerations

Some considerations and improvements should be imple-
mented.

1) Data Normalization: Before applying FAFCD, the data
set should be preprocessed. Since different variables are mea-
sured in different units and with different numerical ranges, a
bias may be introduced to the process. Thus the data need to be
normalized

(22)

where is the value after normalization; is the data to be
normalized; is the minimum value of vector ; and

is the maximum value of vector .
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Fig. 7. Results using FAFCD. (A) The x �y relationship from defuzzification.
(B) The distribution of inputs.

2) Calculate Less Membership Functions: When using the
fuzzy average method, all existing membership functions
for each value of in (4) are calculated. If the center of a
membership function is far away from the current value
of , which means is big, the value of the membership
function becomes very small and has not much influence on the
fuzzy average value. For instance, when , the value
of the membership function is very small

(23)

Therefore only the membership functions whose centers are in
the range of 3 need to be calculated. The values of the other
membership functions are very small and can be neglected. This
can reduce the number of membership functions to be calcu-
lated. For the example used in the simulation section, there are
29 880 data points, which means for each value of , 29 880
membership functions need to be calculated. If only the mem-
bership functions whose centers are in the range of 3 are cal-
culated, this number can be reduced to 1/10 of the total number
of membership functions. So the fuzzy average can be obtained
much faster with almost no quality decrease.

3) Remove Outliers: During our clustering process, outliers
often become individual clusters. When the cluster center is
used to form a new data set, the outliers are kept. If the sam-
pling data set has a large number of data points, those clusters
containing very few data points (predefine a threshold) can be
removed. Outliers normally can be removed by doing so. The
threshold should be determined according to the total number
of data points.

III. SIMULATIONS AND RESULTS

The performance of FAFCD is evaluated using two example
data sets. In the first experiment, the algorithm is evaluated using
the well-known example of gas furnace data set given by Box
and Jenkins. In the second experiment, it is evaluated using the
automobile fuel consumption prediction problem. Finally the
method is applied to the EMG signal estimation system.

A. Evaluate FAFCD on the Gas Furnace Data Set

The method is applied to the well-known Box and Jenkins
gas furnace data from [15]. This data set was also used in [3],

[4], and [16] to identify the key variables. This time series data
set has the gas flow rate as input and CO concentration

as output. There are 296 such input–output data pairs. As in
[3] and [4], a dynamic process model is extracted from the data
by taking ten variables

as input and as output. Using
to denote the ten-variable input vector, 290 data pairs
obtained. FAFCD is applied to this data set to find significance
of input variables.

Fig. 8 shows the relationship between some input variables
and the output. The inputs

are normalized to (0,1). Table I shows the influence rate (defined
earlier) of all the input variables.

According to Table I, the top three input variables are deter-
mined as , and . This result is similar
to [3]. In [3], different models were generated while searching
for the optimal combination of variables. There were 24 models
generated before the top three input variables were identified. If
the importance of all the ten input variables needs to be ranked,
the number of models needed will be even larger. The method
used in [4] is also complicated and time consuming. To deter-
mine the important variables, premises in the fuzzy rules of an
initial model are systematically removed to search for the best
simplified model. After the searching process, different impor-
tance of top three input variables was obtained using three dif-
ferent criteria for model selection. Then for each solution, a
Takagi–Sugeno type model was generated. The final conclusion
was made based on the comparison of the model errors. Com-
pared to these methods, the FAFCD approach is more straight-
forward and computationally efficient.

B. Evaluate FAFCD on Automobile Fuel Consumption
Prediction Problem

The automobile fuel consumption prediction problem uses
variables such as model year and horsepower to predict miles
per gallon (MPG) of the automobiles. FAFCD is used to find
the significance of those input variables to the MPG of the au-
tomobile.

The data set used here is from the UCI Machine Learning
Repository. It consists of 392 complete instances without
missing values. Each instance is composed of six input vari-
ables (number of cylinders, displacement, horsepower, weight,
acceleration, and model year) and one output variable (MPG).

The input variables and output variable are denoted as
and , respectively. Using FAFCD, the re-

lationship can be obtained for each input variable. Fig. 9 shows
the relationship between two input variables and MPG.
From the result, it can be found how each input variable affects
the output.

The influence rate of each input variable is obtained using
FAFCD. Table II shows the results for the six input variables.
From the influence rate of each input variable, the conclusion
is obtained that the variables weight and horsepower have the
most significant influence on the MPG of an automobile.

If the distribution/density of the original data set is changed
by repeating some of the data points (Table III), the influence
rate of acceleration obtained without clustering (the method
used in [5]) becomes 0.6076 [Fig. 10(A)], while the influence
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Fig. 8. Relationship between some input variables and the output obtained using FAFCD. x ; x ; x , and x stand for y(t�1); y(t�4); u(t�1); and u(t�4),
respectively. (A) y(t� 1)� y(t) relationship. (B) y(t� 4)� y(t) relationship. (C) u(t� 1)� y(t) relationship. (D) u(t� 4)� y(t) relationship.

TABLE I
INFLUENCE RATE OF INPUT VARIABLES FOR GAS FURNACE DATA

rates of other variables remain almost unchanged. Then the
conclusion becomes that acceleration is the most important
variable, which is incorrect. If the FAFCD method is used, it
can give an influence rate of acceleration of 0.5612 [Fig. 10(B)].
Thus the conclusion of significance of variables will not be
affected. That is because in FAFCD, the distribution of fuzzy
clusters is used instead of using the distribution of the original
data set.

C. Evaluate FAFCD on EMG Signal Estimation System

EMG signal estimation system is a model in which kine-
matic parameters during a motion (kinematics variables) and
anthropometric characteristics of subjects (subject variables)
are used to estimate the corresponding EMG signals in ten
trunk muscles generated during the manual lifting motion of
the subjects. In this system, which variables affect the EMG

signals is unknown because the muscle activities are not com-
pletely understood and are still under study. Our objective
is to find out those variables that have significant influence
on EMG signals.

1) Input Variables: Not knowing which variables affect the
EMG signals, all the associated kinematic variables and sub-
ject variables are recorded. Tables IV and V show all the kine-
matic variables and subject variables, respectively. The 12 kine-
matic variables are dynamic variables which change their values
during the motion. The 15 subject variables are static variables
which are the anthropometric characteristics of the subjects, and
they are the same during a motion for a particular subject. The
sampling data set contains six trials of motions conducted by
249 subjects. Each trial has 20 sampling data points. Every sub-
ject conducted all the trials. Therefore the total number of data
points is

(24)

where is the number of subjects and is
the number of trials. Each data point consist of 27 input
variables and ten output variables

. The output variables are EMG signals
of ten trunk muscles.

2) Results: To calculate the relationships and identify
key variables of the system, the distribution of the original data
set without clustering is first used. The results obtained are not
satisfactory. For some of the input–output relationships, there
is a drop in the middle of the range of variable . An example
is shown in Fig. 11(A). This relationship is surely incorrect for
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Fig. 9. Relationship between two input variables and the output obtained using FAFCD. (A) Weight (x )-MPG (y) relationship. (B) Acceleration (x )-MPG
(y) relationship.

Fig. 10. Results on the modified MPG data using different methods. (A) Without clustering (method used in [5]). (B) Using FAFCD.

TABLE II
INFLUENCE RATE OF INPUT VARIABLES FOR THE FUEL CONSUMPTION

TABLE III
DATA POINTS REPEATED TWICE

some variables and is uninterpretable from the ergonomics point
of view. Sometimes when different portions of the data set were

TABLE IV
KINEMATIC VARIABLES (DYNAMIC)

TABLE V
SUBJECT VARIABLES (STATIC)

used, different relationships were obtained. Therefore the dis-
tribution of the sampling data affected the result. Certain con-
ditions may have appeared more frequently during the motion
than other conditions and thus have distorted the fuzzy average
curve.

Then FAFCD is used to obtain the input–output relationships
on the new data set produced using fuzzy clustering. Procedures
in the flowchart as shown in Fig. 6 were followed. All input
variables in the original data set are normalized to the range of
[0,1]. The output variables (the normalized EMG signals) are
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Fig. 12. Relationship between the kinematic variables (x axis) and EMG signals (y axis) of the muscle right latissimus dorsi (RLD). Variables from (A) to (L)
are in the same sequence as in Table VII.

Fig. 11. The relationship between axis trunk velocity (x axis) and EMG signals
(y axis). (A) Without clustering and (B) after clustering.

TABLE VI
SUMMARY ABOUT THE CLUSTERS

also in the range of [0,1]. Then the data points were clustered
as described in Section II. A summary of cluster properties is
shown in Table VI. Those clusters containing fewer than ten data
points (about 0.033% of the total) are considered as outliers and
are removed from the data set.

Then FCM algorithm was used to find centers of the rest clus-
ters. By comparing the Euclidean distance of each data point in
a cluster to the center of this cluster, the closest data point to
the center is found. Using this data point to represent the corre-
sponding cluster, a new data set with a different distribution to

the original data set was obtained. On this new data set, the fuzzy
average of in each space was calculated. Fig. 11(B)
shows the result of the same example as in Fig. 11(A), using
FAFCD. As expected, the drop in Fig. 11(A) disappeared and
the result has a clear physical explanation now. Fig. 12 shows
the relationship between all kinematic variables and EMG sig-
nals of muscle right latissimus dorsi. Fig. 13 shows the rela-
tionship between all subject variables and EMG signals of this
muscle. The relationships of inputs to the other muscles can
be obtained similarly. With these relationships, a better under-
standing to the muscle activities can be gained. At the same time,
the importance of the input variables is indicated by their influ-
ence rate .

Table VII shows the influence rate of each kinematic variable
to each output. The first row is the name of the muscle; the first
column is the name of the kinematic variable. Table VIII shows
the influence rate of each subject variable to each output. The
first row is the name of the muscle; the first column is the name
of the subject variable. Based on the influence rate, key variables
can be identified.

According to Tables VII and VIII, significance of the kine-
matic variables and subject variables are ranked as shown in
Figs. 14 and 15, respectively. It is clear that kinematic variables
are more significant than subject variables. Thus, these 12 kine-
matic variables should all be selected as inputs in modelling.
This is a reasonable conclusion and agrees with our hypoth-
esis. As for subject variables, four variables (standing height,
shoulder height, lower arm length, and spine length) are more
significant than the others. These variables should also be taken
as inputs in modelling. However, by examining the two vari-
ables “standing height” and “shoulder height” in Table VIII, it
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Fig. 13. Relationship between the subject variables (x axis) and EMG signals (y axis) of the muscle right latissimus dorsi. Variables from (A) to (O) are in the
same sequence as in Table VIII.

is found that the influence rates of these two variables are very
similar, for every muscle. In other words, these two variables are
correlated. They are dependent variables to each other. There-
fore, one of them can be removed.

3) Validation: As stated before, the result of FAFCD shows
that kinematic variables are more significant than subject vari-
ables. This is a reasonable conclusion from the ergonomics point
of view since kinematic variables are directly related to the mus-
cular activities. For kinematic variables, it is certain that the vari-
able “sagittal trunk moment” is the most significant variable in
the EMG estimation system for manual lifting tasks. Result in
Fig. 14 shows that FAFCD has correctly identified significance
of this variable. For subject variables, four of them (standing
height, shoulder height, lower arm length, and spine length)
have been identified by FAFCD as the most significant sub-
ject variables. Coincidentally, these four variables apparently af-
fect the moment arm during manual lifting tasks that involve a
bending motion.

To further validate the results given by FAFCD, two feed-
forward neural network models for EMG estimation were con-

structed. The “basic model” with one hidden layer described in
[18] was used. In this traditional neural network structure, every
input variable has an equivalent position. In Model I, all 12 kine-
matic variables and 15 subject variables are used as input; in
Model II, only variables identified as significant variables are
used, including all kinematic variables and three subject vari-
ables (shoulder height, lower arm length, and spine length). As
stated before, standing height is correlated with shoulder height,
so it is removed from Model II. The input dimension is de-
creased from 27 to 15. EMG signals of ten trunk muscles are
output variables of the neural networks.

Model performance was tested based on 1494 lifting trials
(the same data set used for FAFCD). The conservative cross-val-
idation method was employed. Every time 1/4 of the data is
taken out for test and the other 3/4 used to train the model. A
different 1/4 is taken for test and the rest used for training the
next time. Continue this process until all the data are evaluated
for test. Simulation results showed that removing 12 less signif-
icant subject variables did not notably decrease the performance
of the EMG estimation model. Mean absolute error of all mus-



HOU et al.: IDENTIFICATION OF KEY VARIABLES USING FUZZY AVERAGE WITH FUZZY CLUSTER DISTRIBUTION 683

TABLE VII
INFLUENCE RATE OF KINEMATIC VARIABLES (SAG. = SAGITTAL, LAT. = LATERAL, MOM. = MOMENT, ANG. = ANGLE, VEL. = VELOCITY, AND

ACC. = ACCELERATION)

TABLE VIII
INFLUENCE RATE OF SUBJECT VARIABLES (LEN. = LENGTH, DEP. = DEPTH, PEL. = PELVIS, BR. = BREADTH, XY. = XYPHOID, AND CIR. = CIRCUMFERENCE)

Fig. 14. Rank kinematic variables by their average influence rate (1: sagittal
trunk moment, 2: lateral trunk moment 3: axis trunk angle 4: sagittal trunk ve-
locity, 5: axis trunk moment, 6: sagittal trunk angle, 7: axis trunk acceleration,
8: sagittal trunk acceleration, 9: lateral trunk velocity, 10: axis trunk velocity,
11: lateral trunk angle, 12: lateral trunk acceleration).

cles for Model I and Model II are 7.47% and 7.52%, respec-
tively.

IV. CONCLUSION

FAFCD can find out the significance of specific input vari-
ables and how they influence the output, without the interference
of the distribution of sampling data set. The method is straight-

Fig. 15. Rank subject variables by their average influence rate (1: standing
height, 2: shoulder height, 3: lower arm length, 4:spine length, 5: lower leg
length, 6: body weight, 7: trunk breadth (xyphoid), 8: trunk circumference, 9:
trunk depth (xyphoid), 10: trunk breadth (pelvis), 11: upper arm length, 12:
elbow height, 13: upper leg length, 14: trunk depth (pelvis), 15: age).

forward and easy to implement. Knowing the significance of
candidate input variables, complexity of the model and time of
modelling may be greatly reduced.
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