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Abstract Pattern classification has been successfully

applied in many problem domains, such as biometric rec-

ognition, document classification or medical diagnosis.

Missing or unknown data are a common drawback that

pattern recognition techniques need to deal with when

solving real-life classification tasks. Machine learning

approaches and methods imported from statistical learning

theory have been most intensively studied and used in this

subject. The aim of this work is to analyze the missing data

problem in pattern classification tasks, and to summarize

and compare some of the well-known methods used for

handling missing values.
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1 Introduction

Pattern classification can be defined as the act of taking in

raw data and taking action based on the category of the

data [1]. As humans, it is easy for everyone (even children)

to recognize letters, objects, colors, numbers, etc. From the

early development of computers, researchers tried to

implement the ability in machines. Pattern classification is

the discipline of building machines to classify data (pat-

terns) based on either a priori knowledge or on statistical

information extracted from the patterns [1–5]. In general

[4], a classical definition of pattern is an entity that can be

represented by a set of properties and variables (feature

vector). For example, a pattern could be an audio signal,

being the corresponding feature vector its frequency

spectral components; a patient, being the feature vector the

results of his/her medical tests, or a digitized image for a

character recognition problem.

Pattern classification was developed starting from the

1960s. It progressed to a great extent in parallel with the

growth of research on knowledge-based systems and arti-

ficial neural networks. Increasing computational resources,

while enabling faster processing of huge data sets, have

also facilitated the research on pattern classification, pro-

viding new developments of methodology and applica-

tions. This interdisciplinary field has been successfully

applied in several scientific areas such as computer science,

engineering, statistics, biology, and medicine, among oth-

ers. These applications include biometrics (personal iden-

tification based on several physical attributes such as

fingerprints and iris), medical diagnosis (CAD, computer

aided diagnosis), financial index prediction, and industrial

automation (fault detection in industrial process).

Nowadays, data are generated almost everywhere: sen-

sor networks in Mars, submarines in the deepest ocean,

opinion polls about any topic, etc. Many of these real-

world applications suffer a common drawback, missing or

unknown data (incomplete feature vector). For example, in

an industrial experiment some results can be missing

because of mechanical/electronic failures during the data

acquisition process. In medical diagnosis, some tests can-

not be done because either the hospital lacks the necessary

medical equipment, or some medical tests may not be
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appropriate for certain patients. In the same context,

another example could be an examination by a doctor, who

performs different kinds of tests; some test results may be

available instantly, others may take several days to com-

plete. Anyway, it might be necessary to reach a preliminary

diagnosis instantly, using only those results that are

available. In a social survey, respondents may refuse to

respond to some questions. The subject of missing data has

been treated extensively in the literature of statistical

analysis [6–8], and also, but with less effort, in the pattern

recognition literature. The ability of handling missing data

has become a fundamental requirement for pattern classi-

fication, because inappropriate treatment of missing data

may cause large errors or false results on classification. In

addition, it is a more common problem in real-world data.

As an example, when a sensor fails in a production process,

it might not be necessary to stop everything if sufficient

information is implicitly contained in the remaining sensor

data. Another clear example of the importance of handling

missing data is that 45% of data sets in the UCI repository

have missing values, which is one of most commonly used

data set collection for benchmarking machine learning

procedures.

In general, pattern classification with missing data

concerns two different problems, handling missing values

and pattern classification. Most of the approaches in the

literature can be grouped into four different types

depending on how both problems are solved,

• Deletion of incomplete cases and classifier design using

only the complete data portion.

• Imputation or estimation of missing data and learning

of the classification problem using the edited set, i.e.,

complete data portion and incomplete patterns with

imputed values.

• Use of model-based procedures, where the data distri-

bution is modeled by means of some procedures, e.g.,

by expectation–maximization (EM) algorithm.

• Use of machine learning procedures, where missing

values are incorporated to the classifier.

In the two-first types of approaches, the two problems,

handling missing values (data deletion and imputation, in

each case, respectively) and pattern classification, are

solved separately; in contrast, the third type of approaches

model the probability density function (PDF) of the input

data (complete and incomplete cases), which is used to

classify using the Bayes decision theory. Finally, in the last

kind of approaches, the classifier has been designed for

handling incomplete input data without a previous esti-

mation of missing data. Figure 1 resumes the different

approaches in pattern classification with missing data.

This work reviews the most important missing data

techniques in pattern classification, trying to highlight their

advantages and disadvantages. An excellent reference for

missing data is the book written by Little and Rubin [6],

which gives an accurate mathematical and statistical

background in this field. However, this book does not deal

with machine learning solutions for missing data. Our main

goal is to show the most representative and useful proce-

dures for handling missing data in classification problems,

with a special emphasis on solutions based on machine

Fig. 1 Methods for pattern

classification with missing data.

This scheme shows the different

procedures that are analyzed in

this work
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learning. Due to space constraints, we are not able to

provide a complete and detailed study of proposed solu-

tions for incomplete data classification. Thus, this review

paper provides a wide and general overview of the state-of-

the-art in this field. The remainder of this paper is struc-

tured as follows. The fundamental notions of pattern

classification with incomplete values are introduced in

Sect. 2. Section 3 describes both real applications where

missing values and the different missing data mechanisms

are presented. From Sect. 4–7, several methods for dealing

with missing data in classification tasks are discussed.

Section 8 shows obtained experimental results in different

decision problems. This section compares some represen-

tative and useful imputation approaches in order to evalu-

ate the influence of missing data estimation in the

generalization performance obtained by a neural network

classifier. Finally, the main conclusions end this paper.

2 Pattern classification with missing data

In pattern classification, a pattern1 is represented by a

vector of d features or attributes (continuous or discrete),

i.e., x = [x1, x2, …, xi, …, xd]T. In addition, each pattern

belongs to one of c possible classes or categories: C1,

C2, …, Cc. In general, a pattern classification system is

operated in two modes [5]: training (learning) and classi-

fication (testing). During the training phase, the classifi-

cation system is completely designed (to set up its internal

parameters) using a set of training samples, which is named

training set. We consider that training samples are labeled

(supervised learning), i.e., the label t of a training pattern x

represents the category to which this pattern belongs. In the

testing mode, the trained system assigns the input pattern to

one of the classes under consideration based on its attri-

butes. The classifier performance depends on both the

number of training samples and the specific values of these

samples. At the same time, the goal of designing a classi-

fication system is to classify future test samples, which

were not used during the training stage. Figure 2a shows a

general pattern classification problem, where each training

pattern xn has d input features (without any missing data)

and an output classification target tn.

In the classification tasks discussed in this paper, input

patterns can have some unknown attribute values (i.e.,

missing values on its features). In addition, we consider

that missing values are not always in the same attribute

among the given samples (i.e., it is possible that the i-th

attribute value of one sample is missing while the same

attribute of another example is known). A missing value is

referred with ‘?’ symbol; thus, x4 = [?, -0.2, ?, 0.3]T

means that the fourth training pattern presents missing

values at the first and third attributes. Figure 2b shows

a classification problem where some input vectors are

incomplete.

In order to resume the notation used in this work, let us

assume a data set D composed of N labeled incomplete

patterns,

D ¼ X;T;Mf g ¼ xn; tn;mnð Þf gN
n¼1 ð1Þ

where xn = [x1n, x2n, …, xdn]T is the n-th input vector

composed of d features; labeled as tn [ [C1, C2, …, Cc], and

mn = [m1n, m2n, …, mdn]T indicates which input features

are unknown in xn, i.e., in the previous example, m4 = [1,

0, 1, 0]T. The missing data indicator vector, mn, is also

known as response indicator vector. X is the input data set,

with ½d � N� dimensions, T is target set, with ½1� N�
dimensions, and M is a binary matrix, with ½d � N�
dimensions, which is generally known as missing data

indicator matrix. According to M, X is divided into two

parts:

X ¼ Xo;Xmf g ð2Þ

where Xo and Xm are, respectively, the observed input set

(complete patterns) and the unknown input set (incomplete

patterns).

At this point, a simple example is used for clarifying the

missing data problem in classification tasks. Suppose a

classification problem of N bidimensional input patterns

x ¼ ½x1; x2�, where each pattern can belong to one of two

possible classes labelled with 1 or 0. Moreover, any attri-

bute of any input vector can be a missing value. Figure 3

represents complete and incomplete patterns using scatter

diagrams.

Figure 3a represents a complete data set; meanwhile,

Fig. 3b shows an incomplete version of the data set, where

the 33% attribute values are unknown. We represent an

incomplete pattern xn ¼ ½x1n; ?� as a vertical line with

horizontal component x1n; and xn ¼ ½?; x2n� as a horizontal

line with vertical component x2n. In higher dimensions, an

Fig. 2 Two hypothetical pattern classification problems. First, in (a),

all patterns are completely known (without missing values on its

features). Conversely, in (b), some input vectors present missing data

(with missing values on its features)

1 Henceforth, the terms pattern, input vector, case, observation,

sample, and example are used as synonyms.
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incomplete pattern could be represented with a line, plane,

etc., depending on the number of missing values.

3 Missing data mechanisms

As we have already mentioned in the introduction, missing

data is a common drawback that appears in many real-

world situations. In surveys [9, 10], it is virtually assured

that a certain level of non-response will occur, e.g., partial

non-response in a poll or entered data is partially errone-

ous. In control-based applications, such as traffic moni-

toring [11], industrial processes [12], or management of

telecommunications and computer networks [13], missing

values appear due to failures of monitoring or data col-

lector equipment, disruption of communication between

data collectors and the central management system, failure

during the archiving system (hardware or software), etc.

Wireless sensor networks also suffer incomplete data due

to different reasons, such as power outage at the sensor

node, random occurrences of local interferences or a higher

bit error rate of the wireless radio transmissions [14, 15]. In

automatic speech recognition, speech samples that are

corrupted by very high levels of noise are also treated as

missing data [16, 17]. Another example is incomplete

observations in financial and business applications like

credit assignment (unknown information about the credit

petitioner) or financial-time series forecasting (there is no

stock price data available for regular holidays) [18, 19]. A

recent application in which incomplete data appear is

biology research with DNA microarrays, where the gene

data may be missing due to various reasons such as scratch

on the slide or contaminated samples [20, 21]. Missing

values are common in medical diagnosis, e.g., a medical

practitioner may not order a test whose outcome appears

certain or not relevant to the diagnosis, or a feature can be

missing because it proved to be difficult/harmful to mea-

sure [22–25].

The appropriate way to handle incomplete input data

depends in most cases on how data attributes became

missing. The missing data mechanism is characterized by

the conditional distribution of M given X,

p MjX; nð Þ ¼ p MjXo;Xm; nð Þ; ð3Þ

where n denotes the unknown parameters which defines the

missing data mechanism. Little and Rubin [6] define sev-

eral unique types of missing data mechanisms.

• Missing completely at random (MCAR). An MCAR

situation occurs when the probability that a variable is

missing is independent of the variable itself and any

other external influences. The MCAR condition can be

expressed by the relation

p MjXo;Xm; nð Þ ¼ p Mjn½ �; ð4Þ

which means that the missingness does not depend on

the input values. The available variables contain all the

information to make the inferences. Typical examples

of MCAR are a tube containing a blood sample of a

study subject that is broken by accident (so the blood

parameters cannot be measured) or a questionnaire of a

study subject that is accidentally lost. The reason for

missingness is completely at random, i.e., the proba-

bility that an observation is missing is not related to any

other patient characteristics.

• Missing at random (MAR). The missingness is inde-

pendent of the missing variables but the pattern of data

missingness is traceable or predictable from other

variables in the database. The MAR condition can be

expressed by the relation

p MjXo;Xm; nð Þ ¼ p MjXo; n½ �; ð5Þ

where the missingness depends only on the observed input

data. An example is a sensor that fails occasionally during

the data acquisition process due to power outage. In this

example, the actual variables where data are missing are

not the cause of the incomplete data. Instead, the cause of

the missing data is some other external influence.

• Not missing at random (NMAR). The pattern of data

missingness is non-random and depends on the missing

variable. In contrast to the MAR situation, the missing

variable in the NMAR case cannot be predicted only

from the available variables in the database. If a sensor

cannot acquire information outside a certain range, its

data are missing due to NMAR factors. Then the data

are said to be censored. If missing data are NMAR,

valuable information is lost from the data; and there is a

no general method of handling missing data properly.

When data are MCAR or MAR, the missing data

mechanism is termed ignorable. Ignorable mechanisms are

important, because when they occur, a researcher can

ignore the reasons for missing data in the analysis of the

data, and thus simplify the methods used for missing data

Fig. 3 Two-class classification problems with bidimensional pat-

terns. When missing values occur, they are represented by a vertical
or horizontal line, depending on which attribute is unknown
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analysis [7]. For this reason, the majority of research

covers the cases where missing data are of the MAR or the

MCAR type. In the next sections, several approaches to

deal with missing values are explained.

For the focus of this work, we can also divide the

missingness mechanisms according to the target to be

predicted:

• Informative. The fact that a value is missing provides

information about a classification target.

• Non-informative. The distribution of missing values is

the same for all the classes of values.

An example for informatively missing values would be a

customer database, where fewer values are missing for

active customers than for passive ones, because the com-

pany knows its active customers better. These categories of

missingness mechanisms make a difference for prediction,

because informatively missing values should be treated as

extra values for the respective feature (thus arriving at a

complete data set), as this information provides hints about

the target, which can be learned. For non-informatively

missing values, missing value treatment methods, such as

imputation, may be used instead, where an algorithm can

no longer identify which values are actually missing. Also,

most missing value handling methods embedded in learn-

ing algorithms are only appropriate for the case of non-

informatively missing values.

When discussing the application of machine learning

algorithms to data sets including missing values, two sce-

narios can be distinguished:

• It may be that the data used for training are complete,

and values are missing only in the test data.

• Values may be missing both in the training and test data.

The first case is not a common situation, because the

classifier has been designed using complete cases, and no

assumption about missing data has been done during its

training. In this situation, there are two possible solutions:

incomplete cases have to be excluded from the data set, or

missing values have been filled in by estimations (impu-

ted). This preprocessing is often necessary to enable the

training of models, e.g., when using standard multi-layer

perceptrons (MLPs), which cannot deal with missing val-

ues. The second itemized case is more natural, when the

training and test data are gathered and processed in a highly

similar way, and so, the classifier is trained considering that

input vectors may be incomplete.

4 Complete and available data analysis

When faced with missing values, the complete case anal-

ysis and available case analysis are common, but not

recommended, procedures used in order to force the

incomplete data set into a rectangular complete-data format

[6, 7]. The first approach is also known as listwise or

casewise deletion, i.e., omit the cases that have missing

data for any variable used in a particular analysis. This

procedure can be justified whenever large quantities of data

are available (in general, only 5% of missing data is an

acceptable amount to be deleted from the data set). Its

advantage is the possibility of directly using the standard

pattern classification methods for complete data. However,

a test pattern with missing values cannot be classified

because the deletion process will omit it. In available-case

analysis only the cases with available variables of interest

are used. This method is also known as pairwise deletion,

e.g., if the covariance between two variables has to be

estimated, only the examples presenting these two vari-

ables will be used. In general, available case analysis

makes better use of the data than complete case analysis

(this method uses all the available values); but its disad-

vantage is that the number of attributes is not the same for

all patterns (it depends on which features are incomplete

for each pattern), and so the standard classification methods

cannot be directly applied. These approaches are simple,

but the major drawback of both procedures is the loss of

information that occurs in the deletion process.

5 Imputation methods based on statistical analysis

In this section, we discuss statistical methods that impute

(that is, estimate and fill-in) the attribute values of patterns

that are missing [6–8]. These methods can be applied to

impute one value for each missing item (single imputation)

or, in some cases, to impute more than one value, in order

to allow appropriate assessment of imputation uncertainty

(multiple imputation). In particular, some of the most

popular statistical methods for handling missing data are

described below.

5.1 Mean imputation

The earliest used method of imputation was unconditional

mean imputation. In this approach, missing components of

a vector are filled in by the average value of that compo-

nent in all the observed cases. Consider that there are

missing values in the i-th attribute; then this approach

performs the imputation stage by computing the mean

estimator,

~xi ¼
1

Nobs;i

XN

n¼1

1� minð Þxin ð6Þ

where Nobs;i is the number of observed values in xi. Another

possibility is class-conditional mean imputation, where
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missing data of an input pattern are estimated by the

average from the complete cases that belongs to the same

class as the incomplete pattern. This method has the

obvious disadvantages that it under represents the vari-

ability in the data, and it also completely ignores the cor-

relations between the various components of the data [7].

5.2 Regression imputation

Regression imputation is well suited when the missing

variables of interest are correlated with the data that are

available in the complete sample. The missing components

are filled in by the predicted values from a regression

analysis using the components of the vector that are pres-

ent. Consider that i-th input feature contains missing val-

ues, and the remaining d - 1 attributes are complete. In

this procedure, a regression model f(�) is trained to

approximate the unknown feature using the available data,

~xi ¼ f ðxobsÞ � xi: ð7Þ

where xobs is the input vector composed of the d - 1

complete attributes. The complete set (Xo) is used for

computing the unknown parameter which defines f(�). If

there are two or more incomplete features, a multivariate

regression model has to be implemented in order to per-

form the imputation stage. The method of regression to be

used depends on the nature of the data [6]. Linear regres-

sion can be used if the variable dependency follows a linear

relationship. On the other hand, in non-linear regression the

purpose is to fit a curve to the data and to find the required

points from the curve. An advantage of this approach over

mean substitution is that it preserves the variance and

covariance of variables with missing data. When regression

is used to impute missing values on independent variables,

this will contribute to multi-colinearity, because the

imputed values for missing data will be perfectly correlated

with the rest of the variables in the model. The disadvan-

tage of this approach is that all the imputed values follow a

single regression curve and cannot represent any inherent

variation in the data [6, 7].

5.3 Hot and cold deck imputation

Hot deck imputation replaces the missing data with the

values from a similar complete data vector, i.e., the data

vector that is closest in terms of the components that are

present in both vectors for each case with a missing value

[7]. The missing components of the incomplete data vector

are then substituted with the most similar corresponding

components of the matching complete vector. Hot deck

imputation has the shortcoming that the estimate of the

missing data components are based on a single complete

vector in the data set, ignoring any global properties of

the data set. Another possibility is the cold deck imputation

method, which is similar to the hot deck method, but in

it the data source must be different from the current data

set [6].

5.4 Multiple imputation

The three described approaches above provide a simple

missing data imputation, which does not reflect the

uncertainty about the prediction of the unknown values.

Instead of filling in a single value for each missing one, a

multiple imputation procedure replaces each missing value

with a set of plausible ones that represent the uncertainty

about the right value to impute [9]. The missing values are

imputed M times to produce M complete data sets using an

appropriate model that incorporates random variation. This

method, which is shown in Fig. 4, is used for general

purpose handling of missing data in multivariate analysis.

The desired analysis is performed on each data set using

the standard complete data methods, and then the average

of parameter estimates across M samples is taken to pro-

duce a single point estimate. Standard errors are calculated

as a function of average squared standard errors of the M

estimates and the variance of the M parameter estimates

across samples [8]. Thus, multiple imputation procedure

involves three distinct phases:

• The missing data is filled in M times to generate M

complete data sets.

• The M complete data sets are analyzed by using

standard procedures.

• The results from the M complete data sets are combined

for the inference.

Little and Rubin [6] conclude that casewise and mean

substitution methods are inferior when compared with

multiple imputation. Regression methods are somewhat

Fig. 4 Schematic representations of multiple imputations. The miss-

ing values are imputed M times to produce M complete data sets using

an appropriate model that incorporates random variation
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better, but not as good as multiple imputation or other

maximum-likelihood approaches.

6 Imputation methods based on machine learning

Imputation methods based on machine learning are

sophisticated procedures, which generally consist of cre-

ating a predictive model to estimate values that will sub-

stitute those missing. These approaches model the missing

data estimation based on information available in the

dataset. There are several options varying from imputation

with K-nearest neighbor (K-nn) to imputation procedures

based on auto-associative neural networks (AANN). Most

of them are focused on imputing missing data, and so, after

imputed data fill in the incomplete feature values, it is

necessary to train a classifier using the imputed training set.

6.1 Imputation with K-nn

The K-nearest neighbor (K-nn) method is a common hot

deck method, in which K nearest neighbors (donors) are

selected from the complete cases, so that they minimize a

similarity measure. The nearest, most similar, neighbors

are found by minimizing a distance function [26]. Given an

incomplete pattern x,

V ¼ vkf gK
k¼1: ð8Þ

represents the set of its K nearest neighbors (according to a

distance metric) arranged in increasing order of its distance.

Once the donors have been found, a replacement value to

substitute the missing attribute value must be estimated.

How the replacement value is calculated depends on the

type of data; the mode can be used for discrete data and the

mean for continuous data. An improved alternative is to

weight the contribution of each of the K neighbors

according to their distance to the incomplete pattern

whose values will be imputed, giving greater contribution

to close donors. Rather than using only the complete

instances in X, i.e., Xo, a better approach is to select the K

closest cases from the training patterns with known values

in the attributes to be imputed. One of the key aspects of the

K-nn imputation approach is the distance measure. A well-

known and accurate distance function is the heterogeneous

euclidean overlap metric (HEOM) [26, 27]. Consider a pair

of input vectors, represented by xa y xb, the HEOM distance

between them is:

D xa; xbð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

Di xia; xib

� �2

s
: ð9Þ

where di(xia, xib) is the distance between xa and xb on its

i-th attribute:

Di xia; xib

� �
¼

1; 1� mia

� �
1� mib

� �
¼ 0;

D0 xia; xib

� �
; xi is a discrete attribute,

DN xia; xib

� �
; xi is a numerical attribute:

8
<

:

ð10Þ

Unknown data are handled by returning a distance value

of 1 (i.e., maximal distance) if either of the input values is

unknown. The overlap distance function D0 assigns a value

of 0 if the discrete attributes are the same; otherwise, a

distance value of 1. The range normalized difference

distance function DN is

DN xia; xib

� �
¼

xia � xib

�� ��
maxðxiÞ �minðxiÞ

: ð11Þ

where max(xi) and min(xi) are, respectively, the maximum

and minimum values observed in the training set for the

numerical attribute xi.

Batista and Monard compare K-nn with the machine

learning algorithms C4.5 and C2 and conclude that K-nn

outperforms the other two, and that it is suitable also when

the amount of missing data is large [27]. In the context of

DNA research, Troyanskaya et al. report on a comparison

of three imputation methods [20]. They conclude that the

K-nn method is far better than the other tested methods

(mean imputation and imputation based on singular value

decomposition), and also that it is robust with respect to the

amount and type of missing data. An advantage over mean

imputation and simple hot deck method (in fact, K-nn with

K = 1) is that replacement values are influenced only by

the most similar cases rather than by all the cases or the

most similar one, respectively. The main drawback is that

the K-nn method looks for the most similar cases, through

all the data set (in the complete data portion), which

implies a high computational cost.

6.2 SOM imputation

The self-organizing map (SOM) was originally developed

to imitate the formation of the orientation of specific neural

cells in the brain [28]. A SOM describes a mapping from a

higher dimensional (dimension d) input data space to a

lower dimensional (dimension dL) map space, being

dL = 2 the most extended approach. The basic SOM con-

sists of nodes placed in a dL-dimensional array. Each node

has a d-dimensional weight vector associated to it. Training

of the SOM assigns weights to each node that is repre-

sentative of the input data, and such that nodes that are

spatially close in the array have similar weight vectors

[28]. For each training input vector x, the neuron with

weight vector most similar to x is called the best matching

unit (BMU) or image node. The weights of the BMU and

its neighbor nodes close to x in the SOM lattice are

adjusted towards the input vector. A neighborhood function
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has to be defined, being a Gaussian function a common

choice. Generally, a SOM can be considered a non-linear

version of PCA.

Samad and Harp implement SOM approaches to handle

missing values changing the treatment of the input data

[29]. In particular, when an observation with missing fea-

tures is given as input to the map, the missing variables are

simply ignored when distances between observation and

nodes are computed. This principle is also applied both for

selecting the image-node and for updating weights. The

authors also noticed that performances are always better

when incomplete examples are used during the weight

update, compared to training on the complete examples

only. Fessant and Midenet extend this procedure to missing

data imputation [30]. The SOM-based imputation model is

illustrated in Fig. 5.

First, when an incomplete pattern is presented to the

SOM, its image-node is chosen ignoring the distances in

the missing variables; second, an activation group com-

posed of image-node’s neighbors is selected; and finally,

each imputed value is computed based on the weights of

the activation group of nodes in the missing dimensions. In

[30], this approach is compared with hot-deck and standard

multi-layer perceptron (MLP) based imputation, and it is

concluded that SOM works better than the other two

methods, emphasizing that SOM-based method requires

less learning observations than other models, like MLP;

incomplete observations can also be used during the

training stage. Following this idea, Piela implements

missing data imputation in a tree structured self-organizing

map (TS-SOM) [31], which is made of several SOMs

arranged to a tree structure. The major advantages of this

approach over the basic SOM are its faster convergence

and its computational benefit when the number of input

vector is large.

6.3 Multi-layer perceptron imputation

A basic multi-layer perceptron (MLP) imputation approach

consists of training an MLP using only the complete cases

as regression model: given d input features, each incom-

plete attribute is learned (it is used as output) by means of

the remaining complete attributes given as inputs. The

MLP imputation scheme can be described as follows:

1. Given an incomplete input dataset X, separate the

input vectors that do not contain any missing data

(observed component, Xo) with the ones that have

missing values (missing component, Xm).

2. For each possible combination of incomplete attributes

in Xm, construct an MLP scheme using Xo. The target

variables are the attributes with missing data, and the

input variables are the other remaining attributes [32].

In this approach, there is one MLP model per missing

variables combination. Depending on the nature of the

attributes to be imputed (continuous or discrete),

different error functions (sum of squares error or

cross-entropy error) are minimized during the training

process.

After the optimal MLP architectures are chosen, for

each incomplete pattern in Xm, unknown values are pre-

dicted using its corresponding MLP model (according to

the attributes to be imputed). Figure 6a illustrates this

procedure with four attributes, of which the third one has

some unknown values.

Sharpe and Solly use this MLP scheme on a medical

diagnosis application [32]. Nordbotten also experiments this

approach in survey data [33]. Gupta and Lam use it for pre-

dicting the increase or decrease of the earnings of a company

using some financial variables as inputs [34]. The MLP

approach is a useful tool for reconstructing missing values.

However, its main disadvantage is that when missing items

appear in several attributes, several MLP models have to be

designed, one per missing variables combination. Other MLP

methods have been proposed to impute missing values using a

different solution [35, 36]. In [35], Yoon and Lee propose the

TEST (Training-EStimation-Training) algorithm as a way of

using MLP to impute missing data. It consists of three steps.

First, the network is trained with all the complete patterns.

Second, the parameters (weights) are used to estimate the

missing data in all incomplete patterns by means of back-

propagation in the inputs. Third, the MLP network is trained

Fig. 5 Self-organizing map model for imputation. For each input

vector with missing values, its image-node is chosen only measuring

the distances with the known attributes; after that, each missing value

is imputed based on the weights of the activation group of nodes in

the incomplete attributes
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again using the whole data set, i.e., complete and imputed

patterns. However, this procedure cannot estimate missing

values in the test set. Following this idea, Kallin [36] imple-

ments an imputation procedure in a single layer perceptron

(SLP). In a first step, the SLP is trained using only the com-

plete cases; after that, imputation is done with the inverse of

the obtained equation for the desired classification output (it

requires that the pre-processing and activation functions can

be inverted). This approach is shown in Fig. 6b. According to

Ref. [36], it is a simple solution, which produces good results

that are comparable to multiple imputation.

6.4 Recurrent neural network imputation

A recurrent neural network (RNN) is an architecture with

feedback connections from its units. Bengio and Gingras

propose RNN with feedback into the input units for esti-

mating missing data [37]. First, the missing values are

initialized with the mean imputation, and these values are

updated using the feedback connections, while the network

is trained to learn the classification task. The missing val-

ues are modified as a function of the missing input in the

last iteration and the weighted sum of a set of recurrent

links from the other units (hidden and missing) to the

missing unit with a unit delay. Figure 7 illustrates the RNN

approach used in [37]. The authors show that when there

are dependencies among input variables, the output pre-

diction can be improved by taking them into account; the

recurrent network performs significantly better than a

standard network with missing values replaced by their

mean. Some works have extended the RNN using true

values of incomplete features as extra targets during the

training [38].

6.5 Auto-associative neural network imputation

An auto-associative neural network (AANN) is a set of

neurons that are completely connected in the sense that

each neuron receives input from, and sends output to, all

the other neurons. Some works tackle the missing data

imputation by means of this kind of networks [39–43].

Figure 8 shows an AANN, which is trained to estimate

missing data. First, the network learns from complete

cases, in order to replicate all of the inputs as outputs.

Second, when unknown values are detected, the weights

are not updated. Instead, the missing values are replaced by

the network outputs.

6.6 Multi-task learning approaches

In recent years, some approaches have been proposed using

the advantages of multi-task learning (MTL) [44–47]. MTL

is an approach to machine learning that solves a problem

(main task) together with other related problems (extra

tasks) at the same time, using a shared representation

[44–46]. In [47], an MTL neural network scheme that

Fig. 6 Two different ANN

solutions for a classification

problem of input vectors with

four attributes, where the

attribute x3 is incomplete. First,

in (a), the standard imputation

using an MLP as regressor for

the incomplete attribute x3 is

shown. Second, in (b), how a

single perceptron can estimate

missing values using its inverse

output is illustrated

Fig. 7 Missing data imputation with recurrent neural networks

(RNN). Missing values are imputed using the feedback connections

from the hidden neurons
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combines missing data imputation and pattern classification is

proposed. This procedure utilizes the incomplete features as

secondary tasks, and learns them in parallel with the main

classification task. Figure 9 shows a full-connected neural

network based on MTL for solving a decision problem what

presents missing values in the features x2 and x3. This neural

scheme learns three different tasks: one classification task,

associated with the network output y, and two imputation

tasks, associated with the outputs ~x2 and ~x3.

In the input layer, there is an input unit for each feature and

also an extra input unit associated to the classification target.

This extra input (classification target) is used as hint to learn

the secondary imputation tasks. Hidden neurons used in this

approach do not work in the same way as standard neurons,

because they compute different outputs for the different tasks

to be learned [47]. They do not include the input signal they

have to learn in its corresponding output unit in the sum

product. For example, in Fig. 9, the imputation output ~x2 is

learned using the information from the attributes x1, x3, and

x4, and the classification target t, but it does not depend on x2.

The imputation outputs are used to estimate the missing

values during the training stage. By doing this, missing data

estimation is oriented to solve the classification task, because

the learning of the classification task affects the learning of

the secondary imputation tasks. According to [47], this

approach outperforms other well-known techniques, such as

GMM trained with EM and K-nn, but its major drawback is

that it uses the quadratic error as cost function to be mini-

mized during the training, which does not consider the input

data distribution.

6.7 Performance metrics for missing data imputation

The performance and capabilities of the different imputa-

tion approaches in classification problems can be evaluated

considering the two kinds of tasks to be solved, i.e.,

classification and imputation tasks. In the first case, once

the missing values have been imputed, a classifier is

trained, and its accuracy is measured computing the clas-

sification error rate (CER) over the test patterns [1–3],

whereas, for measuring the quality of the missing data

estimation, it is needed to insert incomplete data in an

artificial way for different missing data percentages and

different combination of attributes. Let us consider that ~xi

denotes the imputed version of the i-th attribute, and x̂i

denotes the true version of the same variable. Two different

criteria can be used for comparing the imputation methods:

• Predictive accuracy (PAC). An imputation method

should preserve the true values as far as possible.

Considering that the i-th attribute has missing values in

some input patterns, its imputed version ~xi must be

close to the x̂i (variable with true values). The Pearson

correlation between ~xi and x̂i provides a good measure

of the imputation performance, and its it given by

PAC � r ¼
PN

n¼1 ~xi;n � �~xi

� �
x̂i;n � �̂xi

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

n¼1 ~xi;n � �~xi

� �2
x̂i;n � �̂xi

� �2
q ð12Þ

where ~xi;n and x̂i;n denote, respectively, the n-th value of

~xi and x̂i, and besides, �~xi and �̂xi denote, respectively, the

mean of the N values included in ~xi and x̂i. A good

imputation method will have a value for the Pearson

correlation close to 1.

Fig. 8 Missing data imputation with auto-associative neural net-

works (AANN). Missing data imputation is done using the output unit

which learns the corresponding incomplete attribute

Fig. 9 MTL neural network for solving a classification problem of

input vectors with four attributes, where the features x2 and x3 are

present incomplete data. Hidden neurons used in this approach do not

work in the same way as standard neurons, because they compute

different outputs for the different tasks to be learned. This network

learns the classification task, and each imputation task associated to

an incomplete input feature at the same time. By doing this, missing

data imputation is oriented to solve the main classification task
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• Distributional accuracy (DAC). An imputation method

should preserve the distribution of the true values. One

measure of the preservation of the distribution of the

true values is the distance between the empirical

distribution function for both the imputed and the true

values. The empirical distribution functions, Fx̂i
for the

cases with true values, and F~xi
for the cases with

imputed values, are defined as

Fx̂i
ðxÞ ¼ 1

N

XN

n¼1

Iðx̂i;n� xÞ ð13Þ

F~xi
ðxÞ ¼ 1

N

XN

n¼1

Ið~xi;n� xÞ ð14Þ

where I is the indicator function. The distance between

these functions can be measured using the Kolmogorov–

Smirnov distance, DKS, which is given by

DAC � DKS ¼ max
n

Fx̂i
ðxnÞ � F~xi

ðxnÞk kð Þ ð15Þ

where the xn values are the jointly ordered true and

imputed values of attribute xi. A good imputation

method will have a small distance value.

In many scenarios, the CER is the most significant

metric due to the fact that the main objective is to solve a

classification problem, and the imputation is a secondary

task whose aim is to provide imputed values which help to

solve the classification problem. For example, given two or

more imputation methods and a neural network classifier,

the best imputation approach will be that method which

provides better CER in the test set given the same weight

initialization for the classifier.

7 Model-based procedures

The methods described in this section are called model-

based methods since the researcher must make assumptions

about the joint distribution of all the variables in the model.

One of the most used approaches in this category is the

mixture models trained with the expectation–maximization

(EM) algorithm. Consider that the input vectors are gen-

erated following a probability density function (pdf) p(x|h),

being h the parameters which defines this pdf. Given N

input vectors,

p Xjhð Þ ¼
YN

n¼1

p xnjhð Þ: ð16Þ

is the likelihood of h given X. In maximum likelihood

(ML) estimation, we wish to estimate the model

parameter(s) for which the observed data are the most

likely. In addition to this, mixture models provide a general

semi-parametric model for arbitrary densities [1–3], where

the density functions are modeled as a linear combination

of J component densities (in a non-parametric kernel-based

approach, it is a linear combination of kernel or basis

functions). Thus, this approach considers that p(x) can be

approximated by

p xjhð Þ �
XJ

j¼1

p xjhj; j
� �

PðjÞ: ð17Þ

where hj are the parameters of the j-th component and P(j) are

the mixing parameters [1–3]. In particular, real valued data

can be modeled as a mixture of Gaussians; and for discrete

valued data, it can be modeled as a mixture of Bernoulli

densities or as a mixture of multinomial densities [48, 49].

From Eqs. 16, 17 and the independence assumption, we see

that the log-likelihood given the dataset is

L hjXð Þ ¼
XN

n¼1

log
XJ

j¼1

p xnjhj; j
� �

PðjÞ: ð18Þ

Following a ML estimation, the best model has

parameters that maximize L(h|X). However, this function

is not easily maximized numerically because it involves the

log of a sum. Intuitively, there is a ‘credit assignment’

problem: it is not clear which component of the mixture

generated a given input data vector and thus which

parameters to adjust for fitting this input vector. The EM

algorithm is an efficient iterative procedure for solving this

credit assignment problem. This method computes the ML

estimate in the presence of missing or hidden data. The

intuition is that if one had access to a ‘hidden’ random

variable z that indicated which instance is generated by

which mixture component, then the maximization problem

would decouple into a set of simple maximizations. Using

the hidden variables, a ‘complete-data’ log likelihood

function can be written:

Lc hjX;Zð Þ ¼
XN

n¼1

XJ

j¼1

znjlog p xnjzn; hj

� �
Pðzn; hjÞ ð19Þ

which does not involve a log of summation. Since z is

unknown, Lc cannot be utilized directly, so we instead

work with its expectation in a iterative procedure, denoted

by Q(h|hs), where hs are the model parameters in the s-th

iteration. As shown in [50], L(h|X) can be maximized by

iterating the following two steps:

E step: Q hjhsð Þ ¼ E Lc hjX;Zð ÞjX; hs½ �;
M step: hsþ1 ¼ arg max

h
Q hjhsð Þ: ð20Þ

The expectation or E-step computes the log likelihood of

the data, and the maximization or M-step finds the

parameters that maximize this likelihood [50]. The EM

algorithm has been successfully applied to a variety of
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problems involving incomplete data, such as training

Gaussian mixture models (GMMs) [48, 49]. EM associates

a given incomplete-data problem with a simpler complete-

data problem, and iteratively finds the maximum likelihood

estimates of the missing data. In a typical situation, EM

converges monotonically to a fixed point in the state space,

usually a local maximum.

Applying EM to an incomplete-data problem can actu-

ally be perceived as a special instance of local search. For

example, when learning a mixture of Gaussians [48, 49],

the state space consists of all the possible assignments to

the means, covariance matrices, and prior probabilities

of the Gaussian distributions. Missing features can be

treated naturally in this framework, by computing the

expectation of the sufficient statistics for the E-step over

the missing values as well as the mixture components.

Thus, in the expectation, or E-step, the missing data are

estimated given the observed data and current estimate of

the model parameters. This is achieved using the condi-

tional expectation. In the M-step, the likelihood function is

maximized under the assumption that the missing data are

known. The estimates of the missing data from the E-step

are used instead of the actual missing data. The EM

algorithm starts with some assignment to these state vari-

ables; for example, the mean vectors are usually initialized

with K-means, and iteratively update the state variables

until it converges to a state with a locally maximum like-

lihood estimate of training data. Convergence is assured

since the algorithm is guaranteed to increase the likelihood

at each iteration. In a classification problem, the mixture-

modeling framework can model the class label as a mul-

tinomial variable, i.e., the mixture model estimates the

joint probability that an input vector has determined attri-

butes and belongs to a determined class. Once the model is

obtained, the most likely label for a particular input pattern

may be obtained by computing the class-posterior proba-

bilities using the Bayes theorem [1–3, 48, 49].

In addition to this, efficient neural network approaches

for handling missing data have been developed to incor-

porate the input data distribution modeling into the network

[51–54]. Ahmad and Tresp discuss Bayesian techniques for

extracting class probabilities given partial data [51]. Con-

sidering that the classifier outputs are good estimates of the

class-posterior probabilities given the input vector, and it

can be split up into a vector of complete features and other

with unknown features, they demonstrate that the optimal

solution involves integrating over the missing dimensions

weighted by the local probability densities. Moreover, in

[51], closed-form approximations to the class probabilities

are obtained by using Gaussian basis function networks,

and they extend to an MLP classifier calculating the inte-

grals with Monte Carlo techniques. Instead of doing a

numerical approximation of these integrals, Tresp et al.

[52, 53] propose an efficient solution using GMMs and

Parzen windows to estimate the conditional probability

densities that appear in the integral (for more details, see

Refs. [51–53]). Finally, Williams et al. have recently pro-

posed a classification scheme based on logistic regression

with missing values [54]. In this approach, the conditional

density functions are estimated with a GMM whose

parameters are obtained using both EM and variational

Bayesian EM (VB-EM). According to Ref. [54], this

method outperforms other procedures, such as GMM

trained with EM, mean and multiple imputation, but its

major drawback is the restriction to linear classifier.

Finally, we would like to remark an efficient procedure

based on Bayesian networks, which has been proposed by

Ramoni and Sebastani [55]. This procedure is known

Robust Bayesian estimator (RBE), and it learns conditional

probability distributions from incomplete data sets without

making any assumption on the missing data mechanism. Its

main advantage is the robustness with respect to the dif-

ferent types of missing data. This is achieved by consid-

ering probability intervals containing all possible estimated

values, instead of a single value, that can be learned

from all completed data sets. The width of these intervals

monotically increases function of the information available

in the dataset, and thus provides a measure conveyed by

the data.

8 Some machine learning approaches for handling

missing data

Up to now, this work has discussed several machine

learning procedures where missing values are replaced by a

plausible value, i.e., missing values are imputed with an

estimator, and afterwards that classification is done with

another machine. Conversely, other approaches have been

proposed for handling missing data in classification prob-

lems avoiding explicit imputations. Now, we will summarize

the most representative machine learning procedures which

are able to deal with unknown values, such as ensemble

methods, decision trees, fuzzy approaches and support vec-

tor solutions.

8.1 Neural network ensembles

Neural network ensemble models have also been used for

classification of incomplete data [32, 56–58]. Sharpe and

Solly propose a procedure named network reduction [32].

In this method, a set of MLPs is created, and each MLP

classifies basing on each different possible combination of

complete features, in order to cover the complete range of

attributes with missing values. The main drawback of this

method is that it requires a huge number of neurons when
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multiple combinations of incomplete attributes are pre-

sented. Krause and Polikar [56] develop an ensemble of

classifiers trained with random subsets of features for

missing feature problem. As each classifier component of

the ensemble is generated according to a weighted vector

for features, it cannot guarantee that all the instances have

been trained on the ensemble. Therefore, useful informa-

tion maybe ignored. In Ref. [57], the incomplete dataset is

divided into a group of complete sub data sets, which is

then used as the training sets for the neural networks.

According to Ref. [57], compared with other methods

dealing with missing data in classification, this method can

utilize all the information provided by the data with

missing values, maintaining maximum consistency of

incomplete data and avoiding the dependency on distribu-

tion assumption. Juszczak and Duin propose to form an

ensemble of one-class classifiers trained on each feature

[58]. Thus, when any feature values are missing for a data

point to be labeled, the ensemble can still make a reason-

able decision based on the remaining classifiers.

8.2 Decision trees

In this kind of methods, we stand out three well-known

approaches: ID3, C4.5, and CN2. These procedures can

handle missing values in any attribute for both training and

test sets [59–64]. ID3 is a basic top–down decision tree

algorithm that handles an unknown attribute by generating

an additional edge for the unknown. Thus, an unknown

edge has been taken as a new possible value for each

attribute and it has been treated in the same way as other

values. C4.5 is an extension of ID3 proposed by Quinlan

[60]. It uses a probabilistic approach to handle missing

values in the training and test data set. In this approach, the

way of dealing with missing values changes during the

training and testing stages. During training, each value for

an attribute is assigned a weight [60–63]. If an attribute

value is known, then the weight is equal to one; otherwise,

the weight of any other value for that attribute is the rel-

ative frequency of that attribute. On the testing phase, if a

test case is incomplete, it explores all the available bran-

ches (below the current node) and decides the class label by

the most probabilistic value. The CN2 is an algorithm for

inducing propositional classification rules. It uses a rather

simple imputation method to treat missing data. Every

missing value is filled in with its attribute most common

known value, before computing the entropy measure [64].

8.3 Fuzzy approaches

Many fuzzy procedures have been developed in order to

handle missing data [65–77]. Ishibuchi et al. propose an

MLP classification system where unknown values are

represented by interval inputs [65, 66]. For example, if the

pattern space of a particular classification problem is the

d-dimensional unit cube [0, 1]d, each unknown feature

value is represented by the interval input that includes all

the possible values of that attribute. When the attribute

value is completely known, it is also represented by

intervals (e.g., 0.3 is represented by [0.3, 0.3]). This net-

work is trained by means of back-propagation algorithm

for fuzzy input vectors [67]. Gabrys develops a general

fuzzy min–max (GFMM) neural network using hyperbox

fuzzy sets [68, 69]. A hyperbox defines a region of the

d-dimensional pattern space, by its min-point and its max-

point, so the patterns contained within the hyperbox have

‘‘full class’’ membership. Learning in the GFMM neural

network for classification consists of creating and adjusting

hyperboxes in pattern space [69]. This procedure handles

missing values in a similar way as the interval inputs, i.e.,

the missing attribute is modeled by a real valued interval

spanning the whole range of values. In Refs. [71–73], some

techniques to tolerate missing values based on a system of

fuzzy rules for classification are proposed. In general, a

fuzzy rule based classifier consists of a set of rules for each

possible category, where each rule can be decomposed into

individual one-dimensional membership functions corre-

sponding to the fuzzy sets (see Ref. [71] for more details).

When an incomplete pattern has to be classified, the rules

are obtained using only one-dimensional membership

function of the known attributes, which is computationally

very efficient. Other fuzzy solutions for missing values are

based on fuzzy C-means [74–76].

8.4 Support vector machines

In recent years, some works have extended the standard

formulation of support vector machines (SVMs) for han-

dling uncertainty in the input data [78–82]. Bhattacharyya

et al. propose a mathematical programming method to deal

with uncertainty in the observations of a classification

problem [78]. They consider a standard SVM classifier

with certainty (all the training data are known), and they

extend it to handle missing values replacing the linear

classification constraints by a probabilistic one. This is

done by modeling the missing variables as random vari-

ables; in particular, the input data a drawn from a Gaussian

distribution [78]. Moreover, the model parameters (mean

and covariance matrices) are estimated by means of the EM

algorithm. In [79], Smola et al. shows how SVMs and

Gaussian processes (GPs) can deal with missing data. This

procedure is based on the fact that kernel methods can

be written as estimator in an exponential family. More

specifically, GPs can be seen to maximize the negative

log-posterior under a normal prior on the natural parameter

of the exponential density, whereas SVMs maximize the
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likelihood ratio [79]. In this approach, estimation with

missing values becomes a problem of computing marginal

distribution, and finding efficient optimization methods,

like the constrained concave convex procedure (CCCP)

and the EM algorithm [79]. Pelckmans et al. propose a

modified risk function taking into account the uncertainty

of predicted outputs when missing values are involved

[80]. This is done by incorporating a probabilistic model

for the missing data. This method generalizes the approach

of mean imputation in the linear case, and the proposed

kernel machine reduces to the standard SVM when no

input values are missing [80]. Other approaches have been

proposed to deal with noisy inputs. Bi and Zhang develop a

novel formulation of support vector classification [81],

which allows uncertainty in input data, assuming that

inputs are subject to an additive noise that follows certain

distribution. Recently, Chechik et al. [82] have proposed an

accurate classifier for incomplete data using a max-margin

learning framework. This method uses a geometrically

inspired objective function, solving two optimization

approaches: the linearly separable case, which is written as

a set of convex feasibility problems, and the non-separable

case, that has a non-convex objective which is optimized

iteratively. By avoiding a previous imputation stage, this

method provides considerable computational savings, and

more importantly, its gives an elegant procedure for han-

dling complex patterns of missing values.

9 Experimental evaluation of solutions based

on missing data estimation

As we have already mentioned, the main goal of this work

is to provide a general overview for incomplete data clas-

sification methods, giving a special emphasis to machine

learning solutions. A detailed and global experimental

evaluation of incomplete data classification methods is

beyond of the scope of this work. However, we have

selected some of the most representative approaches for

missing data imputation in order to show experimental

results. Missing data imputation is the most common

solution for incomplete data classification in many appli-

cations. This pre-processing step is chosen, because the

great majority of decision making tools, such as the com-

monly used artificial neural networks and many other

machine learning techniques implemented in commercial

software, cannot be used for performing the classification

task when data are not complete.

This section evaluates the influence of imputing missing

values into the classification accuracy obtained by an

artificial neural network. In particular, four missing data

estimation techniques have been selected: K-nn imputation,

SOM imputation, MLP imputation, and the EM algorithm.

In order to compare these approaches, we have chosen a

synthetic toy dataset, and two different real classification

problems, one without missing values and other with

incomplete data. The main reason for using complete

datasets is to measure the influence in the results when

different percentages of missing values are considered.

Missing values are inserted in the same proportion into the

training and test sets. In particular, the tested complete

problems are an artificial dataset, named Toy problem, and

a well-known vowel recognition problem, Telugu.2 The

remaining incomplete dataset is a medical diagnosis

problem, Sick-Thyroid.3 An MLP with one hidden layer is

trained to perform the classification task. For each problem,

the weights initializations are the same for all the trained

classifiers using the edited sets (complete patterns and

incomplete patterns with imputed values) obtained by the

different imputation approaches. Network weights are

computed using the scaled conjugate gradient method

during the training stage, and classification results are

averages of 20 simulations (i.e., 20 weights initializations).

9.1 Toy problem

This dataset is a two-dimensional synthetic classification

problem composed of five Gaussian components, which is

modeled on a dataset used by Ripley [2]. Data set is

composed by 1,500 patterns where each component has

300 patterns. Training, validation, and test subsets are

generated by randomly selecting 100 patterns from each

Gaussian component. The input datasets have been nor-

malized (zero mean and unity standard deviation). Missing

values (5, 10, 20, 30, 40%) are randomly inserted into the

first attribute in training, validation, and test sets. Figure 10

shows the training data with 5% of unknown values. An

incomplete pattern is represented by an horizontal line.

9.1.1 First stage: missing data imputation

As the ‘true’ values are known, we can measure the quality

of the missing data estimation using the PAC and DAC

measures for the different imputation procedures. How-

ever, are they accurate metrics for evaluating the quality of

imputations in a classification scenario? In this section, we

pretend to show that the selection of the parameter values

for an imputation method must be done according to the

classification results, and not using PAC or DAC metrics.

For doing this, we will make use of one of most common

and well-known missing data estimation approaches: K-nn

imputation. In this approach, after the distances have been

computed using the HEOM metric (9), the number of

2 http://www.isical.ac.in/*sushmita/patterns/.
3 http://archive.ics.uci.edu/ml/.
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nearest neighbors (K) must be chosen. In particular, the

tested values for K are from 1 to 20. Figure 11 shows the

obtained PAC and DAC results in the test set for different

values of K, considering 5, 10, 20, 30, and 40% of missing

data in the first attribute. As it can be observed in this

figure, accurate estimations in terms of the PAC metric is

obtained with high values of K, and conversely, low values

of K provides better imputation results considering the

DAC metric.

Figure 12 shows the imputed test sets, with 20% of

missing values, using K = 1 and K = 20. The input data

distribution is preserved using the hot-deck approach

(K = 1), but it can provide high imputation errors

according to ‘true’ values. However, when the imputed

values are obtained from a local approximation with

K = 20, this technique tends to provide the minimum

mean square error (MMSE) estimator and its imputation

results are accurate (on average) according to the ‘true’

values, but this solution does not preserve the input data

distribution.

Intermediate values for the parameter K can be more

satisfactory, and its optimal value must be selected

according to the classifier performance, i.e., we have to

choose the value of K that provides a better classification

accuracy given a decision making tool. Model parameter

selection can be typically carried out by choosing a model

criterion such as the cross-validation [1–3]. In addition to

Fig. 10 Toy problem, a synthetic binary classification two-dimen-

sional dataset. Missing values are randomly inserted into the first

attribute. An horizontal line represents an incomplete pattern

Fig. 11 Predictive accuracy (PAC) and distributional accuracy (DAC) obtained by K-nn imputation using different values for K, when missing

values (from 5 to 40%) are artificially inserted in the first attribute of the Toy problem

Fig. 12 Missing data

imputation by K-nn using

K = 1 (a) and K = 20 (b) in

Toy problem, considering 20%

of missing data in x1. Input

vectors with imputed values are

shown in black color
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this, in real-life incomplete classification problems, the

‘true’ values for the missing ones are not available, and

thus, PAC and DAC metrics cannot be used. All these

conclusions are extensible to other missing data estimation

approaches, such as MLP, EM or SOM imputation.

In particular, the number of hidden neurons for MLP

imputation is chosen from 2 to 25, the number of mix-

ture components in EM algorithm from 2 to 20, and

the number of nodes in a SOM approach from 10 to 100.

For each imputation method, its model parameters are

chosen according to the classification results in the vali-

dation set.

9.1.2 Second stage: classification

Once missing values are imputed using K-nn, MLP, SOM

and EM approaches, pattern classification is performed by

an artificial neural network with six hidden neurons, which

provides accurate classification results in this synthetic

problem. Table 1 shows the obtained classification test

results for different percentages of missing data in the first

attribute. For each imputation method, its parameter values

have been selected using cross-validation. Following the

obtained classification results, EM algorithm outperforms

clearly the remaining tested imputation methods for all

missing data percentages. Edited sets obtained using SOM

imputation for high missing data percentages (30, 40%) do

not facilitate the classifier design and it provides the worst

classification results. In this problem, MLP imputation is a

better solution than K-nn for high percentages of missing

data, whereas, K-nn approach classifies better for a low

missing data percentage.

9.2 Telugu problem

This problem is an Indian vowel recognition dataset. It is a

six-class problem composed of 871 cases with three real

attributes. In order to make more clear the effect of

inserting missing values, the most relevant classification

features have been selected. Here we use mutual infor-

mation because it has been proven that it is a good measure

to compute this relevance for classification problems [83].

Thus, a feature xi is selected to be incomplete if I(xi, t) is

large being I(xi, t) the normalized mutual information

between xi and the target class variable t. The mutual

information has been computed using a Parzen window

approach [83]. Before missing data are inserted, the nor-

malized MI between each input feature and the target class

are evaluated: I(x1, t) = 0.32, I(x2, t) = 0.42, and I(x3,

t) = 0.26. It is critical to observe that not all the features

equally contribute to solve the problem. Considering this

fact, missing values (5, 10, 20, 30 and 40%) have been

randomly introduced in the most relevant feature (x2). Input

data set are split into two separate sets: a training set (70%

of samples) and a test set (remaining 30% samples),

maintaining the proportion between the instances of each

class. As in the Toy problem, model parameters for

imputation approaches are chosen by cross-validation (in

particular, stratified tenfold cross validation) criterion using

the classification results. Once missing values are imputed,

an artificial neural network with 18 hidden neurons

(experimentally selected number) is trained to learn the

classification task. Table 2 shows the obtained classifica-

tion error rates using the edited training and test sets pro-

vided by each imputation approach.

Table 1 Misclassification error

rate (mean ± standard

deviation from 20 simulations)

in Toy problem after missing

values are estimated using K-nn,

MLP, SOM, and EM imputation

procedures

A neural network with six

hidden neurons is used to

perform the classification stage

Missing data in x1 (%) Missing data imputation

K-nn MLP SOM EM

5 9.21 ± 0.56 9.97 ± 0.48 9.28 ± 0.84 8.29 ± 0.24

10 10.85 ± 1.06 10.86 ± 0.79 9.38 ± 0.52 9.27 ± 0.54

20 11.88 ± 1.01 11.42 ± 0.44 10.63 ± 0.54 10.78 ± 0.59

30 13.50 ± 0.81 12.82 ± 0.51 13.88 ± 0.67 12.69 ± 0.57

40 14.89 ± 0.49 13.72 ± 0.37 15.55 ± 0.66 13.31 ± 0.56

Table 2 Misclassification error

rate (mean ± standard

deviation from 20 simulations)

in Telugu problem after missing

values are estimated using K-nn,

MLP, SOM, and EM imputation

procedures

A neural network with 18

hidden neurons is used to

perform the classification stage

Missing data in x2 (%) Missing data imputation

K-nn MLP SOM EM

5 15.92 ± 1.26 15.84 ± 1.13 16.32 ± 1.13 16.19 ± 0.99

10 16.88 ± 1.16 16.87 ± 1.16 16.97 ± 1.18 16.85 ± 1.03

20 18.78 ± 1.29 19.09 ± 1.29 19.30 ± 1.23 19.23 ± 1.12

30 20.58 ± 1.31 20.76 ± 1.34 22.04 ± 1.01 21.22 ± 1.12

40 22.61 ± 1.30 22.76 ± 1.23 24.06 ± 1.29 23.11 ± 1.37
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As it can be observed, K-nn and MLP imputation pro-

vide similar classification results, enhancing the obtained

error rates by SOM and EM imputation. These differences

are clearer for higher percentages of missing values. If one

imputation technique had to be selected, K-nn would be a

better choice than MLP, because it is a simple solution and

provides better classification results. K-nn imputation only

requires to compute the distances from the incomplete

patterns to training vectors and to choose the K parameter,

whereas MLP imputation requires to train several neural

networks (with different weight initializations for avoiding

local minima), and it entails a high computational cost.

9.3 Sick-thyroid problem

The information in this dataset comes from thyroid disease

records supplied by the Garavan Institute and Quinlan [59].

This binary-classification problem can be found in the UCI

database. The original dataset is composed of 2,800 train-

ing instances, and 972 test instances. There are two pos-

sible thyroid diagnoses (classes): sick and negative. Each

input vector is composed of 21 binary attributes, and 7

continuous features (patient age and six laboratory test

results). From these features, we select five laboratory test

results: x1 is the total thyroxine test (T4); x2 is the free

thyroxine test (FT4); x3 is the triiodothyronine test (T3); x4

is the triiodothyronine uptake test (T3U) and x5 is thyro-

propin test (TSH). The dataset has plenty of missing values

and all attributes are incomplete. Table 3 shows the miss-

ing data percentages in the five input attributes for each

dataset (training and test sets).

As in the two previous problems, we test the influence of

missing data estimation into the classifier accuracy using

K-nn, MLP, SOM, and EM imputation approaches. The

model parameters for these procedures are selected by

cross-validation (tenfold stratified cross-validation)

according to the obtained classification results. Medical

diagnosis task (target class variable) is modeled using an

artificial neural network composed of 20 hidden neurons

(experimentally selected number). Once missing values are

imputed, 20 weights initializations are done, and the clas-

sifier models are trained using the edited sets provided for

each imputation method. Misclassification error rates

(average results over the 20 simulations) are shown in

Table 4. In this problem, K-nn provides the best general-

ization capabilities, whereas, EM algorithm produce worse

classification results than the other methods.

10 Conclusions

Missing or incomplete data is a usual drawback in many

real-world applications of pattern classification. Data may

contain unknown features due to different reasons, e.g.,

sensor failures producing a distorted or immeasurable value,

data occlusion by noise, non-response in surveys. Handling

missing data has become a fundamental requirement for

pattern classification because an inappropriate missing data

treatment may cause large errors or false classification

results.

This work reviews the most important missing data

techniques in pattern classification, specially focusing on

solutions based on machine learning. In general, pattern

classification with missing data concerns two different

problems, handling missing values and pattern classifica-

tion. Depending on how both problems are solved, most of

the approaches in the literature can be grouped into four

different types of approaches. First, the easiest way for

dealing with missing data is listwise or casewise deletion,

i.e., omitting the cases that have missing data, the loss of

information being its main disadvantage. The second kind

of methods is imputation, i.e., to estimate and fill in the

unknown input data. In this category, we can distinguish

between statistical procedures, such as mean imputation or

multiple imputation, and machine learning approaches,

such as imputation with neural networks. Other well-

known approaches are based on the estimation of the input

data distribution, the expectation–maximization algorithm

Table 3 Missing data percentages in each input feature of the sick-

thyroid dataset

Thyroid dataset Input feature

x1 (%) x2 (%) x3 (%) x4 (%) x5 (%)

Training 10.14 20.89 6.57 10.61 10.54

Test 8.74 18.93 4.84 9.26 9.26

Table 4 Misclassification error rate (mean ± standard deviation from 20 simulations) in sick-thyroid dataset after missing values are estimated

using K-nn, MLP, SOM, and EM imputation procedures

Missing data imputation

K-nn MLP SOM EM

Misclassification error rate (%) 3.01 ± 0.33 3.23 ± 0.31 3.49 ± 0.35 3.60 ± 0.31

A neural network with 20 hidden neurons is used to perform the classification stage

Neural Comput & Applic

123



being the one that stands out. Most of these solutions work

well in many situations, being a recommended way to

handle missing data. The last methods analyzed in this

work are machine learning solutions that are able to handle

missing values, such as ensemble of networks or fuzzy

methods. Research work on this topic is currently growing

wider and it is well known how efficient most of the

solutions based on machine learning are.

This review paper provides some experimental results

for solutions based on missing data estimation, which

comprise the most common and well-known approaches.

Imputation is widely used because most commercial deci-

sion making software cannot handle with incomplete data,

and thus, a previous imputation stage is required to perform

the classification stage. As it has been shown in the

obtained results, there is not a unique solution that provides

the better results for each classification domain. Generally,

in real-life scenarios, a detailed study is required in order to

evaluate which missing data estimation can help to enhance

the classification accuracy.

It is evident that the research direction can still be

broadened as there are some open questions that need to be

answered, such as ‘‘can an efficient imputation solution

enhance the decision making process?’’ In classification

tasks with missing values, the main objective of an impu-

tation method must be to help to enhance the classification

accuracy. In the recent years, some works have been

developed in order to provide missing data estimation

focused on solving the classification problem, and not on

obtaining imputed values which minimize the error between

the predictions and the ‘‘true’’ values. Since it remains quite

difficult to compare different techniques, some pending

questions to be answered are to establish a unified evalua-

tion criteria and an open access repository for incomplete

datasets. Aspect of running time and memory requirements

have also to be considered for comparison. The require-

ments for speed vary from one application to the other.

Missing values in fast-moving data such as the stock market

need to be estimated in the shortest possible time, whereas

this requirement is less important for an opinion poll.

The correct choice of a missing data treatment is a hard

and complex task, because the performance of a method

depends on the classification, i.e., a method can work well

with some problems, and in contrast, its results can be

inappropriate with other applications. Thus, a previous

analysis of the classification problem to be solved is very

important in order to select the most suitable missing data

treatment.
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