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Abstract 

This paper focusses on the investigation of a pattern recognition method based on the fuzzy integral. Until now this method 
has used a general fuzzy measure, which is characterized by exponential complexity. Naturally this led to some difficulties 
in practical applications of this pattern recognition method. In this paper, a heuristic algorithm for the identification of the 
2-additive fuzzy measure, which is a particular type of k-additive fuzzy measures, is proposed. This algorithm can be used 
to reduce complexity of feature selection and classifier design. A further topic considered in this paper is the development 
of a feature selection algorithm for the fuzzy integral classifier. The proposed heuristic algorithm is based on two feature- 
evaluation criteria such as the importance and the interaction indexes. They were earlier defined in the literature using the 
semantic interpretation of the fuzzy measure. To validate the proposed algorithms, the feature selection algorithm and the 
pattern recognition method based on the fuzzy integral are applied to a problem of acoustic quality control. @ 1999 Elsevier 
Science B.V. All rights reserved. 
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1. Introduction 

Fuzzy pattern recognition presents one of  the largest 
application areas of  fuzzy set theory. The primary 
advantage of  fuzzy methods compared to classical 
methods is the ability of  a system to classify patterns 
in a non-dichotomous way as it is done by humans 
and to handle vague information [39,40]. 

Fuzzy pattern matching techniques represent a 
group of  fuzzy methods for supervised pattern recog- 
nition. The most general framework among these tech- 
niques was introduced in [13] as a pattern recognition 
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method based on the fuzzy integral. Its mathemati- 
cal background is fuzzy measure and integral theory, 
which was proposed by Sugeno [31 ]. Fuzzy measures 
represent a generalization of  classical measures and 
are obtained by replacing the additivity property with 
a weaker requirement of  monotonicity. Thus they 
are often referred to as non-additive measures [37]. 
Fuzzy integrals are considered as averaging operators 
and, compared to probability theory, they correspond 
to non-additive expected values [19,37]. Although a 
lot o f  theoretical research has been done in this field 
[4,16,27,28,32-34,36,38], the number of  practical 
applications is still moderate. The main application 
areas of  fuzzy integral theory cover multiattribute de- 
cision theory and pattern recognition, where a fuzzy 
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measure is used for modeling the importance of a 
group of elements (criteria or features) and the fuzzy 
integral for aggregating partial evaluations. 

A large advantage of  using the fuzzy integral within 
a pattern recognition method is due to the unique be- 
havioral property of the fuzzy integral. This is the only 
weighted aggregation operator, which takes into ac- 
count not only the importance of  elements, but also 
the importance of  all subsets of them. The weights are 
represented by the coefficients of the fuzzy measure. 
In the context of pattern recognition, these coefficients 
express the importance of  each feature and the inter- 
action between features. The importance of features 
is considered with respect to classes and is related to 
a discrimination ability of a feature for a class. The 
interaction between features expresses the contribu- 
tion of a subset of features to the recognition process. 
Information about the importance and the interaction 
between features is used for feature selection as well 
as for classification. 

Despite unique modeling properties of  the fuzzy 
measure and integral, difficulties in practical applica- 
tion of this pattern recognition method arise due to the 
exponential complexity of the identification of fuzzy 
measures. This is the central problem in the design 
procedure of the fuzzy integral classifier. One possi- 
ble solution is provided by the concept of k-additive 
fuzzy measures [12], which can range between addi- 
tive and general fuzzy measures. In this paper, a partic- 
ular case of  a 2-additive fuzzy measure is considered, 
which is sufficient for the semantic interpretation of 
the fuzzy measure. The main advantage of using the 
2-additive fuzzy measure instead of a general one is 
that the pattern recognition method based on the fuzzy 
integral can be applied to problems described by a 
large number of features. 

Since the performance of a classifier depends to a 
large degree on the quality of  features used, the de- 
velopment of an efficient feature selection algorithm 
is of primary importance. Its objective is to select the 
smallest set of features, which is sufficient for rec- 
ognizing correctly classes of objects [5,20,24,35]. In 
this paper, two feature-evaluation criteria based on the 
semantic interpretation of the fuzzy measure [26,30] 
are discussed and a heuristic algorithm for feature se- 
lection using these two criteria is proposed. The fea- 
ture selection procedure depends on the fuzzy integral 
classifier and thus the 2-additive fuzzy measure seems 

to be much more suitable for real applications than a 
general fuzzy measure. 

This paper is structured as follows: 
In Section 2, basic definitions concerning k-additive 

fuzzy measures are presented and a heuristic algorithm 
for the identification of the 2-additive fuzzy measure 
is proposed. In Section 3, two feature-evaluation cri- 
teria based on the fuzzy measure are described and a 
heuristic algorithm for feature selection is proposed. 
In Section 4, a general description of a pattern recog- 
nition method based on the fuzzy integral is given, and 
the use of the proposed identification algorithm within 
the classifier design is considered in more detail. Sec- 
tion 5 presents an application of the feature selection 
algorithm and a pattern recognition method based on 
the fuzzy integral to automatic bearing diagnosis. 

2. k-order additive fuzzy measures and an algorithm 
for the identification of 2-additive fuzzy measures 

Consider a finite set of elements X = { 1 . . . . .  n}. 

Definition 2.1 (Grabisch [12]). A discrete fuzzymea- 
sure o n X  is a set function # : ~ ( X )  ~ [0, 1] satisfying 
1. it(0) = 0, #(X) = 1. 
2. A c B imply #(A) ~< #(B) for A E ~(X) ,  B E ~ ( X )  

(monotonicity). 

In complexity theory, pseudo-Boolean functions are 
often used to represent a set function. This idea can 
be applied to represent the fuzzy measure, which is 
characterized by exponential complexity. 

Definition 2.2 (Hammer and Holzman [15]). A 
pseudo-Boolean function is a real-valued function 
f : {0, 1}n --~ 9~. 

It can be shown that any pseudo-Boolean function 
can be expressed in the form of a multilinear polyno- 
mial in n variables: 

(2.1) 

with a(T) E 9~ and x = (xl . . . . .  x.)  E {0, 1} n. 
It can be seen that a fuzzy measure is a partic- 

ular case of the pseudo-Boolean function, defined 
for any A C X such that A is equivalent to a point 
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x=(x l  . . . . .  xn) in {0, 1} n where X i = 1 if and only if 
iEA. 

The coefficients a(T), T c X  can be viewed as 
a set function, which in fact corresponds to the 
M6bius transform. Denote by # any set function 
,t : ~ ( y ) - - +  9t .  

The M6bius transform of/* is a set function a on X 
defined by [29] 

Z ( -  1)IT\KI/~(K), VTCX. (2.2) a ( T ) =  
K C T  

This transformation is inversible. When a is given, it 
is possible to recover the original # by the so-called 
Zeta-transform: 

l*(T)= Z a(S), V T c X .  (2.3) 
s c r  

Consider the case of additive measures. According to 
(2.1), additive measures have a linear representation 

J1 

f (x )  = Z aixi, 
i = ] 

where #i ==- ai and the notations/~i = #({i}), ai = a({i}) 
are used. By extension, fuzzy measures having a poly- 
nomial representation of degree 2, or 3, or any fixed 
integer k can be defined. These fuzzy measures are 
called k-order additive or simply k-additive measures. 

Definition 2.2 (Grabisch [12]). A fuzzy measure /~ 
defined on X is said to be k-order additive if its cor- 
responding pseudo-Boolean function is a multilinear 
polynomial of degree k, i.e. its M6bius transform 
a(T) = 0 for all T such that ITI >k, and there exist at 
least one subset T of X of exactly k elements such 
that a(T)  ~ 0. 

This definition is illustrated by an example of the 
2-additive fuzzy measure. 

Example 2.1. The 2-additive fuzzy measure is de- 
fined by 

#(K)= ~ aix/ + Z a(/xzx/ 
i=l  { i , j }  C X 

(2.4) 

for any KC_X, [K]~>2 with xi=l if  iEK,  xi=O 
otherwise. 

Using the fact that #i = ai for all i, the following 
expression is obtained: 

jttij ~- a i  + aJ + a u  =- 1 li -}- [~/ 4 -  a i i  . 

The general formula for the 2-additive fuzzy measure 
is [12] 

I t ( K ) = Z a i +  Z at~ 
i 6 K  { i , / }  C K 

= Z I ' t ~ / - ( I K l - Z ) Z ~ t i  (2.5) 
{ i , / }  C K iCK 

for any KC_X such that IKI~>2. It is clear that the 
2-additive fuzzy measure is determined by the coeffi- 
cients ]-/i and #ij. 

According to its definition, k-additive fuzzy mea- 
sures for k <n  need less than 2" coefficients to be 
defined. It can be shown that only n coefficients are 
required for k = 1, n(n + 1 )/2 coefficients for k = 2, 
and in general ~ki= t .  (~) for k-additive measures. 

For a one-to-one correspondence between the 
M6bius representation and the fuzzy measure satis- 
fying monotonicity, the values a(T) in (2.1) must 
obey some constraints. They are formulated in the 
following theorem. 

Theorem 2.1 (Chateauneuf and Jaffray [3]). A set of 
2" coefficients a(T), T CX corresponds to the M6bius 
representation of a fuzzy measure if and only if 
1. a ( 0 ) = 0 ,  ~ 7 - c x a ( T ) =  1; 
2. ~iE8 c r a(B) >,O for all T CX, for all i E T. 

The concept of k-additive fuzzy measures provides 
a tradeoff between richness and complexity of fuzzy 
measures. 

In the following, a particular case of a 2-additive 
fuzzy measure is considered. To identify this spe- 
cial type of fuzzy measures, only n(n + 1)/2 coef- 
ficients #i and ]..lij , i,j 6X,  have to be learned from 
training data. The coefficients for all other subsets 
K C_X, [K I >2  are calculated from/~i and/.% In or- 
der to obtain the monotone fuzzy measure, the coef- 
ficients/~i and #~/ must satisfy particular conditions. 
Such conditions were formulated for the M6bius rep- 
resentation of a fuzzy measure in Theorem 2.1. They 
can also be expressed through the original representa- 
tion of the fuzzy measure using (2.2). 
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For 2-additive fuzzy measures, coefficients of  the 
M6bius representation are given by 

ai =/2i ,  Vi E X, 

ai j=#i j  - /2i - I.~/, V{i , j }  CX.  

Then the monotonicity constraints on the coefficients 
of  the 2-additive fuzzy measure can be derived from 
part 2 of  Theorem 2.1 and are formulated as follows: 

Z P i j - Z # j - ( n - 2 ) # i > > . O ,  V iEX,  KC_X\ i ,  

jeK je~: (2.6) 

where IX[ = n. 
In order to obtain the fuzzy measure, which is nor- 

malized on the interval [0, 1], the coefficients #i and 
#~/must also satisfy the normalization condition. This 
can be formulated using (2.5) for K = X :  

Z #ij - ( n -  2 ) Z # i =  1. (2.7) 
{i,j} C X iCX 

For example, the monotonicity and normalization con- 
straints for n = 4 are defined as 

( i = 1 )  #12 + #13 + #14 - 2 # 1 -  #2 - #3 - #4 .-> 0, 

( i = 2 )  #12 ~-#23  ~- #24 - /21 - -  2/22 -- #3 --  #4 /> 0, 

( i = 3 )  #13 + # 2 3 - [ - # 3 4 -  / 2 1 - - / 2 2 - - 2 / 2 3 - - / 2 4 / > 0 ,  

( i = 4 )  #14 -'}- /224 "[- #34 -- /21 - - /22 - - # 3  -- 2/24 ~ 0 ,  

#12 @ /213 "[- #14 "[- /223 -'}" /224 @ #34 

-2(/21 + #2 +/23 + #4 )=  1. 

Clearly, these relations are not as simple as the ones 
for a general fuzzy measure (/2i <~#ij), but using the 
lattice representation of the fuzzy measure [9] their 
formulation can be well summarized. The lattice of  
the 2 n coefficients of  the fuzzy measure is equivalent 
to the lattice of  elements of  the power set with respect 
to set inclusion relations. An example of  the lattice for 
the case n = 4 is shown in Fig. 1. 

Nodes of  the lattice represent subsets of  the power 
set or fuzzy measure coefficients, and links of  the lat- 
tice represent order relations such as inclusion for sub- 
sets or ordinary '~<' for fuzzy measure coefficients. 
A set of  chained links, starting from layer 0 (empty 
set) and arriving to layer n (whole set X )  is called 
a path [9]. The path emphasized in the figure corre- 
sponds to a datum such that x3 <x2 <x4 <xl .  The coef- 
ficients #({ 1 } ), #({ 1,4}) and #({ 1,2, 4 }) are involved 

in the calculation of the fuzzy integral (the Sugeno or 
the Choquet integral [37]) of  the given datum. 

For a given node in layer k, the set of nodes in the 
layer k - 1 (respectively k + 1 ) linked to it is called 
its lower neighbors (respectively upper neighbors). 
A state, where each node of layer k is equidistant from 
any node of layer k +  1 o r k -  1 is called the equilibrium 
state of  the fuzzy measure. 

Using the lattice representation of the fuzzy mea- 
sure, relations (2.6) can easily be formulated. To ver- 
ify the monotonicity relation for the node #i, its upper 
neighbors are determined and their values are added. 
Then the values of  the nodes of  the first layer are sub- 
tracted from the sum, where the value of #i is taken 
(n - 2) times. It can be noticed that each node of the 
first layer is involved in all monotonicity relations, 
thus n relations must be verified. For each node Pij, two 
relations must be checked. To formulate them, lower 
neighbors #i and #j of  the node #ij are determined, 
and the monotonicity is verified for these two nodes as 
described above. I f  one of the monotonicity relations 
is violated, then the expression (2.6) is negative and 
its value is denoted by - Ack, k = 1 . . . . .  n. The value 
of the node #i or  #ij is corrected using the maximal 
degree of violation among all verified relations. 

Finally, if  coefficients #i and pi/ are defined such 
that all constraints (2.6) and (2.7) are satisfied, the 
induced 2-additive fuzzy measure is monotone and 
normalized. 

A heuristic algorithm for the identification of the 
2-additive fuzzy measure (Algorithm 1) is based on 
this idea. Two main steps of  the algorithm can be 
summarized as follows: 
1. The training data are used to identify coefficients #i 

and #ii under the monotonicity and normalization 
constraints. All other coefficients #(K), [K I>  2, are 
calculated from #i and Pij. 

2. Only the nodes of  the first and the second layers 
left unmodified in step 1 are shifted in the lattice 
as close as possible to the equilibrium state. The 
nodes' values are adjusted to keep the monotonic- 
ity and normalization constraints satisfied. For 
example, if a value of one node of the first layer is 
decreased (increased), then the values of all 
nodes of  the second layer are equally decreased 
(increased) to some degree. After the adjustment 
of nodes #i and #!j, other coefficients #(K), IKI > 2, 
must be calculated anew as in step 1. 
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~({o}) 

g({] }) g({2}) g({3}) g({4}) 

P.({1,2}) #({1,3}) ta({1,4}) p-({2,3}) p.({2,4}) p.({3,4}) 

g({1,2,3}) g({1,2,4}) g({1,3,4}) Ix({2,3,4}) 

#({1,2.3,4}) 

Fig. 1. The lattice of fuzzy measure coefficients for n = 4. 

It should be noted that it is not necessary to verify 
the monotonicity for nodes left unmodified in step 1 
(as it was done in the heuristic least mean-squares 
algorithm (HLMS) presented in [9]), since this is 
guaranteed, if at least one node of the first layer was 
modified. 

Before presenting an identification algorithm, the 
concept of the fuzzy integral should be briefly intro- 
duced. Fuzzy integrals are non-linear functionals sim- 
ilar to Lebesgue integral and representing a particular 
case of averaging operators. Compared to probabil- 
ity theory, they correspond to non-additive expected 
values [19,37]. The most well-known fuzzy integrals 
are Sugeno [31] and Choquet [33] integrals. Since the 
proposed Algorithm 1 uses the Choquet integral, the 
definition of this type of the integral is considered. 

Definition 2.4 (Sugeno and Murofushi [33]). Let M : 
F -+ [0, 1] be a fuzzy measure on a measurable space 
(X,F)  and f :X  --~ [0, c~) a measurable function. The 
Choquet integral of f with respect to # is defined by 

/ /0 C1,(f) = (C) f o ~ = #(H~) da, 

where H~ = {x c X l f ( x ) > ~ a  } Vc~ E [0, 1]. 

Suppose that the function f ( x )  is discrete on X = 
[xl . . . . .  x,] and denote the value of a function at a point 
xi E X by ~ .  Consider a permutation of the function 
values in increasing order denoted by ftl)  . . . . .  f(n) 
and denote A(i) = {x(i),x(i+l) . . . . .  x(n)}. Then the 
Choquet integral can be written as follows: 

C,,( f )  = Z (f(i) - f(i-l))#(Aii)). 
i=1 

A new algorithm for the identification of the 2-additive 
fuzzy measure, which uses some basic steps of the 
HLMS algorithm, is called HLMS (2-add) and is pre- 
sented below. 

Algorithm 1. 
Step 0: Initialize the fuzzy  measure in the equilib- 

rium state. 
Step 1.1: Consider a training datum (x, y). Com- 

pute the error between the actual and the expected 
output: E = ~ , ( x )  - y, where ~ , ( x )  = Cry(x) is the 
Choquet integral. Denote the values o f  the nodes 
(fuzzy measure coefficients) on the path involved 
by x by u(0),u(1) . . . . .  u(n), where u ( 0 ) = 0  and 
u(n) = 1. 

Step 1.2: Compute a new value uneW(i), i =  1,2, 
of  the considered node as in the gradient descent 
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method [9]: 

uneW(i) = u°ld(i) -- o~E-ff-"-(X(n-i) - X(n--i--1)), (2.8) 
Emax 

where u(1 ) = p j  and u(2)=/*jh,  j ,  h = 1 . . . .  , n, j ¢ h; 
E [0, 1] is a constant, or it can be decreasing at 

each iteration; Emax is the maximum value of the 
error. I f  y E [0, 1], then Emax = 1. The notation x(i) 
indicates the ith element of  the vector x in ascending 
order. 

Step 1.3: For every node u(i), i = 1,2, verify the 
monotonicity relations, l f  E < O, the value of u(i) is 
increased and n monotonicity relations of the form 
(2.6) are checked for u(1 ). I f  the monotonicity of  the 
kth relation is violated at the value Ac~, k = 1 . . . . .  n, 
then the maximum degree of  violation among all re- 
lations is chosen to correct the value of  u(1 ): 

u ( 1 ) = u ( 1 ) -  max Ac~ , (2.9) 
k=l ...... \ n  -- 2 

k#j 

where j is the index of  the considered fuzzy measure 
coefficient u ( 1 ) =  #j. Since this coefficient is taken 
with factor (n - 2) in the jth relation, the degree 
of  violation Ack have to be divided by this factor. 
Analogously, i f  E > O, two monotonicity relations are 
checked for u(1) and u(2). For u(1), they are just 
non-negativity conditions. For u(2), these relations 
can be violated at values Ack, k = 1,2. Then the value 
of u(2) is corrected by using the maximum violation 
degree: 

u(2) = u(2) + max(Act ,  Ac2). (2.10) 

Nodes u(i), i = 1,2, are considered in steps 1.2 and 
1.3 in the following order: 
• i fE<O, begin by u(Z),u(1); 
• i f  E > 0 ,  begin by u(1),u(2).  

Step 1.4: Compute a new value un~W(i), i = 3 . . . . .  
n - 1, of  the node I~(K) using 

uneW(i)=#(K) --- ~ #jh--(1KI--2)~-'~,uj 
{j,h} C K jEK 

(2.11) 

for any k C X such that IKI >2 .  
During one iteration, Steps 1.1-1.4 are repeated 

for all training data. For a convergence of the algo- 
rithm several iterations should be carried out. 

Step 2.1: Adjust the value of  each node of  layers 
1 and 2 left unmodified in Step 1. Begin from the 
lower leveI and denote the node considered by v( i ). To 
arrange node v(i) into the lattice as close as possible 
to the equilibrium state, the following parameters are 
computed [9]: 
• the mean value of lower neighbors: 

m(i) - ZA c LN I*(A) 
i 

where L N  is a set of  lower neighbors of node v(i); 
• the mean value of upper neohbors: 

E A C UN JI( A ) re(i) = 
n - i  

where UN is a set of  upper neohbors of  node v(i); 
• the minimum distance between node v(i) and its 

lower neohbors: 

drain(i)= rain [v(i) - p(A)]; 
ACLN 

• the minimum distance between node v(i) and its 
upper neohbors: 

dmi,(i) = rain [/*(A) - v(i)]. 
ACUN 

I f  node v(i) is closer to its lower than to its upper 
neighbors, that is, ~( i )  + m__(i) - 2v( i )>0 ,  the value 
of v(i) should be increased: 

vnew(i ) _- vold(i ) + fl(m(i) 
+ re(i) 2v( i ) )dmin( i) 
2(re(i) + re(i)) 

(2.12) 

otherwise, i f  node v(i) is closer to its upper than to 
its lower neighbors, its value is decreased: 

Ww(i ) = vo~d(i ) + fl(m(i) + m_(i) -- 2v(i))dmin(i ) 
2(m(i) + m(i)) ' 

(2.13) 

where fl E [0, 1] is a constant, or it can be decreasing 
at each iteration. 

To keep the monotonicity and normalization con- 
straints satisfied, all other nodes of layers 1 and 2 
must be corrected Denote by Abl the degree, at 
which the value of  node v(i) should be changed Four 
cases can be distinguished: 
• I f  v(i) is a node in layer 1 and increased by 

Abl (the second term in (2,12)), then its upper 
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neighbors must be increased by the same degree 
and all other nodes of  layer 2 must be decreased 
by 

2 
Ab2 (n - 1)(n - 2) Abl; 

• I fv ( i )  is a node in layer 1 and decreased by Abl,  
then all nodes of  layer 2 must be decreased by 

_ 2(n 
Ab2 - 2)Abl ;  

n(n - 1) 

• I f  v(i) is a node in layer 2 and increased by Abl 
(the second term of(2.13)), then all nodes of  layer 
1 must be increased by 

1 
Ab2 n(n - 2) Abt; 

• I fv ( i )  is a node in layer 2 anddecreasedby Abl,  
then its lower neiohbors must be decreased by 

1 
Ab2 (n - 2) Abl 

and all other nodes of  layer 1 must be increased by 

1 
Ab2 - - -  Abl.  

(n - 2) 2 

Step 2.2: Calculate a new value o f  every node 
v(i), i = 3 , . . . ,n  - 1, usin9 (2.11). Begin from lower 
levels. 

Durin9 one iteration, steps 2.1 and 2.2 are repeated 
for all nodes left unmodified in the first step. Several 
iterations can be carried out. 

It can be observed that the adjustment of nodes in 
step 2 influences all nodes of the lattice. The lower 
and upper neighbors of node v(i) are shifted together 
with node v(i), but since the changes in their values 
are much smaller than the change of the value of v(i) 
themselves, the procedure leads to a more homoge- 
neous lattice, as supposed. 

The HLMS (2-add) algorithm for the identification 
of the 2-additive fuzzy measure can be used within a 
pattern recognition method based on the fuzzy integral 
and its efficiency is crucial for the performance of the 
method. In the next sections, two main components of 
a pattern recognition system are considered in more 
detail: feature selection and classifier design. It should 
be noted that the proposed feature selection procedure 
is closely related to the fuzzy integral classifier. 

3. Development  of  a feature-selection algorithm 
based on the fuzzy measure 

In [12] it was stated that the fuzzy measure defined 
on a set X of elements can express the importance of 
any subset of elements. In the context of pattern recog- 
nition, where X is a set of features, the coefficients of 
the fuzzy measure can be used to evaluate the impor- 
tance of each feature and the interaction between fea- 
tures. The importance of features is considered with 
respect to classes and is related to a discrimination 
ability of a feature for a class. The interaction between 
features expresses the contribution of a subset of fea- 
tures to the recognition process. These characteristics 
are modeled by the fuzzy measure as follows [11]: 
• A feature i is important if the values of/~(K) are 

large for all subsets K containing i. Thus, not only 
the importance #({i}) of the feature i is taken into 
account, but also the contribution of the feature in 
all subsets of features. 
For pairs of features three cases can be distin- 

guished: 
• The importance of a pair of features i and j is 

almost the same as the individual importance of 
each feature, that is, /if{/,j}) is smaller than the 
sum of #({ i } ) and #( { j } ). This kind of interaction 
is called redundancy or negative synergy. 

• The importance of a pair of features i and j  is large, 
although these features are unimportant if they are 
considered separately, that is, the values of/~({i}) 
and/~({ j} ) are small whereas the value of/z( { i, j} )  
is large. This kind of interaction is called comple- 
mentarity or positive synergy. 

• Features i and j have equal contributions to the 
recognition process without interfering, if the 
importance ~t({i,j}) of a pair of features i and j 
is equal to the sum of the individual importances 
#({i}) and #({j})  of features. This is called inde- 
pendence. 
Defining the interaction between features, all sub- 

sets K containing a pair i ,j  must be considered. 
Using this interpretation of the fuzzy measure, the 
global evaluation of the importance of features and 
the interaction between them is possible. 

In [25] it was proposed to evaluate the importance 
of an element inX in analogy to n-person game theory. 
In game theory, a subset of players with the same 
goals is described as a coalition. A contribution of 
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each player of  a coalition to the game is defined by the 
Shapley value [30]. It can be interpreted as a degree of 
importance of a player in the coalition. This idea can 
be used to determine the importance of an arbitrary 
element in the set X taking into account its importance 
in different subsets. 

Definition 3.1 (Shapley [30]). The importance index 
or Shapley value vi of element i with respect to a fuzzy 
measure It is defined by 

Definition 3.2 (Murofushi and Soneda [26]). The in- 
teraction index between two elements i and j with 
respect to a fuzzy measure It is defined by 

n-2 

I i j = Z  ~k Z [ # ( K t O { i , j } ) - i t ( K U { i } )  
k=0 K CX\{i,j},  IKl=k 

- I t ( K  tO {j})  + It(K)], (3.2) 

where ik = (n - k - 2 )!k!/(n - 1)!. 

n--I 

Ui = Z ~)k Z [It(K [_J {i}) -- It(K)], 
k=O X c X\i, IKl=k 

(3.1) 

where ? k = ( n  - k - 1)!k!/n! and X is a set of  n 
elements. 

The Shapley value with respect to the fuzzy measure 
It is a vector v(It) = [vl . . . . .  vn]. It expresses the global 
importance of each feature, taking into account the 
effect of  adding element i to a subset K (which does not 
contain i) in terms of strengthening the subset K. The 
Shapley value has the property that the sum of  all its 
components is equal to 1, thus it represents the sharing 
of the total importance of all features among them. It is 
convenient to scale these values by a factor n, in order 
to highlight the features which are more important than 
the average. Their importance indexes become then, 
greater than 1. 

Analogously, the effect of  adding two elements to 
a subset K can be calculated. The definition of  the 
interaction of two elements was proposed in [26] using 
concepts from multiattribute utility theory [ 18] and is 
based on the following idea. Two elements i and j 
interact in a positive (cooperative) way, if  adding i 
and j together to a subset K is more valuable than 
putting the individual values of  i and j to the subset, 
that is, 

It(K tO {i,j}) - It(K) 

~>it(K tO {i}) - It(K) + It(K U {j})  - It(K). 

In the case of  ~< relation, the elements interact in a 
negative (substitutive) way. Taking the average of all 
possible coalitions, the average value of interaction is 
obtained. 

The generalization of the interaction index for any 
subset A of  elements was proposed in [10]: 

I(A)= Z ¢(B'A)Z(-I)bA\crit(CtoB)' (3.3) 
8Cx\A CCA 

where ~(B,A) = (n - I B I -  IAI)!IBI!/(n - [A[  + 1)!. 
The value of  I (A)  can be interpreted in the same 

way as Iij, but it is more difficult to express its 
meaning directly. Thus, for a semantic analysis, the 
considerations are restricted to vg and Iij. 

Using the importance and interaction indexes, a set 
of  features can be described as follows: 
• Feature i is more important than feature j for dis- 

tinguishing class Ck from the others, if the Shapley 
values relate to each other as v~ > vj. 

• Features i and j are redundant for distinguishing 
class Ck from the others, if the value of Iij is nega- 
tive. It is sufficient to use one of the two features. 

• Features i and j are complementary for distinguish- 
ing class Ck from the others, if  the value of Iij is 
positive. The combination of the two features must 
be used. 

• Features i and j are independent for distinguishing 
class Ck from the others, if the value of I~/is zero. 
Both features bring their contribution. 
Hence, the importance and interaction indexes can 

be used as two evaluation measures for features. They 
provide information about the importance of single 
features for the classification as well as about the 
pairwise dependencies between features in the sense, 
whether two features taken together are complemen- 
tary or redundant for the classification. Based on the 
interpretation of  these two measures, the selection of 
a subset of  the most appropriate features from a set of  
given features can be performed. Developing a method 
for feature selection, two points should be noticed: 
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• the evaluation measures are classifier dependent, i.e. 
for their computation the classification of  training 
data must be performed to identify the fuzzy mea- 
sure for each class; 

• a search procedure for selecting the best subset of 
features should be defined based on the interpreta- 
tion of both evaluation measures. 
The first point can be considered as a restric- 

tion on the application area of the algorithm due to 
its dependence on a special classification method 
and its computational complexity. The second point 
emphasizes that existing search procedures can- 
not be applied, since they use other evaluation 
criteria. 

The proposed method for feature selection consists 
of the following three steps: 
1. identification of the fuzzy measure for each class 

within the classifier design; 
2. computation of the importance index for all features 

and the interaction index for all pairs of features 
for each class; 

3. selection of the best features based on the analysis 
of computed values (Algorithm 2). 
The first step is in fact the procedure of classifier 

design, which will be described in the next section. 
Since it can be a very complicated task for a large 
number of features, it is reasonable to use 2-additive 
fuzzy measures, which are characterized by quadratic 
complexity. 

Computation of the importance and the interaction 
indexes succeeds according to (3.1) and (3.2). The 
results of this step are two tables containing indexes 
for all classes. 

The third step should be considered in more de- 
tail. There are in general two strategies for selecting 
a best set of features. The first one starts with one or 
two best features and increases its number by evalu- 
ating the criterion for different combinations of fea- 
tures. Another strategy starts with the whole set of 
features and eliminates the worst features based on the 
evaluation measure. The heuristic algorithm proposed 
in this section combines these two strategies. It should 
be noted that the evaluation of subsets is restricted to 
single features and pairs of features. Combinations of 
more than two features are not evaluated. Further, the 
selection of the best feature subset is performed for 
each class and the resulting features are put together. 
As a result the feature, which is important just for one 

class is chosen, although it is maybe not important for 
other classes. Alternative approach would be to cal- 
culate the importance and interaction indexes for each 
class and aggregate their values over classes by some 
rule. However, this approach cannot succeed, since it 
can happen that a large positive value of the interac- 
tion index for one class is compensated by negative 
values for other classes and, consequently, this pair, 
which is very important for one particular class, will 
not be selected. Therefore, features are selected with 
respect to each class. 

In general, it is possible to select the desired subset 
ofn  features during one iteration. But it seems reason- 
able to do this in several iterations, in order to obtain 
reliable evaluations. Thus, for each iteration the num- 
ber of features to be selected is predefined (empiri- 
cally or according to some rules) such that the initial 
number n I is decreased after p iterations to the num- 
bern: F/t ~ n l  ~ / ' / 2  ~ . . .  ~ n p ~ n .  

The following heuristic algorithm for selection of 
the best feature subset is proposed: 

Algorithm 2. 
Step 1: Sortin 9 of the values in descendin9 order in 

the table of interaction indexes; settin9 of thresholds 
for positive and negative values for each class based 
on expert knowledge. 

Step 2: Elimination of redundant features: find 
such a feature that the interaction index for all pairs 
containin9 this feature and for all classes is nega- 
tive. This means that this feature is redundant for the 
classification and can be eliminated. 

Step 3: Selection of the best ni features: define the 
number ni of features that should be selected in this 
iteration. For each class j, j = 1 . . . . .  m, perform the 
followin 9 steps. 

Step 3.1: Select the pair o f features with the largest 
value of the iteraction index and add it to the 'Best 
subset'. These two features are complementary and 
should be considered together. 

Step 3.2: Select the pair of features with the least 
value of the interaction index and check, whether at 
least one of two features is contained in the 'Best 
subset'. I f  yes, then continue with the next step. I f  
not, look at the values of the importance index for 
each feature of the pair and add the feature with the 
largest value to the 'Best subset'. This feature com- 
bines the highest degree of redundancy with relative 
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Sort interaction 
indexes in descending 

order for each class 

Eliminate redundant  
features with negative 

interaction indexes 
I 

~.~, j = l  

Select one feature pair 
I of class j with the 

greatest interaction 
index and add it to the 

'Best subset' 

Select one feature pair 
of class j with the least 

interaction index 

I no 

I 
Increase 
the class 
counter 
j = j + l  

Delete two considered 
pairs of features from 
the table of interaction 

indexes 

j =  

no 

Select the feature 
with the greatest 
importance index 
and add it to the 

'Best subset' 

I 

STOP with the 
'Best subset' 

Fig. 2. A procedure for selection of  the best subset of features. 



L. Mikenina, H.-J. Zimmermann/Fuzzy Sets and Systems 107 (1999) 19~218 207 

high importance. Thus, it is sufficient to select only 
one feature of the pair. 

Step 3.3: Delete pairs with the largest and the least 
values of the interaction index from the table. Per- 
form steps 3.1 and 3.2 for the next class. 

Steps 3.1 and 3.2 are performed for each of m 
classes until thresholds for positive and negative val- 
ues of the interaction index are exceeded. Step 3 is 
performed until either thresholds of the interaction 
index for all classes are exceeded or the maximum 
number of features to be selected in this iteration is 
achieved. 

Algorithm 2 constitutes one iteration of the feature 
selection method. The result of one iteration is the 
'Best subset' ofni features. It is possible that the algo- 
rithm terminates with the number of features smaller 
than ni, due to the chosen thresholds for interaction 
indexes. After each iteration if the desired number n 
of features is not achieved yet, the classification of 
training data using the subset of selected features is 
performed and a classifier is designed. Based on new 
fuzzy measures, new values of  importance and inter- 
action indexes are calculated. Algorithm 2 is repeated 
to select the next best feature subset. 

The algorithm is represented graphically in Fig. 2. 
To define the thresholds for positive and negative 

values of the interaction index, an expert can apply 
graphical representation of index values. Since the 
range of values can be very different, the thresholds 
are defined separately for each class. By doing this it 
must be assured that the best pairs of features for each 
class will be selected. Moreover, it may be reason- 
able to set different positive and negative thresholds, 
because of different density of positive and negative 
values of the interaction index and different ranges 
of values. This approach can provide a balance in 
the selection procedure and an opportunity to con- 
sider to the same degree complimentary and redundant 
features. 

The heuristic algorithm for selection of the best fea- 
ture subset is illustrated by the following example. 

Example 3.1. Consider a set of training data, de- 
scribed by 5 features and representing two classes. 
The goal is to select 3 features. First, the classi- 
fier based on 5 features is designed and the fuzzy 
measures for two classes are identified. Thereafter, 

Table 1 

An example of  importance indexes for a set of  5 features 

Class 1 Class 2 

5vl 0.75 0.8 

5re 0.95 1.2 

5v3 1.2 1.1 

5/)4 0.8 0.5 

5/)5 0.6 0.45 

Table 2 

An example of  interaction indexes for a set of 5 features 

Class 1 Class 2 

/12 0.35 0.03 

I13 0.15 0.17 

/14 -- 0.1 0.12 

I15 --0.15 --0.07 

I23 0.24 0.28 

124 0.01 -- 0.2 l 

125 - 0 . 3  - 0 . 1 8  

/34 -- 0.35 -- 0.05 

135 - 0 . 2 8  - 0 . 1 5  

145 -- 0.05 -- 0.03 

importance and interaction indexes are computed for 
two classes. Suppose that the values of indexes given 
in Tables 1 and 2 are obtained. 

In the first step, the values of the interaction in- 
dex are sorted in descending order from top to bottom 
to expedite the further analysis. Before the selection 
procedure starts, the thresholds for positive and neg- 
ative values of the interaction index must be set. It 
can be done using, e.g. the graphical representation 
(Fig. 3). The interaction indexes are represented in the 
plane according to Table 2 and can all be marked. The 
x-axis corresponds to an index of a pair (or a pair 
themselves) and y-axis corresponds to the values of 
the interaction index. For class 1, positive threshold 
can be set, e.g. at 0.2 and the negative threshold at 
-0 .2 .  For class 2, these thresholds can be chosen as 
0. l and - 0.1, respectively. 

In the second step, one tries to eliminate the 
least important features. Checking for all features 
the values of the interaction index, one finds that 
all pairs containing feature 5 have a negative value 
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0.4 

0.3 

0.2 

0.1 

~ -0.1 

-0.2 

-0.3 

-0.4 

o 1(12) 

o 1(23) 

0 

0 

0 

o 
0 

o 1(34) 

0.3 

0.2 

0.1 

i° 
~ -0.1 

-0.2 

-0.3 

o 1(23) 

o 1(13) 
o~4~ 

o 
0 

o 1(24) 

2 4 6 8 10 2 4 6 8 
Number of a pair Number of a pair 

10 

Fig. 3. Interact ion indexes for  class  I ( left)  and  class 2 (r ight) .  

Table  3 

Sorted interact ion indexes for features 1 - 4  

Class  1 Class 2 

112 = 0.35 /23 = 0.28 

123 = 0.24 113 = 0.17 

113 = 0.15 I14 = 0.12 

124 = 0.01 112 = 0.03 

Ii 4 = - O. 1 /34 = - 0,05 

134 = - 0.35 124 = - 0.21 

of the index. This indicates that feature 5 is redun- 
dant for all pairs of  features and can be eliminated 
from the initial feature set. The corresponding val- 
ues of the interaction index can also be deleted from 
Table 2. 

In the third step, only the interaction indexes for 4 
features shown in Table 3 are considered. The number 
of  features to be selected is 3. The selection procedure 
proceeds as follows: 

Starting with class 1, the pair 1,2 with the largest 
interaction index is selected. Features 1 and 2 are 
added to the 'Best subset'. Then the pair 3, 4 with 
the least interaction index is chosen. Since none of 
the two features is in the 'Best subset', one of them 
can be selected. The importance indexes for both fea- 
tures are compared (they are v3 = 1.2 and /3 4 = 0 . 8 )  

and feature 3 with the largest value is added to the 
'Best subset'. Since the desired number of  features is 
achieved, the selection procedure terminates with the 
subset {1,2,3}. 

pos. threshold 

neg. threshold 

Class  1 C lass  2 C lass  3 

1 , 3 , 5 , 

7 , • 1 0 ,  

1 2 ,  1 4 ,  

= I l l  = i l i l  = m =  

13= 

8 , 9 , 1 1  

2 , 4 = 6 

Fig. 4. The selection order  o f  feature parrs in step 3. 

Another termination criterion is based on positive 
and negative thresholds of  interaction indexes. The 
selection procedure is repeated until all thresholds are 
violated, i.e. there is no more pair with valuable con- 
tribution. The order, in which pairs are considered in 
step 3, is generalized in Fig. 4 for the case of  three 
classes. Points denote the sorted values of  the inter- 
action index and numbers correspond to the order of  
consideration of pairs. 

In general, it should be noted that the feature se- 
lection procedure, which requires a classifier design 
for each selected subset of  features, is not as efficient 
as some methods, operating independent of  the classi- 
fier. But it is still better than computing a classifier for 
each possible combination of features. The number of  
iterations, and classifiers respectively, is predefined 
and could be n ' - n  at the maximum, where n' is the ini- 
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tial number and n is the desired number of features, if 
one feature is eliminated in each iteration. For enumer- 
ation this number is equal to ('~'). The computational 
complexity of the algorithm by using the 2-additive 
fuzzy measure is mainly related to the computation of 
fuzzy measure coefficients in each iteration. The total 
number of coefficients can be evaluated by 

i1 t 

z k (k  + l ) ~<(n' - n) 3, 
2 

k - n  

where n ~ is the initial number of features and n is the 
number to be selected. Thus, the complexity of the 
algorithm grows cubicly with respect to the difference 
between the initial number and the desired number of 
features. 

In Section 5, the heuristic algorithm for feature se- 
lection based on the fuzzy measure will exemplar- 
ily be applied to the problem of frequency spectra 
analysis. 

4. A pattern recognition method based on the fuzzy 
integral 

In the following, the problem of supervised classi- 
fication of objects is discussed. Consider a set of m 
classes Cl . . . . .  Cm, each class being described by a 
set of n features. Each object x is represented as an 
n-dimensional vector x = [xl . . . . .  x,]. Suppose that a 
training set of objects for each class is given, which is 
used during the learning process to derive a classifier. 
When a new object x ° is observed, we want to find 
the class, to which x ° most likely belongs. 

The idea of a pattern recognition method based on 
the fuzzy integral [14] is to build fuzzy prototypes of 
classes in the form of fuzzy sets and during the classi- 
fication to match a new object with all class prototypes 
and to choose the class with the highest matching de- 
gree (this is also a general idea of the fuzzy pattem 
matching approach introduced in [2]). Specifically, 
consider for each class C/, j = 1, . . . ,  m, a collection 

of fuzzy sets v~ . . . . .  v~, defined on each feature and 
modeling the fuzzy sets of  typical values of the fea- 

o o tures for class j .  When a new object x ° = [x I . . . . .  x,] 
is observed, the matching process is carried out in two 
steps: 

• partial matching with respect to feature i: determi- 
nation of  a partial matching degree 4~/between a 
feature value x ° of an object and a class prototype 
v/. Partial matching is done for all features and all 
classes; 

• global matching between the object x ° and the class 
prototype Cj: all partial matching degrees concem- 
ing class j are aggregated to a global degree by the 
fuzzy integral with respect to a fuzzy measure 

+ ( G  I x°) ~- J / (4.1) 

A fuzzy measure p is defined on a set of features for 
each class and expresses the importance of features 
and groups of features for the classification, i.e. the 
contribution of single features and groups of features 
into the recognition process. Object x ° is classified 
by assigning it to the class with the highest global 
matching degree. 

A pattern recognition method based on the fuzzy 
integral represents the most general framework among 
fuzzy pattern matching techniques. This is due to the 
fact that the fuzzy integral used for aggregation con- 
tains most of the known averaging operators including 
minimum and maximum as the limit cases [14]. This 
method was proposed in [13] as a generalization of 
a fuzzy pattern matching approach introduced in [2] 
and then extended in [7]. In the approach of Grabisch 
and Sugeno [13], the assignment of objects to classes 
is crisp, although the global degrees of confidence, 
or matching degrees, take their values in interval 
[0, 1]. 

In the following, the pattern recognition method 
based on the fuzzy integral is slightly modified: the 
value of the fuzzy integral (4.1) expressing the match- 
ing degree between an object and a class is interpreted 
as the degree of membership of an object to a class. 
As a result, an object belongs to each class to some 
degree. The sum of the degrees of membership of an 
object to all classes is not necessarily 1, so they can 
represent the typicality of  objects to classes. The clas- 
sification procedure is illustrated in Fig. 5. 

The classification procedure used in a pattern recog- 
nition method based on the fuzzy integral requires 
the knowledge of class prototypes and fuzzy mea- 
sures for each class. Therefore, the design of the fuzzy 
integral classifier includes the following two steps 
[13]: 
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x=[x( l ) . . ,  x(n)] 

New object 

Class j 

a 1 V - ~ .  O(c j) = Fg (O(1) ..... O(n)) ¢(C0 ..... O(Cm) 

Membership degrees 
of the new object x 
to classes 1 to m 

Fig. 5. Classification procedure used in a pattern recognition method based on the fuzzy integral. 

• learning of class prototypes in the form of fuzzy 
sets based on training data; 

• identification of the fuzzy measure for each class. 
That is, for m classes and n features, m2" coeffi- 
cients of  the fuzzy measure for all subsets of  a set 
of  n elements and for each class must be identified. 
In this paper, class prototypes are learned using a 

method described in [6], which provides possibilistic 
histograms of data. The ideal of  this method is to build 
a classical probability density function from the data 
and to map it into a possibility distribution, which has 
the same shape. 

Identification of the fuzzy measure for each class 
using learning data is based on the idea of modeling a 
system with n input variables xl . . . . .  x, and one output 
in the form of the fuzzy integral ~ ( x ) ,  where x is an 
n-dimensional input vector and # is a fuzzy measure 
on the set ofn  inputs [ 14]. Suppose that a set of  l learn- 
ing data in the form of couples (xl, y, ) . . . . .  (xl, yl ) is 
given, where yk, k -- 1 . . . . .  1, is the output of  the sys- 
tem, if the input is xk. The goal of  the identification 
is to find the best fuzzy measure # for a given fuzzy 
integral (Choquet or Sugeno) such that the error be- 
tween the actual output and the expected output of  the 
system is minimized (in general the fuzzy measure is 
dependent on the class): 

l 

E 2 ( # )  = Z ( '~l~(xk) - yk)2" 

k=l 

( 4 . 2 )  

The variable in this expression is the fuzzy measure 
#, which can be expressed as a (2" - 2)-dimensional 
vector u of  coefficients of  the fuzzy measure (coeffi- 
cients #0 and #x are not included, since their values 
are 0 and 1, respectively): 

U = [ # 1 # 2 - - . # n  #12#13 • . .#1  . . . .  # n - l , n  #123 . . .  #23...n], 

(4.3) 

where #i = #({xi}), #iJ = #({Xi 'X j} )  ' etc. 
According to the definition of the fuzzy measure 

[37], the components of  this vector must satisfy a set of  
monotonicity constraints, which take the form ui <~ uj 

or ui~<l, i , j = l  . . . . .  ( 2 " - 2 ) .  
Thus, to solve the identification problem, a con- 

straint optimization technique must be applied. The 
choice of  the particular optimization method depends 
on the fuzzy integral chosen and the error criterion 
used. 

Using the Choquet integral, optimization methods 
based on gradient techniques can be used to minimize 
criterion (4.2), but in the case of  the Sugeno integral 
methods such as simulated annealing [ 1 ] or genetic al- 
gorithms [22] can be applied, since functions induced 
by the operators minimum and maximum are not al- 
ways differentiable. All criteria discussed in this sec- 
tion consider the Choquet integral, which makes the 
solution of the optimization problem easier. 

In [ 14] three types of  criteria for the correct identifi- 
cation of the fuzzy measure were proposed and it was 
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shown that the best one is the generalized quadratic 
criterion. For the sake of clarity, the criterion is given 
only for the case of two classes: 

E2-- Z Z [T(A~12(x~) ) -  1[2' (4.4) 
i /, 

where T is any increasing function from [-1 ,  1] 
to [ -1 ,  1], preferably a sigmoid-type function, and 
ACbt2(x~) denotes the degree of class discrimination 

for each datum x~. of class j ,  j = 1,2. This value is 
defined by [14] 

A,b,2(x~) = ~,, ,(C, Ix~) - ~,,2(C2[x~.), (4.5) 

for each datum x~ of class 1, where q~l,i(') is a global 
matching degree between an object and the class 
prototype defined by (4.1). The subscript j is added 
to the fuzzy measure frY to express its dependency 
on the class. The degree of class discrimination for 
each datum x 2 of class 2 is defined analogously with 
indexes being inverted. A correct classification of  
training samples produces positive values of Aq~12, a 
misclassification leads to negative values. 

Criterion (4.4) can be minimized using constrained 
least mean-squares techniques or some heuristic algo- 
rithms. Optimization algorithms exhibit a number of 
problems due to the sparse constraint matrix and for a 
low number of training data. Also they are very time 
consuming and not incremental, i.e. the obtained so- 
lution cannot be updated using new data. 

Therefore, several heuristic algorithms for the iden- 
tification of  the fuzzy measure were proposed in the 
literature based on intuitive considerations rather than 
explicit criteria. It is known that they are usually much 
less time consuming and can be better adjusted to spe- 
cific characteristics of the problem, but they do not 
guarantee the optimal solution. Nevertheless, such al- 
gorithms can be very useful in practical situations. 
A heuristic algorithm for the identification of the fuzzy 
measure in the case of the Sugeno integral was first 
proposed in [17]. This algorithm was later modified 
for the case of the Choquet integral in [23]. A consid- 
erable improvement of the latter algorithm was pre- 
sented in [9], where a heuristic least mean-squares 
(HLMS) algorithm was proposed. 

According to results given in [9], the HLMS al- 
gorithm requires much less computing time than 
constraint minimization methods with a slight loss 

of optimality. The HLMS algorithm does not have 
restrictions on the number of training data and can be 
used for a larger number of features than optimization 
techniques. However, the number of features is still 
restricted, due to the necessity to compute m2 n coeffi- 
cients of the fuzzy measure. In general, the exponential 
complexity of the fuzzy measure is a serious obstacle 
for an application of the classification method based 
on the fuzzy integral. Therefore, the next obvious step 
in the development of this classification approach is 
to use k-additive fuzzy measures introduced in [10]. 

In Section 2, the HLMS (2-add) algorithm for the 
identification of 2-additive fuzzy measures was pre- 
sented. Applied to the procedure of classifier design, 
it requires some specifications. 

To step 1.1: As was stated above, the best error cri- 
terion for the correct identification of the fuzzy mea- 
sure is the generalized quadratic criterion in the form 
(4.4). Thus, to minimize this criterion using the HLMS 
(2-add) algorithm, the expression 

E = ~ ( A ~ 1 2 ( x ~ ) )  - 1 

must be used for the computations. Due to the form 
of a sigmoid function ~P(t), the value of E is always 
negative or equal zero. Considering the case of two 
classes for simplicity, note that each training datum 
involves coefficients of two fuzzy measures ft 1 and 
/22 describing two classes. Thus, the modifications in 
step 1.2 are made for two vectors u 1 and u 2. 

To step 1.2: For a training datum belonging to class 
1, minimizing E means increasing the value of Aq~12. 
For this purpose, the value ul(i) must be increased 
according to (2.8) and the values u2(i) must be de- 
creased using - E  instead of E in (2.8). These consid- 
erations are based on the fact that the Choquet integral 
is a linear function of the fuzzy measure. 

The main advantage of the HLMS (2-add) algo- 
rithm compared to the HLMS algorithm is its lower 
computational complexity, which is quadratic with re- 
spect to the number of features. Therefore, the clas- 
sification method using the 2-additive fuzzy measure 
can be applied to problems described by much larger 
number of features than in the case of a general fuzzy 
measure. 

In the next section, both algorithms HLMS and 
HLMS (2-add) are compared by being applied to the 
problem of automatic bearing diagnosis. 



212 L. Mikenina, H.-J. Zimmermann/Fuzzy Sets and Systems 107 (1999) 197-218 

5. Appfication of the fuzzy integral classifier to 
automatic bearing diagnosis 

The goal of this section is to design a pattem recog- 
nition system based on the fuzzy integral for ma- 
chine diagnosis, in particular for automatic diagnosis 
of bearings. The main objective of machine diagno- 
sis is a precocious recognition of mechanical defects 
in a machine, which results in a reduction of machine 
failures and high machine availability. Since a perma- 
nent machine monitoring by a trained operator is very 
expensive and in some cases not sufficient, automatic 
diagnostic systems are developed. 

It was shown in [8] that bearing conditions can be 
evaluated using the envelope frequency spectrum of 
the vibration signal generated by an operating bearing. 
In the envelope spectrum special defects of bearings 
can be easily recognized by using particular frequen- 
cies as features. In this application, only two types of 
bearings, intact and with a damaged outer ring, are 
considered. 

5.1. Training data used for classifier design 

For the purpose of classifier design, 30 intact bear- 
ings and 30 bearings with a damaged outer ring were 
observed and the corresponding vibration signals were 
registered by a sensor. All measurements were taken 
on the test device and preprocessed using a special 
hardware. With the data acquisition board, 8192 val- 
ues were selected from each time signal, transmitted 
by a special software into the computer and processed 
using Fourier transformation. The resulting data cover 
the interval from 0 to 4000Hz and correspond to 
a frequency resolution of 0.488 Hz. These frequency 
spectra can be used as observation vectors describing 
bearings. They contain all acoustic information about 
a possible damage of a bearing. 

However, for correct recognition of a damage it is 
not necessary to consider all frequencies of  the enve- 
lope spectrum as features. For the purpose of detailed 
analysis, the initial set of features was limited accord- 
ing to suggestions of an experienced expert to the set 
of the most promising features. It contains frequencies 
with large amplitudes, in particular characteristic fre- 
quency and its first and second harmonics. They can be 
calculated if the bearing geometry and the revolution 
speed are known, depending on a bearing defect [8]. 

Table 4 
Features used for classification of beatings 

Features Frequency interval 

1 118-126 
2 239-249 
3 359-371 
4 85-95 
5 140-150 
6 260-270 
7 390-400 

For roller bearings with outer ring damage considered 
here, the kinematic frequency with 1 RPM is equal to 
3.565 Hz. In the conducted experiments with a revolu- 
tion speed of 1000 RPM the characteristic frequencies 
correspond to 59.42, 118.84 and 178.26Hz, respec- 
tively. Because of  a high revolution speed, they show 
some variations and thus, certain intervals containing 
characteristic frequencies should be considered. Tak- 
ing into account a frequency resolution in measured 
data, three intervals were chosen: 118-126, 239-249 
and 359-371. Moreover, four other frequency inter- 
vals were suggested by an expert, which are all given 
in Table 4. 

These intervals are used as relevant features for 
the classification and their values are determined as 
a maximum amplitude over a corresponding interval. 
Hence, each training datum is described by a seven- 
dimensional feature vector containing maximum 
amplitudes of vibration signals in chosen frequency 
intervals. The goal is to select the best set of three 
features and to design a classifier for an automatic di- 
agnosis of  bearings, based on the given training data. 
The classification objects are bearing conditions and 
two classes, 'intact bearings' and 'damaged bearings', 
are considered. 

5.2. Feature selection for bearing diagnosis 

According to the feature selection algorithm de- 
scribed in Section 5, the classifier based on 7 features 
should be at first designed to be able to evaluate the 
performance of features and pairs of them. The design 
procedure proceeds in two steps. In the first step, class 
prototypes in the form of fuzzy sets representing typ- 
ical values of each feature for each class are learned 
from training data. They are calculated as possibilis- 
tic histograms of data [6]. Fuzzy sets for the first class 
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Fig. 6. Fuzzy sets representing class 1 (left) and class 2 (right), 

of intact bearings and for the second class of  dam- 
aged bearings are shown in Fig. 6. Since the values of 
features 4 -7  are very small compared to the ones of 
features 1-3, one cannot see the corresponding fuzzy 
sets on the figures. 

Considering the class prototypes, it can be noticed 
that fuzzy sets corresponding to the same features have 
different supports for two classes, i.e. typical values of  
the same features cover different intervals of  the do- 
main for two classes, which is a necessary requirement 
for a good classification. However, it is not clear from 
this representation, how good the single features are 
in distinguishing between classes. To get a better un- 
derstanding, another illustration of data can be used. 
Fig. 7 shows for each feature two fuzzy sets repre- 
senting two classes. It can be observed that features 
1-3 can recognize rather well two classes, while fea- 
tures 4-7  are very poor in distinguishing between 
classes. 

After the class prototypes have been learned, the 
next step of classifier design is the identification of 
fuzzy measures for each class. This can be done using 
either the HLMS algorithm for a general fuzzy mea- 
sure or the HLMS (2-add) algorithm for the 2-additive 
fuzzy measure. As was stated earlier, the 2-additive 
fuzzy measure requires only n(n + 1 )/2 coefficients to 
be defined in contrast to 2 n coefficients for a general 
fuzzy measure, thus it is better suited for a large num- 
ber of  features. If  the number of  features is small, it 
is better to use a general fuzzy measure, because of 
its richness and flexibility. In this application for the 
purpose of analysis, both algorithms are applied and 
their results are compared. 

The coefficients of  two fuzzy measures obtained 
with the help of the HLMS algorithm are shown in 
Fig. 8. The coefficients are numbered from 1 for pl 
to 128 for/21234567 and are given on the x-axis. The 
y-axis shows the values of the corresponding coeffi- 
cients. One can easily recognize equilibrium states of  
the measure and small deviations of the coefficients 
from these states. The algorithm preserves a homoge- 
neous structure of the fuzzy measure. 

The corresponding coefficients of the fuzzy mea- 
sures obtained with the HLMS (2-add) algorithm are 
illustrated in Fig. 9. The fuzzy measures are monotone, 
but there are no equilibrium states in their structure 
(except first two layers initialized as in HLMS). The 
range of variations of the coefficients is much larger 
than in the previous case, which can be explained by 
the fact that most coefficients are calculated from co- 
efficients of the first two layers, but not modified with 
respect to the initialized state. This does not mean, 
however, a decline of the classifier performance. The 
rate of  reclassification of the training data is 100% in 
both cases. 

Thus, it can be deduced that the 2-additive fuzzy 
measure is equally good for classification. Numerous 
tests have also shown that for the correct identifica- 
tion of the 2-additive fuzzy measure less iterations are 
needed in general, since only first two layers of coef- 
ficients must be learned. 

After the classifier is designed and the fuzzy 
measures for both classes are identified, the feature 
selection algorithm described in Section 5 can be ap- 
plied. For the purpose of comparison, feature selection 
is performed based on general and 2-additive fuzzy 
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Fig. 8. Coefficients of  the fuzzy measure for class 1 (left) and class 2 (right) identified with HLMS. 

measures. Suppose that the selection procedure con- 
sisting of two iterations is desirable: 5 features should 
be selected in the first iteration and 3 features in the 
second iteration. Consider the importance and interac- 
tion indexes obtained for the 2-additive fuzzy measure 
(the interaction indexes are already sorted) (Table 5). 

Suppose that positive and negative thresholds for 
interaction indexes are chosen as marked in Table 6. 
It can be observed that there is no feature that can 
be eliminated as being redundant (all interaction in- 
dexes containing a feature must be negative). Based 
on the selection procedure, the 5 following features 
can be selected before all thresholds are exceeded: 

Table 5 
Importance indexes for a set of  7 features obtained with HLMS 
(2-add) 

Class 1 Class 2 

1 0.9023 1.9379 
2 1.4516 1.7105 
3 0.8553 0.5838 
4 0.6141 0.7285 
5 1,414 0.6859 
6 0.773 0.7136 
7 0.9897 0.6398 
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Fig. 9. Coefficients of the fuzzy measure for class 1 (left) and class 2 (right) identified with HLMS (2-add). 

{ 1,2, 3, 4, 5}. The feature selection algorithm is re- 
peated from the beginning using the new set of  fea- 
tures to design a classifier. 

In the second iteration of  the selection procedure, Class 1 Class 2 
three features are chosen already after three steps and 
the best  subset o f  features contains { 1, 2, 3 }. 2, 3 0.0242 4, 5 

I f  a general fuzzy measure is used for the classifier 2, 4 0.0174 2, 3 
3,4 0.0134 1,3 

design, then the result o f  the first iteration is different 6, 7 0.0114 1,7 
and the best  subset o f  features is given by { 1,2, 3, 4, 6}. 2, 7 0.0108 4, 6 
However,  in the second iteration the same subset o f  3,6 0.0075 6,7 
features { 1,2, 3} as in the previous case is chosen. The 2,6 0.0055 4,7 

1,4 0.0051 1, 6 
set o f  selected features corresponds in fact to cinematic 3, 7 0.0042 1,4 
frequency and its first and second harmonics. Thus, 1,3 0.0040 1,5 
these features are indeed sufficient for detection o f  an 1,6 0.0020 3, 4 
outer ring damage in bearings as it was stated in [8]. 5, 7 0.0004 3, 5 

The achieved results corroborate the fact that the 4,6 -0.0019 3,7 
1, 7 - 0.0071 2, 5 

2-additive fuzzy measure shows the equivalent per- 3,5 -0.0076 1,2 
formance compared to a general fuzzy measure and 1, 2 -0.0183 5, 7 
can be used for modeling the importance o f  features 4, 7 - 0.0231 2, 7 
and the pairwise interaction between features without 2, 5 - 0.0301 5, 6 
loss o f  information. It is suited for classification in the 5, 6 - 0.0311 2, 4 

1,5 -0.0328 3,6 case o f  a high number o f  features and provides con- 
4, 5 - 0.0409 2, 6 

siderable complexi ty reduction against a general fuzzy 
measure in the classifier design. Moreover,  the appli- 
cation results validate the effectiveness o f  the feature 
selection algorithm proposed in this paper. 

5.3. Design of the fuzzy integral classifier for 
bearing diagnosis 

In the previous section, it was shown that the set of  
3 features representing the characteristic frequencies 
in the envelope spectrum of  the vibration signal is the 

Table 6 
Interaction indexes for a set of 7 features obtained with HLMS 
(2-add) with chosen positive and negative thresholds 

0.0283 
0.0186 
0.0100 
0.0029 
0.0024 
0.0012 

- 0.0031 
- 0.0040 
- 0.0057 
- 0.0076 
- 0.0113 
- 0.0126 
- 0.0133 
- 0.0139 
- 0.0156 
- 0.0160 
- 0.0181 
- 0 .0186 

- 0.0208 
- 0.0242 
- 0.0265 

most appropriate set for bearing diagnosis. To demon- 
strate this, consider a set of  training data in a three- 
dimensional feature space (Fig. 10). One can easily 
recognize two distinct classes. 

The classifier, designed using these training data, is 
represented by class prototypes shown in Fig. 6 and 
two fuzzy measures consisting o f  eight coefficients 
for two classes. For the identification of  the fuzzy 
measure, the HLMS algorithm was used, since the 
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Fig. 10. A set of 60 training data in a three-dimensional feature 
space. 

number of features is small and the 2-additive fuzzy 
measure has no advantage in this case. 

The classifier was tested with the same set of train- 
ing data (resubstitution test). The rate of reclassifica- 
tion is 96.7% (two objects are classified wrong). 

To estimate the classification rate of the fuzzy in- 
tegral classifier, the 10-fold cross validation test was 
performed. This test consists of  the following steps: 
the set of training data is split into 10 pieces and the 
classifier is trained on nine pieces and then tested on 
the last. This procedure is repeated for all 10 permu- 
tations. The fuzzy integral classifier applied for the 
classification of bearings provides an estimated classi- 
fication rate of 99.2% with a standard deviation of 0.8. 

The results presented show that the fuzzy integral 
classifier can be successfully applied to automatic di- 
agnosis of bearings. As to its general applicability the 
following considerations can be useful. 

Each classification method can be characterized by 
its suitability to certain data structures and there is 
probably no classifier that is able to recognize all pos- 
sible data structures. The purpose of this paragraph is 
to determine in general abilities of the fuzzy integral 
classifier based on the analysis of its intemal structure 
and to detect its possible application areas. 

The performance of different classification methods 
is influenced to a high degree by the criterion under- 
lying the classification process, which can be based 
either on a similarity or a distance measure. In gen- 
eral, these two measures can be viewed to be in- 
verse to each other, but algorithmically they lead to 
completely different techniques. The fuzzy integral 
classifier uses as a basic criterion for a design of 
classes a similarity between objects and class proto- 

types. In contrast to many clustering methods, a class 
prototype is defined not by a point representing the 
most typical object of a class, but by a collection of 
fuzzy sets representing typical values of each fea- 
ture for this class. The similarity (or compatibility) 
of an object with a class prototype is determined 
by aggregating degrees of compatibility of each 
feature value of an object with typical values of 
corresponding features for a given class under con- 
sideration of importance of single features and their 
groups. This similarity value can be interpreted as 
a degree of membership of an object to a class. It 
is calculated for each class independent from other 
class prototypes and, thus, can represent typicality of 
an object to a class. This is an important property of 
the fuzzy integral classifier inherent also in the pos- 
sibilistic c-means algorithm [21], because noise data 
are often present among objects in real applications 
and they can distort the classification process. 

The fuzzy integral classifier can distinguish differ- 
ent shape, size and density of classes provided that 
at least some of the features describing objects have 
good discriminating ability, i.e. domains occupied by 
features for different classes are separated. The infor- 
mation about the form of classes is reflected in the 
form of fuzzy sets representing classes, which are de- 
termined in this paper as possibilistic histograms. 

Based on the knowledge of the intemal structure of 
the fuzzy integral classifier, its behavior in different 
situations can be predicted and limits of its abilities 
can be evaluated. 

6. Conclusions 

This paper is concerned with feature selection and 
classification based on the fuzzy integral as the most 
general framework among pattern matching tech- 
niques. Both procedures require the identification of 
the fuzzy measure, which presents the main difficulties 
for applications due to exponential complexity of the 
fuzzy measure. Therefore, a new heuristic algorithm 
for the identification of the 2-additive fuzzy measure 
was proposed. This type of the fuzzy measure repre- 
sents an intermediate solution in the sense of richness 
and complexity and is sufficient for the semantic in- 
terpretation of the fuzzy measure. The computational 
complexity of the algorithm is quadratic with respect 
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to the number of features. Thus, using the 2-additive 
fuzzy measure it is possible to handle classification 
problems described by a large number of features. 

Another research point of the paper was focused on 
the development of the feature selection procedure for 
the fuzzy integral classifier. The heuristic algorithm 
proposed is based on two feature-evaluation criteria, 
defined using the semantic interpretation of the fuzzy 
measure. The feature-selection algorithm depends on 
the fuzzy integral classifier, thus its complexity in the 
case of the 2-additive fuzzy measure is cubic with 
respect to a difference between the initial number and 
the desired number of features. 

To investigate properties of the fuzzy integral 
classifier, it was applied to automatic bearing diag- 
nosis. For the purpose of analysis, feature selection 
was based on a general fuzzy measure and on the 
2-additive fuzzy measure. In both cases the same set 
of three features was selected as the best. These fea- 
tures correspond to characteristic frequencies in the 
envelope spectrum of the vibration signal. The classi- 
fier designed using these three features provides good 
discrimination ability and shows its applicability for 
automatic bearing diagnosis. 

Based on the analysis of the fuzzy integral clas- 
sifier, it was shown that the classifier can recognize 
the typicality of an object for a class. This ability 
of the classifier is very important for dealing with 
'unclear' data and noise. Moreover, the classifier can 
recognize different shape, size and density of classes 
provided that features have good discriminating abil- 
ity. If different classes have similar prototypes, then 
the classifier cannot provide desired results. This 
property of the classifier presents certain limits of its 
abilities. 

Further research with respect to the fuzzy integral 
classifier should aim at the development of a method 
for the classification of fuzzy objects or, in general, 
objects described by features in the form of arbitrary 
functions. This problem can arise in dynamical pat- 
tem recognition or in the classification of systems de- 
scribed by some functional relationships. 
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