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Abstract—During the last two decades a considerable amount of effort
has been devoted to the analysis of the influence of both training and
testing sample size on the design and performance of pattern recogni-
tion systems. These questions are interesting to practitioners as well as
theoreticians, because the small-sample effects can easily contaminate the
design and evaluation of a proposed system. For applications with a large
number of features and a complex classification rule, the training sample
size'must be quite large. A large test sample is required to accurately
evaluate a classifier with a low error rate. The design of a pattern
recognition system consists of several stages: data collection, formation
of the pattern classes, feature selection, specification of the classification
algorithm, and estimation of the classification error. In this paper, we will
discuss the effects of sample size on feature selection and error estimation
for several types of classifier. In addition to surveying prior work in this
area, our emphasis is on giving practical advice to today’s designers and
users of statistical pattern recognition systems.

Index Terms— Classification error, classifier design, curse of dimen-
sionality, feature selection, statistical pattern recognition, test samples,
training samples.

1. INTRODUCTION

URING the last two decades a considerable amount of effort

has been devoted to the analysis of the influence of both
training (also called design or learning) and testing sample size on
the design and performance of pattern recognition systems (see,
e.g., reviews [2], [5], [8], [13], [20], [22], [36], [46], [52]). These
questions are interesting to practitioners as well as theoreticians,
because the small-sample effects can easily contaminate the
design and evaluation of a proposed system. For applications
with a large number of features and a complex classification
rule, the training sample size must be quite large. A large test
sample is particularly essential to accurately evaluate a classifier
with a very low error rate.

The design of a pattern recognition system consists of several
stages: data collection, formation of the pattern classes, feature
selection, specification of the classification algorithm, and esti-
mation of the classification error. In this paper, we will discuss
the effects of sample size on feature selection and error estimation
for several types of classifier. In addition to surveying prior
work in this area, our emphasis is on giving practical advice
to today’s designers and users of statistical pattern recognition
systems. The paper is organized as follows. Section II introduces
the classifiers we will focus on in this paper. In Section III, we
explore classifier design in the context of small design sample
size. The estimation of error rates under small test sample size
follows in Section IV. Section V investigates sample size effects
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in feature selection. Section VI presents recommendations for the
choice of learning and test sample sizes. Section VII contains
some recommendations for the desigmners of pattern recognition
systems. We make use of the following notation in this paper.

* X=[X,,- -,XP]T: a pattern (or feature vector). The indi-
vidual features are the X;.

* p: the dimensionality (number of features).

* g;: the prior probability of class ;.

* fi: the class-conditional density function of class ;.

* 8(X) = 1 /i(X) — ¢ fo(X): the Bayes discriminant function.

¢ X)) = a1 iX) — @ fo(X): the sample-based discriminant
function. ’

* §%(X): the sample-based discriminant function of a classifier
a.

* PMC: The probability of misclassification (or error rate).

* Pp = [ymin{g f(X), /2(X)} d(X) : Bayes PMC.

II. CLASSIFICATION ALGORITHMS

In the pattern recognition literature, there are a large number
of ways to use sample observations to design a classification
rule. One can use a statistical decision function approach with
the Gaussian or exponential family of distributions along with
a dozen of structural forms for the covariance matrices. One
can further assume the covariance matrices to be equal or
different for the various pattern classes. Classical maximum
likelihood approaches can be used to estimate the parameters
of the probability density functions corresponding to the pat-
tern classes. In case of complex multimodal pattern classes,
one can use a number of modifications of piecewise linear,
piecewise quadratic classification rules, artificial neural networks,
nonparametric Parzen window classifiers, or K-NN classifiers.
The latter two can differ in the metric used to define the distance
between two pattern vectors, and in methods used to edit the
learning sample. There are several versions of classifiers based
on potential functions [9] differing in a family of transformations
of the pattern vector X, and in the optimization criteria. There
are at least eight types of pattern error functions used to evaluate
an empirical risk function in order to design linear and piece-
wise linear discriminant functions and artificial neural networks.
Nearly two dozen methods exist for finding classification rules
using heuristics when different similarity measures are applied
to define the similarity between vector X, and the class ..
A number of statistical models and expansions are known for
approximating discrete distributions which can be used to design
the classification rule for observations characterized by discrete
or mixed variables. Therefore, the total number of classification
methods which have been proposed in the pattern recognition
literature exceeds two hundred.

Below, we describe several important classifiers, which have
seen practical use. We will concentrate on the two-class problem
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Fig. 1. Bayes PMC, asymptotic PMC, and conditional PMC for the Eu-
clidean distance classifier. g1 and gy are the true means, Aow = ﬂ—z—”—z

and Ay — E4E0

random variable.

, where T is the sample mean of class 7;; A N isa

in this paper. An unclassified p-dimensional multivariate feature
vector X is allocated to the class 7, if the discriminant function
(DF) g(X) is positive and to the class 7, otherwise.

The quality of a classification rule will be characterized by
its probability of misclassification (PMC). There are several
definitions of PMC which are important in classifier design.
In the following definitions of PMC, we are assuming that the
number of test samples is infinite. In Section IV, we discuss the
estimation of PMC when only a finite number of test samples
is available.

* Bayes PMC: Pg is the PMC of an optimal Bayes classifier.

* Conditional PMC: Py is the PMC of the classifier « trained
on a given training sample of size N. The conditional PMC
Pg is itself a random variable, since it is a function of
the training samples. We assume that the training samples
are labeled (i.e., we are working in the supervised learning
mode).

* Expected PMC: EPg is the expectation of Py over all
random training samples of sizes N; and N,. N = N; + N,.

* Asymptotic PMC: the probability of misclassification under
the classifier o designed with an infinite number of training
samples.

im EPg

N ,Ny— oo

Pe= ey

Note that P2 can be different for different classifiers .
Also, Pg > Pg for all classifiers a.

Fig. 1 shows the Bayes error for a two-class one-dimensional
problem, where ¢g; and fi(x) are the prior probability and class-
conditional density of class 7;, i = 1,2. The conditional PMC
and the asymptotic PMC of the Euclidean distance classifier
(described below) are also shown in Fig. 1.

We now briefly review six commonly used classifiers and
provide the corresponding discriminant functions.

A. Euclidean Distance Classifier

This classifier makes classifications only according to sample

means, X ® and X of the two classes. Its discriminant function
is written as

0 = (x-x")" (x -x)
- (x- "X“’)T (x-x)
— 9. {X _ %(—X(l) +Y(2))JT(YU) _ 7(2))'

@

The Euclidean distance classifier can be used when the pattern
classes are well separated or when we want to implement a simple
decision rule.

B. Fisher’s Linear Discriminant

This is perhaps the most commonly used classification rule.
The discriminant function is given by

3 (X) = [X _ %(Y‘” +7<2>)r5_1 ('X“) _ Y(Z’)

+ 2 ©)
g2 .

where g; and g, are the prior probabilities of the classes 7 and
5, Tespectively, and § is the sample covariance matrix (assumed
to be common to both classes). It is an asymptotically optimal
rule for the classification of Gaussian populations with a common
covariance matrix.

C. Quadratic Discriminant Function

X - X‘Z’)Ts;l (x-x7)

- (x-X) s (x -X%) 41 : S?:Z:

Q)

where §; and S, are the sample estimates of the class-conditional
covariance matrices, and |S;| denotes the determinant of §;.
Many authors have noted that the linear discriminant function
is robust to nonnormality of patterns [25], [30], [40], {42].
The quadratic' DF, however, often significantly suffers from
nonnormality of the data. There have been some attempts to
obtain more robust discriminant functions (see, for example, the
review in [6]). The quadratic DF (4) is a plug-in rule obtained
from an optimal quadratic DF for two Gaussian populations
where sample means and sample covariances have replaced the
true parameters. But the resulting sample-based DF (4) is not
“optimal” in the Bayesian sense [9]. It is important to note that,
when training sample sizes N; and N, from the two classes
are unequal, then the performance of the plug-in discriminant
functions is further degraded [7]. For example, when the class-
conditional distributions are multivariate normal with 40 features
and true covariance matrices » ,, = 23, and the asymptotic
PMC is P,, = 0.034, then for tralmng samples of sizes N; =
N, = 200, the expected PMC EPZ = 0.151. However, when
N, = 200 and N, = 2000, EP% = 0.169 [18]. The main
reason for the nonoptimality of the plug in discriminant function
is its bias [7], [22]. The use of unbiased estimates of multivariate
Gaussian densities [1] or Bayes density estimates [27], [15] also
result in biased discriminant functions and does not improve

“the performance of the quadratic -discriminant function when

N; # N,. Grabauskas [18] found the expected value of (4) and
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proposed an unbiased quadratic discriminant function, which has

the form
2
: —(N\T
gQU(X) - Z(_I)JH{(I — ]V%) (X —X(])> Sj—l
=1
(X —Y(j))-+ ln‘—SL’
q;
P .
N: —
_ ZW( J2 Z) +plan},
i=1
©®)
where U(r) is the Euler ¥ function:
1
g 1)= ~ -
(r+1) C+;S
v +l- C212+2§:‘ ! 6
"T2)7 T LT )

This discriminant function has a lower error rate than §? (X)
in the finite training sample case: EPRY = 0.096 when N, =
Ny = 200, and EPZY = 0.085 when NV; = 200 and N, = 2000
(X, =23, p =40, P2 = 0.034).

D. Parzen Window Classifier

The Parzen window classifier does not assume a particular
form for the class-conditional densities. Its discriminant function
is

and depends on the window function K(-) and on the value of
. the smoothing parameter A. The most popular window functions
are the exponential window

K<X“§Z) = exp(- (X-¥) (X~ Y)> ®)

A2

and the logistic window

K’<X;Y> - A2+(X—§)T(X—Y)‘

)

Skurikhina [53] has tested 13 types of window functions (includ-
ing Gaussian, logistic, trapezoidal, triangular, and sinusoidal) and
found that with the proper selection of smoothing parameters, all
13 classifiers had nearly equal error rates. However, the value of
the smoothing parameter is very important. It has been proved
theoretically [9], [57] that the value of ) should decrease with an
increase in the design sample size N. The Taylor series expansion
of the window function in (8) yields

F(X) = 5 (X) +u(S) - w(Sy),  (10)
when A — oo, where tr(S) denotes the trace of the matrix
S. Thus, the Parzen window classifier becomes similar to the
Euclidean distance classifier as the window width increases.
On the other hand, when A — 0 the Parzen window classifier
with the exponential or logistic window coincides with the
1-NN classification rule. An optimal value of A which minimizes
classification error depends both on the design samplé size and

Py

0.20 |

0.154

0.10 7

Ny = N, =200

0.05

T T T
0.01 0.1 1.0 10 100 1000 A

Fig. 2. Dependence of -the conditional PMC (Py) on the value of the
smoothing parameter A (data obtained from the 1976 Pattern Recognition
Competition [3]: curves 1 and 2 correspond to original 27-variate data; curves
3,4, and 5 correspond to the situation when the same data has been projected
along its principal components).

on the distribution of the pattern vectors f;(X). When we have
two Gaussian populations with equal covariance matrices, the
optimal decision boundary is a hyperplane and A should be
very large. When we have complex multimodal distributions
and the decision boundary is extremely nonlinear, then even for
small design sample sizes we have to use a small value of the
parameter A. The shape of the curve showing the dependence
of the expected probability of misclassification on the value of
the smoothing parameter A, depends significantly on the true
probability functions of the classes (Configuration of an optimal
Bayes decision boundary). Several typical curves are presented
in Fig. 2. They show the importance of the problem of determi-
nation of optimal value of the smoothing parameter Aopt- Many
different criteria have been used to find Aopt [23]. Theoretical
considerations can show only the qualitative characteristics of
the dependence of the optimal value of the smoothing parameter
on dimensionality and sample size. It is impossible to find an
optimal A, A\, which minimizes the error rate for all class-
conditional densities. In order to find Aopt for a particular problem,
we recommend evaluating the classifier’s performance for several
values of A and choosing that value which provides the best
performance. When the variances of all the p features in X
differ significantly and we use the same A for all the features
then it is often necessary to normalize the features prior to
use in the classifier. In such a case, Ao Often falls in the
interval (0.01,10.0). In most practical problems, the valley of
the dependence curve EPy = ¢n()) is rather flat. Thus, a set
of ten values: 0.001, 0.01, 0.03,0.1,0.3, 1, 3, 10, 100, 1000 is often
sufficient to empirically determine Ay

Evaluation of the classification errors of Parzen window clas-
sifiers for ten different values of A can be computationally
demanding. Most of the computation time is spent in calculating

distances d (X , Xg-i)) between the input pattern X from the test
sample and X", the Jth training pattern from the ith class.

J
(x-x)" (x - x0)
P

=Y (x.- X§?)2

s=1

a(x, x9) =
(11)

To conserve computer time, we recommend that all ten er-
ror rates be estimated simultaneously. After ﬁnding the dis-
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XY)

tance d{ X, X; @ ) we calculate the ten terms i(—:\——, r=

1,---,10 correspondmg to each value of ), and classify the
vector X for each value of ),. The computer time required to
obtain ten simultaneous estimates of error rates is considerably
smaller than the time for ten independently obtained estimates.

E. K-Nearest-Neighbor (K-NN) Classifier

In the K-NN rule, the class of the input pattern X is chosen as
the class of the majority of its K nearest neighbors. The Euclidean
metric is commonly used for distance calculations; however, the
Mahalanobis metric can sometimes lead to better performance.
The K-NN and Parzen window classifiers have many similar
characteristics. It can be said that the K-NN classifier is the
Parzen window classifier with a hyper- rectangular window func-
tion in the p-dimensional feature space. Both classifiers allow us
to obtain complex nonlinear decision boundaries. The curvature
of the boundary depends on the value of the smoothing parame-
ters K and \. When K =1 or A — 0, the curvature is maximum;
it diminishes with the .increase of K or A. The performance of
K-NN classifier in finite design sample case significantly depends
on the number K of nearest neighbors. Analogous to the Parzen
window classifier, we recommend estimating the classification
error for several values of K 31multaneously, to find an optimal
value of K. ’

F. Multinomial Classifier

This classifier is used for the recognition of patterns described
by discrete variables. Let the jth variable take m; distinct values.
The p-variate vector X, can therefore take one of m = m;m,

- 'm,, values (states). Let p;;, i = 1,2; j = 1,---, m be the
_ probability that a pattern from the class 7; takes on the jth state.
Then the optimal Bayes discriminant function is given by

(X)) = o X° — @p X7, (12)
where X° denotes the label of the state corresponding to X. In
practice, instead of the true probabilities p;, one uses sample
estimates : '

bij = %, (13)
where n; stands for the number of cases when the pattern vectors
from the design sample of the class 7; have taken on the jth state,
resulting in the sample-based multmomlal discriminant function
g (X).

Sometimes the multinomial classifier is applied to continuous
variables after making them discrete. One example of such
a classifier is the histogram classifier, where for each class
we design a histogram containing m bins. Such a classifier is
very similar to the Parzen window classifier with rectangular
windows in a priori fixed positions. Discretization of variables
causes a loss of information. Therefore, the classification error
of such a classifier is greater than that of the optimal Bayesian
classifier. Obviously, the classification error depends on the
number of bins my, ms, -+, m, and on the values of the
thresholds used for discretization of variables. The interaction
between these parameters has not yet been explored. In one of
our simulation studies with artificial Gaussian data (p = 6; only
two variables are correlated) classification error of the quadratic
discriminant function was P = 0.018, while after discretization
(my =6, my =4, mg = my = my = mg = 2), the multinomial
classifier M resulted in PM = 0.058.

When the dimensionality p is not small, then even in the binary
case (m; = 2), the total number of states (m = 27) is very large
and it is difficult to obtain reliable estimates p;. In such a case,
one needs to introduce some additional information in order to
simplify the design. One possible way to do this is to assume that
the variables are independent. Another alternative is to reduce the
number of states m by designing a decision tree classifier.

A decision tree consists of a root node, intermediate nodes and
m*(m* << m) terminal nodes. At the root node, the best feature
performs the decision. At the intermediate’ nodes, different fea-
tures may participate at the same level. The final classification of
the discrete vector X is performed according to the class number
attributed to each particular terminal node. There -are several
methods to construct decision trees (see, e.g., [S], [31], [55],
[51]). An advantage of such a classification rule is its applicability
for classification of objects described by mixed variables and a
comparatively easier interpretation of the classification results.

III. SensiTiviTy oF CLASSIFIERS TO DESIGN SAMPLE SizZE

In the finite design sample case, the parameters of the clas-
sifiers are estimated with low accuracy. Therefore, the resultlng
plug-in classifiers differ from optimal ones, resulting in an in-
crease in the classification error. An increase in the classification
error due to the finiteness of the design sample size A% =
EPy — P2 depends, first of all, on the type of the classification
rule «, on the number of features p, and further, on the value
of the asymptotic probability of misclassification. Significant
research efforts have been made to find the relationship between
classification errof, learning sample size, dlmensmnahty and
complex1ty of the classification algorithm (see, for example, the
reviews in [2], [10], [17], [22], [26], [38], [46], [45], [52], [56]).

In Table I, we present the number of observations requlred
from each of the two classes to ensure that

EP}

<
P S15

(14)

that is, the classification error due to the finiteness of the design
sample size increases on the average 50% or less. These estimates
of sample size N are calculated for the simple case of two
Gaussian populations N (u;, ) with common identity covari-
ance matrix and N; = N, = 2 Note that when > =3, =1,
only the Mahalanobis distance 6% = (p; — p,)" (1, — ) is
important in determining the increase in expected classification
error EPy for classifiers E, F, Q, and P. Therefore, the means
p; were chosen in such a way that the asymptotic probability of
misclassification :

P = Pro = 04 =g/l = 1) e )}
=01 or 0.01.

(15)

For the parametric classifiers, these minimum values of N were
obtained from analytical investigations [45]. For the Parzen
window classifier, we used simulation studies, and for the multi-
nomial classifier we obtained the required values of N analytically
for the case of a “quasiuniform” distribution of probabilities p;,
where p; can take only two values [19]:

2 p(M)
= —= 0
D m r
© . 2(1— P2D)
1P2




256 ' IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 13, NO. 3, MARCH 1991

TABLE 1
DESIGN SAMPLE SIZE N REQUIRED FOR E—;:{l < 1.5. p Is THE DIMENSIONALITY.
(a) AsywmproTic PMC, P = 0.1. Bxpectep PMC, EP{) = 0.15.
(b) AsymproTic PMC, Po = 0.01. ExpECTED PMC, EPy = 0.015.

Classifier Sample Size (V) = Np= §)
E N=12p
F N=4.0p
0 80 = 10p, when p = 8
N ={320=16p, whenp=20
1600= 32p, when p = 50
P 24, whenp=23,1=08
N =44(1.77? =S 76, whenp=>5, =08
420, whenp =8, A =08
N =60, whenp=3,A=01
N >100p, whenp =5, XA = 0.1
M N =3.3m, when 10 = m < 100
(a)
E N=16p
N=90p
128 =16p, whenp=28
o N = {440 =22p, whenp=20
2000 = 40p, when p =50
110, whenp=3,A=028
P N =30(1.55)? = { 280, whenp=>5)\=0.8
1000, when'p =8, =0.8
N =330, whenp=3,A=0.1
N >>100p, when p = 5, A = 0.1

M N = 5.0m, when 10 < m < 100
' (b)

While designing the parametric classifiers, each parameter
estimate introduces its own contribution to the increase in the
classification error. Below, we present an asymptotic formula for
the increase in the expected PMC of parametric classifiers [46]
under the assumption of Gaussian class conditional densities.

A% = EPg — P2 = ——E;l > 6, (16)

i€C

2

where ¢(t) = (27r)"717e%. In Table II, 62 is the squared Ma-
halanobis distance between the class means p,, PL = ¢(—£),
and 0y, 0y, - - - are the contribution terms resulting from the esti-
mation of prior probabilities of the classes, gi,¢, (term 6),
means of the classes, p;,u; (term 6,), covariance common
for both classes (term 6s), etc. The number of terms in set Cq
in (16) depends on the classifier type «. Values of the terms
presented in Table II show explicitly the increase in error due to
the estimation of various parameters of the multivariate Gaussian
distribution from the learning sample data. In (2), we used only
sample means of the two classes. Therefore, for the Euclidean
distance classifier, only the 6, term appears in (16). For the linear
Fisher discriminant function (3), we use the estimates of the
priors, means and common covariance matrix. Therefore, here we
should use the terms 6, 6, and 6. Analogously, for the quadratic
discriminant function (4), we should use the terms 6;, 6, and 6.

Equation (16) shows that the increase in classification error

of the parametric classifiers is proportional to ~ and depends

on the dimensionality of the feature vector p; for the lin-
ear classifiers, the relationship is linear and for the quadratic
classifier the relationship is quadratic (only for large p when
p >> 6%). Analytical and simulation studies show that for the
nonparametric classifiers (Parzen and multinomial), the decrease
of Ay = EPy — P, with an increase in the design sample

size N is slower (O (ﬁ) or O(ﬁ)) For large values of

the smoothing parameter \ (when the Parzen window classifier
becomes similar to the Euclidean classifier), the decrease of Ay is
of O(% ). Our theoretical and simulation studies have shown that
when we use the same smoothing parameter A for all features,
then the increase in classification error Ay of the Parzen window
classifier depends not on the actual dimensionality p, but on the
intrinsic dimensionality p* of the patterns [39]. The analysis also
shows that the design sample size required to achieve a learning
accuracy determined a priori, depends on the dimensionality
exponentiaily:

N = af?*, (17
where scalars o and § depend on asymptotic and expected prob-
abilities of misclassification, and on the value of the smoothing
parameter (see Table I). The required design sample size for
multinomial classifier depends linearly on the number of states m
(when the distribution of the probabilities Py is “quasiuniform”):

N = my (18)
where -y is a data-dependent constant.

Suppose that discrete values of the variables are obtained by
discretization of each variable into r states. Then m = r? and,
like in Parzen window classifier, we again have

N = ~rP, 19)
In real problems, many states have nearly zero probabilities
p;- Sample estimates (13) of the probabilities of the rare states
are not reliable but since they are seldom observed, rare states
increase the classification error negligibly. The main increase in
the classification error is caused by states with large probabilities.
Therefore, it can be said, that increase in classification error
depends not on the given number of states m, but on the effective
number of states m*. Usually m* <<m; however, exact knowledge
of m* and methods for its estimation are not known.

Estimates of the design samiple sizes have been obtained
for the case of Gaussian distributions with identical covariance
matrices. In reality, additional factors effect the increase in the
classification error, such as unequal covariance matrices and
unequal design sample sizes from both populations. Therefore,
the above estimates only provide some guidelines. Moreover,
these relations between sample size and dimensionality are
determined for a fixed value of asymptotic PMC. While solving
real pattern recognition problems, P., decreases with the addition
of new variables, but then the problem of determining optimal
number of features arises (see Section V).

An important quantity is the variance of the conditional
probability of misclassification, V(Py). From Efron’s analysis
[10], it follows that for several parametric linear classifiers
(Fisher’s discriminant, logistic regression, and the Euclidean
distance classifier), the increase in classification error Ay =
Py — P, is distributed as a scaled chi-squared random variable
ex?/N with p degrees of freedom, where the constant ¢ depends
on the asymptotic probability of misclassification and on the type
of classification rule. Thus the ratio of the standard error of Py to
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TABLE 11
CoNTRIBUTION TERMS IN (16) NEEDED TO COMPENSATE FOR THE ESTIMATION OF VARIOUS PARAMETERS OF MULTIVARIATE GAUSSIAN DENSITIES.

i ; Parameters to Be Estimated from the Learning Sample
1 1 Prior probabilities g3, g3.
52
2 T tr Means py, fo.
) 82
3 TTT Variances of the populations common for two classes
(p parameters of a diagonal matrix).
st + 36® ) . .
4 Tt tp Variances of the populations different for two classes
(2p parameters of two diagonal matrices).
&t ps?
5 (81_ %4 ) Covariance matrix 3, common to both classes (2 (p;l) parameters).
of 51, 2(p+e%) ) . )
6 8 1 Covariance matrices X; and £ different for both classes (p(p + 1) parameters.)
%)
N

the mean increase in PMC /V(Py)/(EPy — Ps) = +/(2/D),

which tends to zero as dimensionality increases.

IV. PERFORMANCE ESTIMATION

A number of methods for estimating the classification error
have been proposed in the literature reviews [13], [16], [20],
[29], [33], [34], [36], [43], [47], [54]. These methods can be
studied by using the following two factors:

* The way in which multivariate observations are used to

design the classifier and to test its performance;

* The pattern error function that determines the contribution

of each observation of the test set to the estimate of the
probability of misclassification.

There are four main approaches to use the given observations as
the design set and as the test set. -

1) The Resubstitution Method R: all observations are used
to design the classifier and used again to estimate its
performance.

2) The Hold-Out Method H: Suppose the total number of
available observations is #*. One portion of the set of
observations (the design set containing N observations) is
used to design the classifier, and the remaining (n* — N )
portion (the fest set) is used to estimate the error rate.

3) The Cross-Validation Method L: In this method,' ("]:)

classifiers are designed. Each classifier is designed by
choosing k of the n* observations as a design set, and its
error rate is estimated using the remaining (n* — k) obser-
vations. This process is repeated for all distinct choices of
k patterns and the average of the error rates is computed.
A popular choice for the value of & is k = 1, yielding the
well-known leave-one-out method.

4) The Bootstrap Method B: A bootstrap design sample of
size N is formed from the N observations by sampling
with replacement. The classification rule is designed using
this bootstrap sample and is tested twice:

* N observations of the bootstrap design sample are used
to obtain a bootstrap resubstitution estimate P5; and

* the original design set is used to obtain the bootstrap
estimate of conditional error Py.

This procedure is repeated r times (typically, r lies between
10 and 200). An arithmetic mean me of the differences
A =Py —Pg, i=1,-,r (20)
is used to reduce the optimistic bias of the resubstitution
estimate:
pBIPR +Zf\l7?, (21)
There are many modifications of the bootstrap method: the
randomized bootstrap, the 0.632 estimator, the MC estimator,
the complex bootstrap (see, e.g., [20], [21]).
Each of the above error estimation procedures can be used
with different pattern error functions h(g(X)), where §(X) is
the sample-based discriminant function:

51, .
P==% (X)), (22)
: p
and Xy,---, X,,, are test sample observations.
1) Error Counting (EC):
1 if (X)<O0and X €my

hFC(§(X)) = { 1 if§g(X)>0and X €m,
0 otherwise.

(23)

Here, correctly recognized observations do not affect the
estimate of PMC.
2) Smooth Modification of EC (SM) [16]:

h#M(3(X)) =
1 if g(X)>aand X € m
1 if 9(X) < —aand X € my
1-8&re 4 < g(X)<b—aand X €m
1+W?% ifa-b< g(X)<aand X €m
0 ' otherwise.

(24)
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Here, part of the correctly classified observations contribute
to the estimation of misclassification probability.
3) Posterior probability estimate (PP) [14], [32]:

WPPG(X)) = 501~ anh(9(X)/2)), @9)

where the §(X) defined in (25) is given by
x) = 2h(X) (26
§x) = fhfz( ) .

and f (X') is a sample estimate of the probability density
function f;(X'). An advantage of this estimate is that the
test sample observations can be unlabeled. Information
about the design sample propagates into the error estimate
as well.

4) Quasiparametric estimate (QP) [29]: Here it is assumed

that the values of the discriminant function §(X) have
a Gaussian distribution. PMC is found analytlcally from
sample means and variances of the values g(X N, i =
1,2and j = 1,---,'N,.

Thus, in principle, we can have 16 error estimation methods.
Additionally, there is a series of parametric methods generally
applied to cases where one can assume a parametrized family of
distributions for the class conditional densmes, usually Gaussian
with common covariance matrices [33], [50]. Which method
should one use? In spite of numerous research efforts, only weak
recommendatxons can be glven to practmoners

The resubstitation method results in optimistically biased
estimates of the asymptotic PMC P.,.. Therefore, it can bé used
only when the sample size is sufficiently large. It was shown
analytlcally [12], [43] (for Euclidean and Fisher classifiers)
and expenmentally that the bias of the resubstitution estimate
(Ar = P, — EPyR) is approx;mately equal to the bias of the
expected PMC (Ay = EPy —

A symmetry property of the expectation of resubstitution
estimate £ Py and expected PMC EPy, (see Fig. 3) shows that the
estimates. of sufficiency of the design sample size (Table I) can
be used to determine conditions when the resubstitution method
can be used.

The hold-out error counting estimate results in an unbiased
estimate of the expected PMC. The disadvantage of this method
is that not all observations of the design sample take part in
the learning process and only a part of observations are used to
evaluate the classification error.

The leave-one-out error counting procedure produces a prac-
tically unbiased estimate of the expected PMC if the sample
observations are statistically independent. In case of dependent
observations this method approaches the resubstitution method
and results in an optimistically biased estimate of the expected
PMC, EPy. The leave-one- -out estimate PC can ‘be used together
with resubstitution estimate P in order to get an estimate of the
asymptotic PMC:

b = M (27)

2

The above estimate follows from the symmetry of the curves
EPg = $:1(N) and EPy = EP; = ¢2(N) in Flg 3.

A disadvantage of the leave-one-out method is that for some
types of classification algorithms, it requires substantial compu-
tation time compared to the hold-out and resubstitution methods.
For many algorithms (e.g., all algorithms described in Section IT),

EPy
EPr p=10
0.15 A
Gaussian Data, (X; = %,)
0.10
0.05 -] EPy
Real Data, p=3

20 40 80 160 320 N

Fig. 3. Dependence of the expected PMC and the expectation of resubsti-
tution estimate on the sample size for.a linear discriminant function. Error
estimates for Gaussian data are shown by circles, and for a real data set are
shown by crosses.

however, special recursive relations allow the classifier to be de-
signed N times with negligible increase in computation. Bootstrap
methods and their variants appear more accurate than the leave-
one-out method only when the classification error is large [35],
[47), [48].

Analytical and expenmental mvestlgatlons of the error-
counting methods show that the variance is of order [43], [48],
[47]

vh EP,,(1 - EP")’

T 8)
where EP and VP are the mean and variance of the error
estnnateP , and 7 indicates the method: R, H, L, or B; n, is the
number of test samples (for R, £, and B methods, n, = N). Since
the resubstitution method is optimistically biased, EPR takes the
smallest value. Therefore, according to (28), the resubstltutlon
method also has the smallest variance.

The variance of the SM, PP, and QP estimates can be less
than the variance of the error- counting estimate. However, the
SM, PP, and QP estimates are often biased. Thé bias of the
SM estimate depends directly on the degree of smoothing of the
pattern error function [parameters a and b in (24)] and can exceed
the absolute value of the classification error. It was observed
expenmentally [43] that the QP estimate is pessimistically biased
in the low-dlmensmnal case, when the distribution function of the
discriminant function §(X) is non-Gaussian. The PP estimate
is based on an information contained in the test sample and
on additional information used to obtain estimates 'f; (X) of
the probability densities f;(X) of the pattern classes. In the
parametric case, this-information can be useful and can reduce
the variance of the PP estimate. When the desxgn sample size is
small or when the additional information is incorrect (e.g., we
assume normality for the class-conditional densities when in fact
they are 31gn1ﬁcantly non-Gaussian), then the estimated class-
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conditional probability densities and consequently the pattern
error function (25) are determined with large errors. This leads to
significant bias of the PP estimates. The bias is especially large
in the nonparametric case, where very vague prior information is
typically used to obtain estimates of f,(X) and fo(X) in (25).

In feature selection (see Section V), the bias of the estimates .

of the classification error is not critical if it is approximately
equal for all subsets of variables. However, in estimating the
performance of a complete pattern recognition system, the use
of the biased estimates is dangerous.

V. FEATURE SELECTION

One of the fundamental problems in statistical pattern recog-
nition is to determine which features should be employed for the
best classification results. The purpose of feature selection and
extraction is to-identify those features which are important in
discriminating among pattern classes. The need to retain only
a small number of useful and good features in designing a
classifier has been well documented in the literature [9]. In this
section, we describe the counterintuitive phenomenon of peaking
in classification performance when the number of features is
increased, and the classification error is used as a feature selection
criterion.

A. Optimal Number of Features

In Section III, we examined the relationship between sample
size and dimensionality for fixed asymptotic PMC, P,,. While
solving real pattern recognition problems, the addition of new
features usually decreases P,,. Usually, the “best” features are
added first, and less-useful features are added later. Therefore, the
rate of decrease in P, slows as the number of features increases.
Adding new features requires that new parameters be estimated.
An inexact estimation of parameters increases classification error.
If this increase is larger than the decrease in classification error
produced by the addition of the new feature, then the net effect
is that addition of the new feature increases the error rate.
Therefore, in the finite-sample-size case we have a “peaking”
phenomenon: classification error initially drops with addition
of new features, then attains a minimum, and then begins to
increase. The number of features at which the expected PMC,
EPy, is minimal is called the optimal number of features, and
is denoted py. It depends on the design sample size, the type
of classification rule, the class-conditional distributions of the
pattern vector X, and most importantly, on the effectiveness of
features and their ordering [26], [41]. In practice, it is important
to know if the optimal number of features p,y is lower than the
initial number of features p. Typically, po is smaller for smaller
design sample sizes, for more complex classification algorithms,
and for better orderings of features. When all features are equally
effective, or when the features are unordered and added in
a random way, p,y can be large (for the linear discriminant
function, p,,, = 5 — 1 for N training patterns [24]; for the
quadratic discriminant function, p,, is significantly lower than
% — 1, but still increases with the number of training patterns
N). When features or sets of features are ordered a priori, the
following simple procedure can be used to estimate p,y,. Obtain
unbiased estimates Is(i) of the expected PMCfors = 1,---, p and
select that subset which produces the lowest estimate. Here, one
can use the hold-out, leave-one-out, or even parametric unbiased
estimators of the expected PMC [2], [11], [29], [33], [44], [56].
For example, for the Fisher linear discriminant, the following
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estimate of the expected PMC is used:

BB
§ P
P ——|(1 1
{ 2[(+N1+N2—P>(+
(29)

where 42 is an unbiaéed estimate of the Mahalanobis distance:
= (X0 -X7) s @Y X
N1+N2—p_3 . N1+N2
N} + N2 -2 N1N2

p. (30)

If the dependence P(i) = (i) is not smooth, then better
results for p,, can be obtained after smoothing the empirical
dependence. This can be done by hand, or formally through yge
of a special mathematical technique [44]. Often, the dependence
EPy(1) = f(i) is flat near the minimum point EPy(p,,).
Therefore, the accuracy of determining py is not crucial; it is
more important to pay attention to the existence of the peaking
effect and make minor efforts to determine pqy.

B. Accuracy of Feature Selection

Usually, features are not ranked according to their effective-
ness in discrimination a priori. We use the sample information
to compare the effectiveness of features and rank them. The
sample estimates of the effectiveness are not exact. Therefore,
only the best features can be ranked properly. The effectiveness
of the worst features differs negligibly and the accuracy of
sample estimates is not sufficient for exact ranking of features or
the feature sets. The inaccuracy of the estimates of the feature
effectiveness causes a bias in the estimates of the best subsets

_containing ¢ = 1,---, (p — 1) features. Therefore, the estimates

of pep become biased also. The problem of estimating Dopt In the
case of empirical ordering of features is unsolved.

The ordering of features is an important step in the design
of a pattern recognition algorithm. It is well known that the
ordering of features and the ordering of feature subsets are two
different subjects. In general, the best subset of ¢ features and the
set of ¢ individually best features are not identical (¢ < p). The
only procedure which guarantees that the best subset is found,
is a complete inspection of all subsets, which is computationally
expensive. Therefore, many suboptimal procedures for feature
subset selection have appeared in the literature [28]. None of
these techniques guarantee that the best feature subset wil] be
found, but they typically require much less computation than
exhaustive search. Most procedures use either sequential addition
of features, sequential deletion of features, or a combination of
both approaches. Other techniques include random search (in-
spection of randomly selected subsets), directed random search,
and branch-and-bound techniques.

Each feature selection procedure can be carried out by using
every one of a number of feature effectiveness criteria or the
classification error estimation methods mentioned in the previous
section. .

There are approximately two dozen parametric criteria of
feature effectiveness known in the pattern recognition literature
[4], [58]. Examples are the Mahalanobis, Bhattacharyya, Patrick-
Fisher, and Matusita distances, divergence, mutual Shannon
information, and entropy. Analytical expressions of these criteria
are usually simpler than the Bayes error expressions. Some of
them' use additional information about the populations to be




260 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 13, NO. 3, MARCH 1991

T T
0.4 0.5 P~

Fig. 4. Distribution of conditional PMC, Py, and its leave one out error counting estimate Pz of 100 random 4-variate subsets of features (real medical
data, 19 original features, Fisher’s linear discriminant, Ny = N; = 25. Conditional PMC Pﬁ was estimated by holdout method using an additional 500
observations). The total number of feature subsets in this experiment is m = 1000. :

classified. For example, the Mahalanobis distance criterion is
based on assumptions of multivariate normality for all classes,
with a common covariance matrix. The variances of criteria
containing such assumptions are usually lower than variances of
the nonparametric estimators described above; however, biased
estimates are produced if the parametric assumptions are not

-valid. Therefore, the usefulness of the criteria with parametric

assumptions can be justified only when the bias is approximately
equal for all subsets of features. It is unclear whether one specific
strategy provides consistently better performance than most oth-
ers. One experimental comparison [37] concluded that forward
selection and random search outperformed other procedures in
one application.

The analysis of feature selection strategies is complicated
by the fact that all feature effectiveness criteria are subject to
error, caused by both sample size effects and the simplifying
assumptions. Inaccurate criteria of effectiveness can lead to
incorrect rankings of features and feature subsets. Therefore, one
objective of feature selection is to find feature subsets which
produce an expected PMC close to the ideal value (the value
produced by the truly “optimal” feature subset).

In order to explain the mechanism of an increase in classifi-
cation error due to nonoptimal feature selection, we shall at first
explain three types of classification error occurring in the feature
selection process. -

Suppose we have m subsets of features 5i,---, S,, with
corresponding effectiveness estimates P, - - -, P,,. Suppose there
exist true values of their effectiveness (e.g., the Bayes error,

-conditional PMC, expected PMC) P, ---, P,. A 2-D scatter
plot of the m ordered pairs (P;, -P;) is depicted in Fig. 4. Let us-

first examine the ten random subsets of features denoted in Fig. 4
by circles. We can define three types of classification errors (note
that the sense and the definition of these errors are different from
that presented in the beginning of Section II or in Hand’s [20]
review):

1) Apparent error, ﬁ’apparem, in selection, i.e., the minimum of

131, ceey f’m. For the ten pairs in Fig. 4, we have

Pyparens, = Ps = 0.18. (31)

2) Ideal PMC, Piy.,, the minimum of the true error probabil-
ities Py, -+, Pn,. In the example,

Pyes = Py = 0.220. 32)

3) True PMC, P, the true error rate of that subset with the
minimal error estimate P;. In the example,

Pirue = Ps = 0.242. (33)

The “cloud” of points (&, P,), i = 1,---, m, shown in Fig. 4
also arises in cases where feature subsets are formed according
to the exhaustive feature selection criterion, sequential feature
addition and deletion, etc. The values P, Pigear, and 1'3;1,parent
are determined from the set of bivariate vectors (151, P),i=
1,---, m. The set depends on the class-conditional densities
f:(X), on the feature selection procedure used, and on the accu-
racy of the estimates P.. In Fig. 5 we show three curves which
represent the dependence of the values Piye, Pacat, and f’appamt
on the number of subsets m for the data presented in Fig. 4.
Subsets of variables were presented in a random way. For large
m, we have P > Pge and Pyparens < Paca- In practice the
value A; = Py, — Py measures the “distance” between the
feature selection procedure in use and the ideal procedure (it
also allows Py, to be predicted from Pjpparent)- This problem has
only recently been investigated, and no strong conclusions have
yet been drawn [49]. Preliminary theoretical and experimental
investigations show that A, is of order

Pmin(]- - Pmin)
Uz

: (34)
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28

Fig. 5.

and

Pt.ruc ~ Pappa,rcnt + 2A1; (35)
where k is a constant between 0.25 and 1, P,;, denotes the PMC
of the best subsgt of features, and n, is the size of the test sample
used to obtain P, - -,
variables, with variance on the order of

-Pmm ( 1- mm)

- (36)
Therefore, A; and P, can only be predicted with large error. It
has been shown [36] that a four-fold increase in the test sample
size n, will halve A,. The difference A; also increases with
the number of feature subsets m in the random search feature
selection procedure. The true classification error, Py, decreases
rapidly at first with an increase in m, but as m becomes large, the
amount of decrease in Py, becomes small. Therefore, when the
accuracy of the estimates P, P, is low, there is no reason
to increase the number of subsets m or to use a complex feature
selection procedure. To improve the feature selection efficiency,
one must use more accurate estimators of efficiency or obtain
additional information about the class-conditional densities and
incorporate this information in the estimates.

VI. SaMPLE SizE DETERMINATION

There are two occasions when the designer of a pattern
recognition system has to determine the size of the sample:

1) to find a sample size sufficient to achieve a desired level
of learning accuracy, and

2) to find the size of the test sample sufficient to estimate the
classification error.

It was mentioned in Section Ill that the minimum design
sample size depends on the method used to find coefficients of
the classification rule, the number of features, the asymptotic
PMC, and the desired learning accuracy. In Table I, we presented
approximate sample sizes required to ensure that the expected
PMC, EPy, would not exceed the asymptotic PMC, P,,, by more
than 8 = 50%. Equation (16) shows that in order to double the
accuracy (i.e., § = 25%), the design sample sizes should double
for parametric classifiers and more than double for nonparametric
classifiers. Estimates of the sufficient sample size depend slightly
on the asymptotic PMC. Therefore, in order to use them in
practice we have to estimate an interval in which P, will lie.
For example, we might guess that by using the Fisher’s linear

P.,. The values A, and Py, are random

42

m

T
166 313 728 1000

Dependence of the true, ideal, and apparent errors on the number of subsets m.

discriminant, P,, € [0.01, 0.1]. Then, the requirement for the
efficiency of the design sample requires 32 < N < 72 for a
dimensionality of eight. If we assume P,, € {0.1, 0.5}, then
N < 32 (see Table I).

The estimates of the minimum design sample size were
obtained for some idealized (spherically Gaussian or quasi-
uniform) class-conditional densities f;(X) (see Section III). For
other distributions, the required design sample sizes can be
different. Therefore, in order to estimate the sufficiency of
the design sample size, we recommend additionally to use
the following nonparametric estimate of the increase in the
classification error Ay = FPy — P:

Ay _B-Pr L (37)
2

where }5,; and PR are the leave-one-out and resubstitution
qstimates of the classification error, respectively. The estimate
Ap is based on the fact that the dependencies EPy = é1(N)
and EPp = ¢,(N) are nearly symmetrical (see Section IV) and
that EP; ~ EPy.

If the difference Ay is small in comparison with the empirical
estimate of the asymptotic PMC (27), then we can conclude
that the design sample size is sufficient. Here, we have to pay
attention to the variances of the estimates A ~ and P . Extensive
simulation studies have suggested that the estimates P, and Py
are practically statistically independent. Therefore, the estimates
of the variances and mean square errors (MSE) of Ay and P,
can be found from (28):

1 (P Pe) | Pe(1- )

2 Tt

MSE(P.,).

MSE (AN)

Ty

(39)

For example, when solving a pattern recognition problem with
N; = N, = 100, (i.e., N = 200), with Pc = (.09 and PR =0.05,
then P, = 0.07, Ay = 0.02, MSE(P.,) = MSE(AN) =
0.013, i.e., the increase in the classification error is 30% of the
asymptotic PMC. Therefore, we can conclude that the design
sample size is sufficient. Note that in nonparametric estimation
of the classification error, dimensionality does not play a role.
The size of the test sample #, used to determine the perfor-
mance of the classifier can be determined from the variance (28).
If we require that the error counting estimate of the PMC does
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not deviate from the true value P by more than k%, then

P(1-P) Pk

2 =,
Ny 100

(39)

Therefore, the estimate of the sufficient test sample size n, is

__41-P)

~ P(k/100)*’ (40)

Here, we again have to guess at a possible value or interval
of the true classification error. For example, if we assume
0.02 < P < 0.1, then (40) produces an interval of 900 < n, < 4900
for k = 20%.

While using the hold-out error estimation method we have to
divide an existing set of observations into two parts: the design.
sample and the test sample. If the design sample is small, the
classification error will be large. If the test sample is too small,
then the variance of the error estimator will be large. In order
to find an optimal balance between the sizes of the design and
test samples, we have to introduce a loss function. One possible
loss function is

LOSS(N], Ng) - CI(EPN(N1, Nz) ot Poo)

+ C’ZMSE{P(n* N - Ng)}, (41)
where n* is the total number of observations, N; + N, of which
are used to design the classifier and the remainder used as the test
sample, C; and C, are the costs associated with an increase in
classification error (due to design sample size) and an increase in
MSE of the error estimate (due to test sample size), respectively.

From the definition of the loss function above, it follows
that an optimal division of the samples into testing and design
sets depends on the type of classifier, the dimensionality, and
on the asymptotic PMC. The theoretical results mentioned in
Sections III and IV can help to find a solution, but no complete
procedure has yet been devised. From (28) we have the MSE of
the error counting estimate:

) 13(1 - 13)
MSE(P(n ~ N, — Nz)) =N @
For parametric classifiers, and assuming N; = N, = N, (16)
yields

1
EPN Poo—ta(Pooyp)Na
where the coefficient ¢, (P.. p) depends on the classifier o,
dimensionality, and P, (Tabie II). For practical use of this
methodology some prior guesses about the value of P, should
be available. Let n* = 300, Ny = N, = ¥, C, = ¢, = 1,
the dimensionality p = 8, and assume the linear classifier is
employed with P,, = 0.1. From a table in [45], we obtain
EPy/P,, = 1.18 when N; = N, = 40 and find t.(0.1, 8) =
(EPn — P,)(N; + N;) = 0.018 - 80 = 1.44. Then the loss
function (41) is

ta VPO =P) 144 0.3

ross(y= e YEU-P) 144, 03
N 300— N N J300=N

which attains a minimum near N = 140 and therefore N, =

N, = 70, n, = 160. The optimal balance for other values of
P, is found in a similar way.

(44)

(43)

VII. DiscussioN

We have reviewed a number of theoretical results available
in statistical pattern recognition which highlight the difficulties
caused by finite numbers of training and test samples. When
we have a simple classification rule, such as the Fisher linear
discriminant function and the number of features is not too large
(5-10) then even a small number of training samples (50—100
observations per class) is sufficient to design a reliable decision
rule. However, when the decision rule is complex, the number
of features is large, or the number of training and test samples
are small, then there are several design issues which need careful
attention. We have presented theoretical results which show the
existence of “curse of dimensionality” (peaking in classification .
accuracy as number of features are increased), and provided
expressions which determine the bias and the variance of error
rate estimators in finite sample situations.

Theoretical results regarding the classification accuracy and
error rate estimates have been derived in the literature only
for specific statistical models, usually multivariate Gaussian
class-conditional densities. In practical problems, these models
are often neither known nor appropriate. So, the theoretical
results can only provide guidance to the pattern recognition
system designer in selecting an appropriate methodology. The
final design should be based on empirical results obtained by
comparing competing algorithms.

Based on our experience and the available results, we provide
the following set of recommendations to designers of pattern
recognition systems.

1) Finite number of training samples require the designer to
pay careful attention in selecting several design parameters,
including a) number of features used in decision making,
b) number of neighbors in a k-NN decision rule, and
c) width of the Parzen window in density estimation.

2) With the availability of powerful desktop workstations and
modern statistical packages, it is fairly easy to evaluate
competing classifiers, investigate different feature selec-
tion and extraction methods, and estimate a classifier’s
performance using compute-intensive methods such as
leave-one-out and bootstrap. There is no need to discard
certain algorithms just because they demand too much
computation; the choice of feature selection, classification,
and error estimation procedures in the design of a pattern
recognition system is done “off-line.”

3) The estimate of the classification error depends on the
particular training and test samples used, so it is a random
variable. One should, therefore, investigate the bias and
the variance of the error rate estimates. In particular, one
should ask whether enough test samples were used to
evaluate the classifier, and were the test samples different
from the training samples?

4) Special attention should be paid to the problem of feature
subset selection. In practice, we try to find that subset
which gives the smallest classification error.  But, as men-
tioned earlier, the estimated classification error can have a
large variance which causes optimistic bias and will make
it difficult to select the “best” subset.

5) The large error rate of a classifier can usually be attributed
to the inherent difficulty of the classification problem.
However, in finite sample situations, the following fac-
tors may also degrade the performance of a classifier:
a) small number of training samples, b) large number of
features, c) complexity of the classification rule (quadratic
discriminant function versus linear discriminant function),
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d) presence of outliers if a parametric classifier is being
used, and e) inappropriate window width for a classifier
involving nonparametric kernel density estimates.

Several important problems related to the design of a pattern
recognition system when small number of samples are available
remain open. For example, the influence of training sample
size on the classification performance of nonparametric and
piecewise linear classifiers is generally not known. With a
resurging interest in artificial neural networks, these classifiers
have become popular. There is also a need to establish a
standard database, so that empirical studies can be carried out
meaningfully. By default, most empirical studies are carried out
on Gaussian data.

In conclusion, small sample effects make the problem of
designing a paitern classification system very difficult, and these
effects should not be ignored in practice.
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