
Data Mining and Knowledge Discovery 3, 197–217 (1999)
c© 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

Partitioning Nominal Attributes in Decision Trees

DON COPPERSMITH copper@watson.ibm.com
SE JUNE HONG hong@watson.ibm.com
JONATHAN R.M. HOSKING hosking@watson.ibm.com
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY 10598, USA

Editor: Heikki Mannila

Abstract. To find the optimal branching of a nominal attribute at a node in anL-ary decision tree, one is often
forced to search over all possibleL-ary partitions for the one that yields the minimum impurity measure. For
binary trees (L = 2) when there are just two classes a short-cut search is possible that is linear inn, the number
of distinct values of the attribute. For the general case in which the number of classes,k, may be greater than
two, Burshtein et al. have shown that the optimal partition satisfies a condition that involves the existence of(

L
2)

hyperplanes in the class probability space. We derive a property of the optimal partition for concave impurity
measures (including in particular the Gini and entropy impurity measures) in terms of the existence ofL vectors
in the dual of the class probability space, which implies the earlier condition.

Unfortunately, these insights still do not offer a practical search method whenn andk are large, even for binary
trees. We therefore present a new heuristic search algorithm to find a good partition. It is based on ordering the
attribute’s values according to their principal component scores in the class probability space, and is linear inn.
We demonstrate the effectiveness of the new method through Monte Carlo simulation experiments and compare
its performance against other heuristic methods.

Keywords: binary decision tree, classification, data mining, entropy, Gini index, impurity, optimal splitting

1. Introduction

Decision trees are among the models most often used in data mining applications. When
generating a decision tree, the main step at each node is to determine which attribute, if
any, is to be tested and which of the many possible tests of the attribute’s values should be
performed. Each possible test yields a partition of the set of examples; the aim is to find
the partition that minimizes the weighted sum of the class impurities of each branch, or,
equivalently, the partition that maximizes the impurity improvement or “gain”. In practice
one first determines for each attribute the best test and its corresponding impurity, and then
finds the attribute that gives the best among these “best tests”.

We consider the problem of finding the best test for a nominal attribute withn values in
ak-classL-ary decision tree. We are particularly concerned with cases in whichn or k, or
both, are quite large; this situation arises in many pattern recognition problems and in some
large real data mining applications.

The problem is to find the optimal partition ofn elements intoL bins. A partition of then
distinct values of the attribute induces a partition of the examples: each example is put into
the branch corresponding to the value that the given attribute takes for that example. The

198 COPPERSMITH, HONG AND HOSKING

class impurity of the examples in each branch is computed, weighted, summed and assigned
to the given partition. Ann byk contingency matrix, computed at the start of the procedure,
can be used to compute the impurity measure for each partition that is considered. The
number of distinct partitions ofn elements is exponential inn: for example, ifL = 2, a
binary tree, there are 2n−1− 1 two-way partitions.

There are a variety of impurity measures. The two most often used are the Gini index,
used in CART (Breiman et al., 1984) and its variants, and entropy, used in C4.5 (Quinlan,
1993) and its variants. Letn = (n1, . . . ,nk) be a vector of nonnegative real numbers
representing the number of examples in each class, and letN =∑i ni be the total number
of examples at a given node. TheGini indexis defined as

g(n) = 1−
∑

i

n2
i

/
N2. (1)

The frequency-weighted Gini index is defined as

G(n) = Ng(n) =
∑
i 6= j

ni n j /N. (2)

We similarly defineentropy

h(n) = −
∑

i

ni

N
log

ni

N
(3)

and the frequency-weighted entropy measure

H(n) = Nh(n) = N log N −
∑

i

ni logni . (4)

For mathematical convenience,h(n)andH(n)have been defined using the natural logarithm
logx, and therefore differ from the usual binary entropy by a factor of log 2; the difference is
of no practical importance. We useI (n) to denote a frequency-weighted impurity measure
standing for eitherG or H .

Let A be an index set representing the values of the given attribute. To each attribute
valueα ∈ A there corresponds a vector of class frequencies,

nα = (nα1, . . . ,nαk),
wherenαi is the number of examples in classi for which the given attribute takes the value
α. An L-way partition5 = {B1, . . . , BL} of A,

B1 ∪ B2 ∪ · · · ∪ BL = A, Bi ∩ Bj = ∅,

partitions theN examples such that the class frequency of each bin is

N` =
∑
α∈B`

nα = (N`
1, . . . , N`

k

)
, ` = 1, . . . , L .

Thetotal impurityof the partition is
∑

` I (N`), which is to be minimized.

PARTITIONING NOMINAL ATTRIBUTES IN DECISION TREES 199

To each attribute valueα ∈ A there also corresponds a vector of class probabilities

pα = (pα1 , . . . , pαk
)
,

where

pαi = nαi

/∑
j

nαj .

The pointspα lie in theclass probability space, which is the(k− 1)-simplex

σk−1 =
{
(x1, . . . , xk) : xi ≥ 0,

∑
xi = 1

}
. (5)

Any partition of σk−1 into S1, . . . , SL induces a partition ofA into B1, . . . , BL , where
B` = {α : pα ∈ S̀ }, ` = 1, . . . , L.

In Section 2 we derive a property of the optimal partition, and we show that it can be
regarded as a partition ofσk−1 into L convex polyhedra. In Section 3 we contrast the new
property with those of Chou (1988, 1991) and Burshtein et al. (1989, 1992) and discuss
the important case of binary trees. In Section 4 we present a new heuristic search method,
and in Section 5 we compare its performance to that of some other heuristic techniques.
Section 6 contains two examples and Section 7 some concluding remarks.

2. A necessary condition for a partition to be optimal

We first define the class of impurity measures to which our results apply. We use the(k−1)-
simplexσk−1 defined in (5) and the normalization mapπ that maps nonnegativek-vectors
to σk−1:

π(n1, . . . ,nk) =
(

n1∑
j n j

, . . . ,
nk∑
j n j

)
∈ σk−1.

Thusπ maps a frequency vectorn into a vectorp = π(n) in the class probability space.
Two frequency vectorsnα andnβ are proportional if and only ifπ(nα) = π(nβ), i.e., if
pα = pβ .

Definition 1. A concave impurity measureis a real-valued functioni, defined onσk−1,

that satisfies

(i) For anyλ ∈ (0, 1) and anyp, q ∈ σk−1,

i (λp+ (1− λ)q) ≥ λi (p)+ (1− λ)i (q),

with equality if and only ifp = q.
(ii) Writing p = (p1, . . . , pk), i (p) = 0 if pi = 1 for somei .

200 COPPERSMITH, HONG AND HOSKING

The correspondingfrequency-weighted impurity measureis a real-valued functionI , de-
fined on the space of nonnegative vectorsn= (n1, . . . ,nk), that satisfiesI (n)= N i(π(n))or

I (n1, . . . ,nk) = N i

(
n1

N
, . . . ,

nk

N

)
,

whereN =∑k
j=1 nj .

Other natural properties of an impurity measure, e.g., thati (p) ≥ 0 with equality if and
only if pi = 1 for somei , follow straightforwardly from (i) and (ii). We do not require
that the impurity measure be symmetric, i.e., thati (p) is invariant to permutation of the
elements ofp. Similar definitions of concave impurity were used by Breiman et al. (1984,
p. 126) and Burshtein et al. (1992, p. 1642).

Concave impurity measures include those of the formi (p1, . . . , pk) =
∑

j f (pj)where
f is a strictly concave function withf (0) = f (1) = 0. Both the Gini index and entropy
have this representation, withf (p) = p− p2 and f (p) = −p log p respectively.

The following lemma states some properties of frequency-weighted impurity measures
that we shall use in our main result, Theorem 1 below.

Lemma 1. A frequency-weighted impurity measure I based on a concave impurity mea-
sure has the following properties:
(i) (homogeneity) For any nonnegative vectorn and anyλ > 0,

I (λn) = λ I (n).

(ii) (strict concavity) For any nonnegative vectorsm andn,

I (m+ n) ≥ I (m)+ I (n),

with equality if and only ifm andn are proportional.

Proof: For (i), letn = (n1, . . . ,nk) andN =∑ j n j . The proof of (i) is immediate, since
both I (λn) andλ I (n) are equal toλNi(π(n)).

For (ii), let m = (m1, . . . ,mk), n = (n1, . . . ,nk),M = ∑ j mj , N = ∑ j mj ; further,
let p = π(m), q = π(n), andλ = M/(M + N). Then

π(m+ n) = m+ n
M + N

= λp+ (1− λ)q.

Thus

I (m+ n) = (M + N) i (λp+ (1− λ)q)
≥ (M + N){λ i (p)+ (1− λ) i (q)}
= M i (p)+ N i(q)

= I (m)+ I (n),

with equality if and only ifp = q, i.e., if and only ifm andn are proportional. 2

PARTITIONING NOMINAL ATTRIBUTES IN DECISION TREES 201

Remark. Property (ii) is a well known property of many impurity measures: the total
impurity of a node is never less than the total impurity of the branch nodes regardless of
how the examples are partitioned into the branch nodes, i.e., the impurity gain is always
nonnegative.

We now state a necessary condition for a partition to be optimal.

Theorem 1. Consider a finite collection of nonnegative vectors

nα = (nα1, . . . ,nαk), α ∈ A,

with at least L distinct imagesπ(nα) ∈ σk−1. For a partition5 = {B1, . . . , BL} of A, such
that

B1 ∪ B2 ∪ · · · ∪ BL = A, Bi ∩ Bj = ∅,

let

N` =
∑
α∈B`

nα = (N`
1, . . . , N`

k

)
, ` = 1, . . . , L .

Let I be the frequency-weighted impurity measure corresponding to a concave impurity
measure. Then for any partition that minimizes the total impurity

∑
` I (N`), there is a

collection of L vectorsv1, . . . , vL such that

α ∈ B` ⇔ (∀ j 6= `)v` · nα < v j · nα.

This inequality is strict. Thus an optimal partition corresponds to a partition ofσk−1 into
L convex polyhedra.

Proof: Let5 = {B1, . . . , BL} be an optimal partition. Suppose first thatN j andN` are
proportional. By (ii) of Lemma 1 we could combine binsBj andB` into one bin without
changing the total impurity, sinceI (N j + N`) = I (N j) + I (N`). This would leave only
L−1 bins. By assumptionπ(nα) takes on at leastL distinct values, so one binBa contains
two vectorsnα, nβ with π(nα) 6= π(nβ), and one of these, sayπ(nα), differs fromπ(Na).
Split Ba into {nα} andBa−{nα} to restoreL bins. The total impurity strictly decreases, by
(ii) of Lemma 1:

I (Na) > I (Na − nα)+ I (nα),

contradicting optimality of5. By this contradiction we see that no two bins are proportional.
Define vectors

v` = (v`1, . . . , v`k), ` = 1, . . . , L ,

202 COPPERSMITH, HONG AND HOSKING

with

v`i =
∂

∂Ni
I (N1, . . . , Nk)

∣∣∣∣
N`

.

For a trial vectorn = (n1, . . . ,nk), the inner productv` · n represents the instantaneous
change of the total impurity as a small multiple ofn is added toN`:

v` · n = d

dt

[
I (N` + tn)+

∑
j 6=`

I (N j)

]
.

Suppose, in contradiction to the conclusion of the theorem, thatα ∈ B` butv` ·nα ≥ v j ·nα
for some j 6= `. Set

F(t) = I (N j + tnα)+ I (N` − tnα), 0≤ t ≤ 1

(note thatN` − tnα is non-negative for 0≤ t ≤ 1, soF(t) is well defined). Then we have

d F

dt

∣∣∣∣
t=0

= v j · nα − v` · nα ≤ 0.

Lemma 2. Assume thatN j and N` are not proportional. Then for0 < t < u ≤ 1 we
have{F(t)− F(0)}/t > {F(u)− F(0)}/u.

Proof: Using the results proved in Lemma 1,

I (N j + tnα) ≥ I ((1− t/u)N j)+ I ((t/u)(N j + unα))

= (1− t/u)I (N j)+ (t/u)I (N j + unα)

and similarly

I (N` − tnα) ≥ (1− t/u)I (N`)+ (t/u)I (N` − unα).

Because the three quantitiesN j ,N`, andnα are not all proportional, at least one of these
inequalities is strict. Summing, we find that

I (N j + tnα)+ I (N` − tnα) > (1− t/u)I (N j)+ (t/u)I (N j + unα)

+ (1− t/u)I (N`)+ (t/u)I (N` − unα),

i.e., that

F(t) > (1− t/u)F(0)+ (t/u)F(u).

Rearranging the terms and dividing byt gives {F(t) − F(0)}/t > {F(u) − F(0)}/u,
completing the proof of Lemma 2.

PARTITIONING NOMINAL ATTRIBUTES IN DECISION TREES 203

Now continuing the proof of the theorem: this monotonicity implies that

0≥ d F

dt

∣∣∣∣
t=0

= lim
t→0+

F(t)− F(0)

t
>

F(1)− F(0)

1
.

Thus

F(0) > F(1),

i.e.,

I (N j)+ I (N`) > I (N j + nα)+ I (N` − nα),

and so

I (N j)+ I (N`)+
∑
i 6= j,`

I (Ni) > I (N j + nα)+ I (N` − nα)+
∑
i 6= j,`

I (Ni).

That is, the partition would be strictly improved by movingα from B` to Bj , contradicting
the optimality of5. We conclude that in an optimal partition, ifα ∈ B` thenv` · nα < v j · nα,
with strict inequality, for allj 6= `.

The partition ofσk−1 into L convex polyhedraP̀ follows:

x ∈ Interior(P̀)⇔ v` · x < v j · x, ∀ j 6= `;

by homogeneity,

v` · n < v j · n⇔ v` · π(n) < v j · π(n). 2

Remark. An optimal partition for the Gini index need not be an optimal partition for
entropy, and there need be no relation between their respective partitioning vectorsv`.

3. Other conditions and the case of the binary tree

For a two-class binary tree,k = 2 andL = 2, Breiman et al. (1984, Section 9.4) have
shown that the optimal split under an arbitrary concave impurity measure, which includes
the two measures we treat here, satisfies the condition that there exists a thresholdp′ for
either class, say class 1, such that all attribute valuesα for which pα1 ≤ p′ belong in one bin
and the other attribute values belong in the other bin. Hence, the search for the optimal split
requires justn− 1 computations of the total impurity; it is sufficient to consider partitions
in which the setB1 contains theα values corresponding to thej smallest values ofpα1 for
j = 1, . . . ,n− 1.

Chou proved for entropy (Chou, 1988) and later for a general class of impurity measures
(Chou, 1991) a necessary condition for the optimalL-ary partition: “its bins satisfy a
nearest neighbor condition with their centroids, where the ‘distance’ measure used for

204 COPPERSMITH, HONG AND HOSKING

computing both the nearest neighbors and the centroids is the divergence corresponding to
the given impurity measure”. See Chou (1991) for the definition of divergence, which is
closely related to the total impurity. For binary trees with an arbitrary number of classes,
this condition reduces to the existence of a hyperplane in the class probability space that
separates the bins. Chou suggested a heuristic search for a good, though not necessarily
optimal, partition based on aK -means clustering algorithm of the pointspα, α ∈ A, in
the class probability space. Each iteration of the clustering algorithm requiresO(nkL)
operations and the number of iterations necessary is not known. Analysis of the closeness
to optimality of this method has not been reported.

Burshtein et al. (1989, 1992) gave a different condition satisfied by the optimal partition
for a general class of concave impurity measures: there exist(

L
2) hyperplanes in the class

probability space that separate all pairs of bins. The condition which we have given in
Section 2 applies to the Gini and entropy impurity measures and is simpler to state. It also
implies Burshtein et al.’s condition: in the notation of Theorem 1, bins` and j can be
separated by the hyperplane(v` − v j) · n = 0. We do not yet know whether this condition
could lead to a simpler search algorithm for the optimal partition. Burshtein et al. gave an
algorithm to enumerate all linearly separable partitions. The algorithm is based on linear
programming and its complexity is polynomial inn. In the case of the binary tree, both
Burshtein et al.’s condition and ours reduce to the separation of the two bins by a single
hyperplane in the class probability space, which in turn reduces for two-class binary trees
to the simple condition given in Breiman et al. (1984) and mentioned above.

The binary tree deserves special attention because it is so frequently used. The conditions
satisfied by the optimal partition suggest that to find the optimal partition one should search
over the partitions of attribute values induced by linearly separable partitions of the class
probability space. In the worst case the pointspα are in general position in the(k − 1)-
dimensional simplexσk−1, i.e., no set ofk points lies in a hyperplane of dimensionk − 2,
and the number of partitions that needs to be examined is

k−1∑
i=1

(
n− 1

i

)
.

This follows from a result of Cover (1965, Theorem 1 and Table 1), who showed that the
number of linearly separable dichotomies ofn points in general position ind dimensions is

C(n, d + 1) = 2
d∑

i=0

(
n− 1

i

)
;

Cover’s count is for ordered bins and includes partitions in which one bin is empty. While
it is of interest to be able to enumerate the partitions in an efficient manner, to search for the
optimal partition by exhaustive enumeration of linearly separable partitions is not practical
for largen andk.

The “Flip-Flop” heuristic of Nadas et al. (1991) uses ideas from the special case of two-
class binary trees discussed earlier to restrict the set of partitions that is searched. Nadas
et al. seem to prefer their “modified algorithm”, which is as follows.

PARTITIONING NOMINAL ATTRIBUTES IN DECISION TREES 205

1. Start with a randomly chosen binary partition of the attribute values.
2. By reversing the role of attribute and class, obtain a two-“class” problem in which the

two “classes” are the two sets into which the attribute values have been partitioned.
Order the (original) classes according to their “class” probabilities for the new problem.
Consider thek − 1 partitions that preserve this ordering of the classes. Choose from
among these partitions the one that minimizes the total impurity for the fulln-“class”
problem in which every attribute value is treated as a class.

3. Reverse the role of attribute and class again, obtaining a two-class problem in which the
two classes are the two sets into which the class values have been partitioned. Order the
attribute values according to their class probabilities for the new problem. Consider the
n− 1 partitions that preserve this ordering of the attribute values. Choose from among
these partitions the one that minimizes the total impurity for the fullk-class problem.

4. Repeat steps 2 and 3 iteratively until the resulting partition does not change.

Nadas et al. do not prove any optimality properties for this procedure, but they report that the
process converges quickly and that the solution is “surprisingly close to the best possible”.
The number of evaluations of the total impurity is ofO(n+ k) assuming that the number
of iterations does not depend onn andk.

Another heuristic search algorithm is used in the SLIQ tree generation package (Mehta
et al., 1996). Mehta et al. (1996) cite IND (NASA, 1992) as the initial source where this
method was proposed. Forn ≤ 10, SLIQ searches over all 2n−1− 1 binary partitions. For
largern, it uses a “greedy” algorithm that starts with an empty bin and a full bin. It moves
one element from the second bin to the first such that the move results in the best split. The
process is iterated until there is no improvement in the splits. Mehta et al. (1996) claim
that this heuristic finds the optimal partition ifn is small and also performs well for larger
values ofn. The computational complexity of the SLIQ heuristic isO(n2).

An obvious extension of the SLIQ procedure is to allow the transfer of elements from
the second to the first bin to continue until the second bin is empty and to use the best
partition among all that were considered during the iterations. This extension uses only
slightly more computation than the original procedure, since the early iterations involve
more impurity comparisons than the later ones. In Section 5 we shall see that this extension
of the SLIQ procedure gives significant improvements in the closeness to optimality of the
partition finally chosen.

4. A new heuristic search for binary trees

We seek a binary partition of attribute values that is quick to compute yet close to the
optimal partition in terms of the achieved reduction in class impurity. From optimality
considerations, we search for a partition based on a separating hyperplane in the class
probability space. For the sake of speed, we consider partitions that arise from assigning a
scalar value to each attribute value and forming partitions according to whether scalar lies
above certain thresholds. To achieve both objectives, we first choose a particular direction in
the class probability space and then consider separating hyperplanes that are perpendicular
to this direction. We choose the direction to be that of the first principal component of

206 COPPERSMITH, HONG AND HOSKING

then pointspα, α ∈ A, with each point weighted according to the number of examples for
which the given attribute takes the valueα. This should be a good choice because the first
principal component captures as much as possible of the variation in the points in the class
probability space.

Assume without loss of generality that attribute values that have equal class probability
vectors have been combined into a single attribute value. LetN denote thenbyk contingency
matrix whose rows arenα, α ∈ A, andP the corresponding class probability matrix whose
rows arepα. Let Nα = ∑k

i=1 nαi be the number of examples that have attribute valueα.
The vector of mean class probabilities is then

p̄ = 1

N

∑
α∈A

Nαpα = 1

N

∑
α∈A

nα, (6)

and the weighted covariance matrix of thepα points is

Σ = 1

N − 1

∑
α∈A

Nα(pα − p̄)(pα − p̄)T. (7)

Let v be the first principal component, i.e., the eigenvector corresponding to the largest
eigenvalue ofΣ. The first principal component score ofpα is defined as

Sα = v · pα.

Arrange the scoresSα, α ∈ A, in ascending order asS(1) ≤ S(2) ≤ · · · ≤ S(n). Consider
partitions ofA that respect this ordering; these partitions are5 j = {Bj , B′j }, j = 1, . . . ,
n− 1, defined by

α ∈ Bj if Sα ≤ S(j), α ∈ B′j if Sα > S(j). (8)

The chosen partition is the one that yields the minimum total impurity among the partitions
5 j , j = 1, . . . ,n− 1.

This procedure requiresn − 1 total impurity evaluations and the principal component
computation, for which standard algorithms useO(k3) operations. It usually finds an
optimal or very nearly optimal partition, as will be shown empirically in the next section.

For a still closer approach to optimality a wider range of partitions can be considered.
In particular we define the “swap variant” of our procedure, a small extension of the basic
procedure in which we consider not only the partitions in (8) but also those partitions
obtained by exchanging adjacent elements between the setsBj and B′j . The additional
partitions areA = Cj ∪ C′j , j = 1, . . . ,n− 1, defined by

α ∈ Cj if Sα < S(j) or Sα = S(j+1), α ∈ C′j if Sα = S(j) or Sα > S(j+1).

The total number of impurity evaluations for the extended procedure is 2(n−1), and is still
linear inn.

PARTITIONING NOMINAL ATTRIBUTES IN DECISION TREES 207

5. Comparative experiments

A series of Monte Carlo simulation experiments was run to compare the performance of
some of the partition search heuristics described above. Each simulation run considered
an attribute takingn distinct values and a class variable takingk distinct values. For
each attribute valueα, a vector of class frequenciesnα was generated by choosing each
of its elements independently from a uniform distribution on the set{0, 1, 2, 3, 4, 5, 6, 7}.
This yields class probability vectors that range over the class probability space and have a
substantial probability of lying on the boundary of the space (i.e., some class frequencies
are zero), a common occurrence in practical decision tree problems. The search heuristics
were applied to the resulting contingency matrix. The procedure was repeatedM times
(M = 10,000 in all of the experiments) and counts were kept of the number of times that
each search heuristic identified the true optimal partition, and of various statistics designed
to measure the amount by which a heuristic fails to identify the optimal partition.

To quantify the amount by which a heuristic fails to identify the optimal partition, we use
the difference between the impurity of the optimal partition and that of the partition chosen
by the search heuristic, which we call the “excess”. “Relative excess” is the excess as a
proportion of the impurity of the optimal partition. Thus a relative excess of 0.05 means
that the search heuristic chose a partition with impurity (Gini index or entropy) 5% higher
than that of the optimal partition. Obviously, a good search heuristic is one that in repeated
applications yields partitions whose excess is generally small and frequently zero.

Table 1 compares partition selection methods in terms of their ability to identify the
optimal partition. Four methods are considered: SLIQ and SLIQext, the SLIQ “greedy
algorithm” and its extension described in Section 3; and PC and PCext, the new heuristic
based on principal component scores and its “swap variant” described in Section 4. The
results cover a range ofn andk values withn ≤ 12. Larger values ofn were not con-
sidered, owing to the computational expense of searching over all partitions to find the
optimal partition. The results show a consistent pattern. In all cases, the new PC procedure
improves on the SLIQ procedure and the extensions PCext and SLIQext provide significant
improvements over their counterparts PC and SLIQ. With the Gini index as the impurity
criterion, the performance of the methods is consistently ordered from worst to best as
SLIQ, SLIQext, PC, PCext. With entropy as the impurity criterion, SLIQext and PCext are
best and have generally comparable performance. Asn andk increase, all methods become
less successful at identifying the optimal partition. We reiterate that forn ≤ 10 the SLIQ
package evaluates all partitions; the “SLIQ method” considered here is the search algorithm
used by the SLIQ package forn > 10. The pattern of the results is clear enough that we
may confidently expect it to hold for larger values ofn.

The next set of simulation experiments investigated the amount by which the impurity of
the chosen partition exceeds that of the optimal partition. The experiments covered a subset
of the(n, k) pairs considered in Table 1, and all of the methods considered there plus FF, the
flip-flop heuristic of Nadas et al. (1991). We found that the flip-flop algorithm occasionally
failed to converge quickly; in these instances it was terminated after 100 iterations. This
occurred with approximately equal frequency using the Gini and entropy measures, 4 times
in 10,000 runs forn = 12,k = 3, 25 times in 10,000 runs forn = 12,k = 9. Table 2 gives

208 COPPERSMITH, HONG AND HOSKING

Table 1. Percentage of simulation runs in which each of the partition selection heuristics failed to identify the
true optimal partition. Results based onM = 10,000 simulation runs. Tabulated valuesP have standard errors√

P(1− P)/M , which vary from 0.1 atP = 1 to 0.5 atP = 50.

Gini impurity Entropy

k k

n Method 3 5 7 9 3 5 7 9

6 SLIQ 12.0 16.4 17.8 18.1 14.9 19.4 21.7 22.3

SLIQext 2.4 4.7 6.2 6.0 2.8 5.5 6.6 6.4

PC 2.0 3.7 4.0 4.8 7.1 11.8 12.5 12.9

PCext 0.8 1.4 1.5 1.6 3.8 6.0 6.5 6.2

8 SLIQ 21.0 27.1 29.8 32.4 26.0 33.0 35.3 38.9

SLIQext 5.3 9.3 11.1 12.8 6.3 11.1 13.1 14.6

PC 4.5 7.3 9.2 9.6 12.0 19.4 20.5 21.6

PCext 2.5 3.9 5.0 4.7 7.8 12.4 13.0 13.6

10 SLIQ 27.5 35.3 39.3 41.3 33.0 42.3 46.5 49.1

SLIQext 7.8 13.8 17.2 18.7 9.6 16.8 19.6 21.5

PC 7.7 12.7 15.5 16.3 17.0 25.7 28.9 29.6

PCext 4.6 8.0 9.0 9.9 11.8 18.3 20.0 20.8

12 SLIQ 32.2 41.5 46.0 48.0 39.9 48.7 53.1 55.9

SLIQext 10.6 18.0 22.7 23.6 13.6 21.0 25.4 26.7

PC 10.2 17.6 21.0 22.2 21.2 32.5 36.2 36.9

PCext 7.0 11.4 14.0 14.9 15.6 24.5 26.9 28.0

the results. “% Fail” is the percentage of simulation runs for which the selected partition
was not optimal, as in Table 1. “Ave.” is the average relative excess for those runs in which
the excess was nonzero, expressed as a percentage; “Total” is the total of the relative excess
values over the 10,000 runs; it is the product of the two preceding values and measures
the overall amount by which the methods fall short of optimality. “Max.” is the largest
observed relative excess in the 10,000 simulation runs, expressed as a percentage; although
it conveys some information about worst-case performance it is not very reliable and varies
considerably when simulation experiments are repeated using different seeds for the random
number generator.

The results in Table 2 generally reinforce those of Table 1. For the average relative excess,
the worst-to-best ordering SLIQ, SLIQext, PC, PCext holds throughout. The ranking of
these four methods on total relative impurity is the same as on failure percentage, except
that PCext outperforms SLIQext for all cases except the combination (n = 6, k = 3,
entropy). The SLIQ algorithm occasionally gives very high values for relative excess.
The flip-flop heuristic performs well whenk = 3, particularly when using entropy as the
impurity measure, but is not competitive with SLIQext and PCext fork = 9.

The distributions of relative excess impurity from these experiments are shown in figure 1
(using Gini impurity) and figure 2 (using entropy). These illustrate the conclusions drawn

PARTITIONING NOMINAL ATTRIBUTES IN DECISION TREES 209

Table 2. Statistics of relative excess impurity for various partition selection heuristics and values ofn andk.
“% Fail” is the percentage of simulation runs for which the excess was nonzero, i.e., the selected partition was
not optimal. “Ave.” is the average relative excess for those runs in which the excess was nonzero, expressed as a
percentage. “Total” is the total of the relative excess values over the 10,000 runs. “Max.” is the largest observed
relative excess in the 10,000 simulation runs, expressed as a percentage.

Gini impurity Entropy

n k Method % Fail Ave. Total Max. % Fail Ave. Total Max.

6 3 FF 7.2 1.06 7.64 7.88 4.0 0.82 3.28 6.83

SLIQ 12.0 1.26 15.16 13.95 14.9 1.71 25.56 22.22

SLIQext 2.4 0.88 2.13 5.17 2.8 1.17 3.22 9.00

PC 2.0 0.51 1.00 3.59 7.1 1.16 8.30 7.82

PCext 0.8 0.40 0.33 1.85 3.8 1.08 4.15 6.62

6 9 FF 14.3 0.16 2.26 1.26 13.0 0.36 4.53 3.43

SLIQ 18.1 0.18 3.34 1.11 22.3 0.48 10.67 3.57

SLIQext 6.0 0.11 0.67 0.73 6.4 0.30 1.92 1.77

PC 4.8 0.07 0.31 0.37 12.9 0.29 3.79 1.92

PCext 1.6 0.05 0.08 0.23 6.2 0.27 1.67 1.71

12 3 FF 18.7 0.54 10.16 4.43 15.9 0.57 9.06 5.87

SLIQ 32.2 1.18 38.08 13.59 39.9 1.55 62.07 12.34

SLIQext 10.6 0.64 6.80 4.24 13.6 0.91 12.27 8.52

PC 10.2 0.37 3.82 2.17 21.1 0.77 16.24 6.04

PCext 7.0 0.36 2.51 2.15 15.6 0.73 11.37 5.40

12 9 FF 38.9 0.10 3.95 0.77 39.1 0.22 8.54 1.71

SLIQ 48.1 0.16 7.62 1.02 55.9 0.39 22.07 2.27

SLIQext 23.6 0.09 2.04 0.59 26.7 0.21 5.71 1.64

PC 22.2 0.05 1.16 0.33 36.9 0.18 6.69 1.67

PCext 14.9 0.05 0.75 0.33 28.0 0.17 4.81 1.46

from Table 2: using Gini impurity, the PC and PCext methods give the lowest values of
relative excess; using entropy, the flip-flop algorithm performs well fork = 3 while PCext
and SLIQext are best fork = 9.

Finally we present some results for many-valued attributes, for which we taken = 50. In
this case it is impracticable to evaluate all possible partitions, so the best (lowest-impurity)
partition found by any of the five methods replaced the optimal partition as the basis from
which relative excess was computed. Results are given in Table 3. Their general pattern is
similar to that of Table 2, which gives confidence that this pattern holds for a wide range of
values ofn andk. The flip-flop method performs well fork = 3 when entropy is used as
the impurity measure, but in other cases is inferior to the PC and PCext methods. We also
note that in thek = 50 case the flip-flop method occasionally failed to converge; in 10,000
simulations this occurred 414 times using the Gini index and 373 times using entropy. The
SLIQext, PC and PCext methods all give consistent improvement over the SLIQ algorithm.

210 COPPERSMITH, HONG AND HOSKING

Figure 1. Distribution of relative excess Gini impurity, for various partition selection heuristics and values ofn
andk. Only the upper part of the distribution is shown, because most of the distribution is concentrated at zero.

SLIQext and PCext have the best overall performance; the typical case is that SLIQext and
PCext are both ranked best (i.e., have zero excess) in about 50% of the simulation runs,
while PCext has lower average excess and consistently achieves the lowest value of total
relative excess.

6. Examples

First we give an artificial example to illustrate the computations in the PC method. The
data are for 507 fruits picked late in the season. Attributes include kind of fruit, size, shape,
color, etc. The class to be modeled in a binary tree is whether the fruit is in one of the
three classes pick-and-ship (PS), no-pick (NP), or pick-and-ripen (PR). There are seven
different color values: green, blue, purple, dark orange, light orange, yellow and red. The
contingency matrix is shown in Table 4. The relative frequencies for dark orange and light
orange are equal, so they can be combined into a single attribute value “Orange”; thus for

PARTITIONING NOMINAL ATTRIBUTES IN DECISION TREES 211

Figure 2. Distribution of relative excess entropy, for various partition selection heuristics and values ofn andk.
Only the upper part of the distribution is shown, because most of the distribution is concentrated at zero.

this example we haven = 6 andk = 3. We denote the six attribute values by their initial
letters: G, P, B, O, Y, R.

The class probability matrix is

P=



0.833 0.125 0.042

0.760 0.160 0.080

0.694 0.111 0.194

0.727 0.045 0.227

0.952 0.019 0.029

0.966 0.014 0.019


.

The vector of mean class probabilities (6) is

p̄ = [0.876 0.041 0.083].

212 COPPERSMITH, HONG AND HOSKING

Table 3. Statistics of relative excess impurity for the casen = 50. Excess impurity is computed relative to the
impurity of the best of the five methods simulated here. “% Fail” is the percentage of simulation runs for which
the excess was nonzero, i.e., the method was not the best of the five methods. “Ave.” is the average relative excess
for those runs in which the excess was nonzero, expressed as a percentage. “Total” is the total of the relative
excess values over the 10,000 runs. “Max.” is the largest observed relative excess in the 10,000 simulation runs,
expressed as a percentage.

Gini impurity Entropy

n k Method % Fail Ave. Total Max. % Fail Ave. Total Max.

50 3 FF 69 0.18 12.58 2.11 44 0.28 12.09 3.42

SLIQ 64 0.44 27.85 7.20 83 0.75 62.20 7.15

SLIQext 45 0.23 10.53 2.46 68 0.31 20.96 3.46

PC 57 0.13 7.15 1.91 81 0.21 17.48 3.53

PCext 51 0.13 6.47 1.64 78 0.21 16.16 3.53

50 9 FF 92 0.06 5.36 0.40 81 0.12 9.42 0.72

SLIQ 73 0.07 5.07 0.69 79 0.22 17.66 1.23

SLIQext 48 0.04 1.99 0.29 53 0.11 5.85 0.68

PC 67 0.02 1.26 0.16 77 0.08 5.77 0.55

PCext 49 0.02 1.03 0.16 62 0.08 5.11 0.54

50 50 FF 92 0.0039 0.36 0.0198 91 0.0266 2.42 0.1252

SLIQ 85 0.0044 0.37 0.0304 91 0.0541 4.94 0.1988

SLIQext 55 0.0023 0.13 0.0159 54 0.0158 0.86 0.0871

PC 72 0.0012 0.09 0.0074 74 0.0091 0.67 0.0637

PCext 50 0.0014 0.07 0.0074 53 0.0102 0.54 0.0637

Table 4. Class frequencies for the fruit classification example.

Class

Color PS NP PR

Green 20 3 1

Blue 19 4 2

Purple 25 4 7

Dark orange 64 4 20

Light orange 16 1 5

Yellow 100 2 3

Red 200 3 4

The weighted covariance matrix (7) is

Σ =

 6.296 −1.633 −4.663

−1.633 0.899 0.735

−4.663 0.735 3.928

 .

PARTITIONING NOMINAL ATTRIBUTES IN DECISION TREES 213

The eigenvalues of this matrix are 7.486, 0.867, and 0. The eigenvector corresponding to
the largest eigenvalue is the first principal component,

v = [0.781 −0.183 −0.597].

The first principal component scoresSα, for the attribute values in the original order G, B,
P, O, Y, R, are

0.603, 0.516, 0.406, 0.424, 0.723, 0.740.

When these values are put in ascending order the corresponding ordering of the attribute
values is P, O, B, G, Y, R.

Table 5 shows the total impurity, for both the Gini and entropy measures, for all 25−1=
31 binary partitions of the six color values. In the table, the “Partition” columns indicate
which colors belong to each component of the partition. For instance, line 3 of the table
has the partition values 1 0 0 0 1 0 andcorresponds to the partition defined by the test “is
the color one of{purple, yellow}?”

As can be seen from the table, we need only 5 impurity computations using the basic PC
method, or 10 by its “swap variant” PCext, while an exhaustive search requires 31. In this
example, the minimum Gini impurity solution is at line 25 and the minimum entropy at line
29, and both are found by the PC method.

As a second example, we illustrate a situation in which an attribute has many values by
describing a case withn = 48 andk = 3. In the US, drought severity is often measured
numerically by the Palmer Drought Severity Index (PDSI). As defined by Palmer (1965),
a PDSI value of zero corresponds to “normal conditions”; values of−3,−4, and−5 cor-
respond to “drought”, “severe drought”, and “extreme drought” respectively. Distributions
of monthly average values of PDSI at 1035 sites in the continental US are given in the US
National Drought Atlas (Willeke et al., 1995; Teqnical Services Inc., 1996). We classified
the sites according to their drought susceptibility: a site was assigned to class 5 if the July
average PDSI at the site is−5 or less with probability at least 0.02; to class 4 if the July
average PDSI is−4 or less with probability at least 0.02 but the site is not in class 5; and to
class 3 otherwise. We used the state as an attribute that could be used to classify the sites.
The number of sites in a state varies from 3 (Rhode Island) to 47 (California). The “State”
attribute has 48 values and yields 43 distinct class probability vectors. The class frequencies
are given in Table 6. The class probability vectors are plotted on figure 3, in which the
triangular plotting area represents the simplexσ2, the class probability space. Figure 3 also
shows the direction of the first principal component of the plotted points, and the partitions
chosen by the SLIQ, PC and FF algorithms using the Gini impurity measure. The partition
chosen by PC can of course be obtained by splitting the points by a line perpendicular to
the direction of the first principal component. SLIQ, PC and FF choose different partitions.
PC’s choice has the lowest impurity; it is also chosen by SLIQext and PCext.

In the drought-susceptibility example, the FF method surprisingly fails to find a partition
as good as PC’s choice. In a three-class problem, the binary partitioning of the classes
that occurs in the flip-flop algorithm implies that the components of the partition finally
chosen must be separable by a line parallel to one of the bounding lines of the simplex. The
partition chosen by PC does satisfy this criterion: it can be generated by the line on which

214 COPPERSMITH, HONG AND HOSKING

Table 5. Partitions and their total impurity values for the fruit classification example. Bold type indicates the
lowest values of Gini index and entropy.

Partition Total impurity

P O B G Y R Gini index Entropy
Needed
by PC?

Needed
by PCext?

1 1 0 0 0 0 0 111.88 225.84 Yes Yes

2 1 0 0 0 0 1 111.91 224.64 No No

3 1 0 0 0 1 0 113.77 230.20 No No

4 1 0 0 0 1 1 107.78 214.22 No No

5 1 0 0 1 0 0 112.19 225.51 No No

6 1 0 0 1 0 1 112.02 224.72 No No

7 1 0 0 1 1 0 113.71 229.50 No No

8 1 0 0 1 1 1 107.45 213.90 No No

9 1 0 1 0 0 0 111.32 223.28 No Yes

10 1 0 1 0 0 1 112.47 225.89 No No

11 1 0 1 0 1 0 113.69 229.22 No No

12 1 0 1 0 1 1 108.46 216.31 No No

13 1 0 1 1 0 0 111.37 221.85 No No

14 1 0 1 1 0 1 112.40 224.70 No No

15 1 0 1 1 1 0 113.49 227.41 No No

16 1 0 1 1 1 1 107.79 214.50 No Yes

17 1 1 0 0 0 0 104.90 206.29 Yes Yes

18 1 1 0 0 0 1 113.17 226.62 No No

19 1 1 0 0 1 0 110.50 218.90 No No

20 1 1 0 0 1 1 112.89 225.61 No No

21 1 1 0 1 0 0 105.39 207.06 No Yes

22 1 1 0 1 0 1 113.20 227.75 No No

23 1 1 0 1 1 0 110.39 219.10 No No

24 1 1 0 1 1 1 113.10 227.51 No No

25 1 1 1 0 0 0 104.19 203.68 Yes Yes

26 1 1 1 0 0 1 112.84 226.66 No No

27 1 1 1 0 1 0 109.64 216.60 No Yes

28 1 1 1 0 1 1 113.56 228.64 No No

29 1 1 1 1 0 0 104.37 202.80 Yes Yes

30 1 1 1 1 0 1 112.59 226.04 No Yes

31 1 1 1 1 1 0 109.30 214.94 Yes Yes

the class 3 probability is 0.4. However, even when started from this partition of the attribute
values, the FF algorithm at its Step 2 chooses to partition the classes as{{3, 4}, {5}} rather
than{{3}, {4, 5}} and the partition to which the algorithm converges is generated by a line
of constant class 5 probability.

PARTITIONING NOMINAL ATTRIBUTES IN DECISION TREES 215

Figure 3. Class probability space for the drought-susceptibility example. Arrow indicates direction of first
principal component. Solid line indicates the partition chosen by the PC method. Dashed line indicates the
partition chosen by the flip-flop method. Dots and circles indicate the partition chosen by the SLIQ algorithm.

7. Conclusions

We have devised a new procedure for partitioning the examples at the nodes of a binary
decision tree when the partition is based on a nominal attribute that takes many distinct
values. Compared with two existing procedures, the flip-flop algorithm of Nadas et al.
(1991) and the search heuristic used by SLIQ (Mehta et al., 1996), the new “PC” method
and its “swap variant” PCext are fast and over a wide range of situations achieve a greater
reduction in the impurity of the class variable at the nodes of the decision tree.

A search of all possible partitions requires 2n−1− 1 evaluations of the impurity measure
for the split; the PCext method requires at most 2(n − 1) impurity evaluations and has
computational complexityO(n+ k3). This reduction of complexity makes it practical to
find or closely approximate the optimal partition for many real data mining applications in
which a binary decision tree is used as the classification model.

Finally we note that the comparisons in Tables 3–5 all deal with partitioning at a single
node. In practice, the nodes are usually recursively partitioned and then pruned. This may
reduce the importance of having an optimal or nearly optimal partition at each node.

216 COPPERSMITH, HONG AND HOSKING

Table 6. Class frequencies for the drought-susceptibility example.

Class Class Class

State 3 4 5 State 3 4 5 State 3 4 5

AL 10 2 0 ME 8 2 0 OH 5 17 3

AZ 9 8 3 MD 8 4 0 OK 2 25 9

AR 9 5 0 MA 5 2 1 OR 10 9 14

CA 15 13 19 MI 5 7 7 PA 12 6 3

CO 0 10 8 MN 1 14 18 RI 2 1 0

CT 2 2 0 MS 16 5 0 SC 14 11 0

DE 2 1 0 MO 1 12 9 SD 0 2 20

FL 11 2 1 MT 1 8 32 TN 11 4 0

GA 12 9 0 NE 0 1 41 TX 3 23 12

ID 1 7 18 NV 1 5 3 UT 0 16 21

IL 4 13 16 NH 3 1 0 VT 2 2 0

IN 4 22 6 NJ 6 3 0 VA 12 5 0

IA 0 3 19 NM 2 18 2 WA 15 9 20

KS 0 11 17 NY 24 15 1 WV 7 4 0

KY 3 8 2 NC 16 7 1 WI 1 12 9

LA 12 0 0 ND 0 1 22 WY 1 8 15

Acknowledgments

We are grateful to the referees for comments that improved the structure of the paper,
particularly Section 2.

References

Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. 1984. Classification and Regression Trees. Monterey,
CA: Wadsworth International Group.

Burshtein, D., Pietra, V.D., Kanevsky, D., and Nadas, A. 1989. A splitting theorem for tree construction. Research
Report RC 14754, IBM Research Division, Yorktown Heights, NY.

Burshtein, D., Pietra, V.D., Kanevsky, D., and Nadas, A. 1992. Minimum impurity partitions. Ann. Statist.,
20:1637–1646.

Chou, P.A. 1988. Application of information theory to pattern recognition and the design of decision trees and
trellises. Ph.D. Dissertation, Stanford Univ., Stanford, CA.

Chou, P.A. 1991. Optimal partitioning for classification and regression trees. IEEE Trans. PAMI, 13:340–354.
Cover, T.M. 1965. Geometrical and statistical properties of system of linear inequalities with applications in pattern

recognition. IEEE Trans. Elec. Comput., EC-14:326–334.
Mehta, M., Agrawal, R., and Rissanen, J. 1996. SLIQ: A fast classifier for data mining. Proc. 5th Int. Conf. on

Extending Database Technology, Avignon, France.
Nadas, A., Nahamoo, D., Picheny, M.A., and Powell, J. 1991. An iterative flip-flop approximation of the most

informative split in the construction of decision trees. Proc. ICASSP-91, pp. 565–568.
NASA. 1992. Introduction to IND Version 2.1, GA23-2475-02 edition. NASA Ames Research Center.

PARTITIONING NOMINAL ATTRIBUTES IN DECISION TREES 217

Palmer, W.C. 1965. Meteorological drought. Research Paper 45, Weather Bureau, Washington, DC.
Quinlan, J.R. 1993. C4.5 Programs for Machine Learning. San Francisco, CA: Morgan Kaufmann.
Teqnical Services Inc. 1996. National Electronic Drought Atlas (CD-ROM). Teqnical Services Inc., New London,

CT.
Willeke, G.E., Hosking, J.R.M., Wallis, J.R., and Guttman, N.B. 1995. The National Drought Atlas (draft). IWR

Report 94-NDS-4, US Army Corps of Engineers, Fort Belvoir, VA.

Don Coppersmith received his Ph.D. in Mathematics at Harvard in 1977. He is currently a Research Staff
Member at the IBM Thomas J. Waston Research Center, Yorktown Heights, N.Y. His research interests include
cryptography, combinatorics, and algorithms.

Se June Hongreceived his B.Sc. degree in Electronic Engineering from Seoul National University and M.S./Ph.D.
degrees in Electrical Engineering from the University of Illinois. He joined the IBM Poughkeepsie Laboratory in
1969 working in the areas of fault tolerant computing and design automation. Since 1978 he has been at the IBM
T.J. Watson Research Center at Yorktown Heights, New York, where he is currently a Research Staff Member
working on data mining technology. He is a foreign member of the national academy of Engineering of Korea, a
fellow of IEEE, and a member of ACM, AAAI, KSEA, and Sigma Xi.

Jonathan R.M. Hosking has been with the IBM Research Division, Yorktown Heights, N.Y., since 1986. He
holds an M.A. in Mathematics from Cambridge University and a Ph.D. in statistics (time series analysis) from
Southampton University (1979). He is the author of over 50 research papers, covering such subjects as feature
selection and ranking in classification problems, statistics for summarizing data samples, long-memory time-series
models, and estimation of the frequency of extreme environmental events.

