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Abstract

Skewed binary classi�cation problems arise in estimating the “success” probabilities of new obser-
vations due to sparse “successes” and numerous “failures” in a given training data set. Previously Lee
(1999) showed that adding small normal noise to replicate the “successes” in the training set could
slightly improve estimates in several common classi�cation models, namely, nearest neighbor, neural
networks, classi�cation trees, and quadratic discriminant. Now, we form much improved estimates for
these same models: generating multiple versions of noise-added training sets from a given data set, we
obtain an average of multiple model estimates. This model average is signi�cantly improved both in
terms of ROC area and Kullback–Leibler distance. In e�ect, the technique serves as an e�ective and
model-free regularization for the classi�cation models considered. c© 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction and summary

Skewed binary classi�cation concerns the assignment or prediction of a new un-
known object to one of two populations, 0 or 1, on the basis of a q-dimensional
explanatory vector x = (x1; : : : ; xq) measured on the object, where one of the pop-
ulations, population 0, is the prevalent class. Let the variable y represent the class
label with y = 0 if the object comes from population 0 and y = 1 if it comes
from population 1. Assignment rules are developed from modeling a training data
set T = {(xi ; yi); i= 1; : : : ; n0 + n1}= {(xi ; 0); i= 1; : : : ; n0} ∪ {(xi ; 1); i= 1; : : : ; n1},
where n0/n1, that is, the number of class 0 cases is much larger than the number
of class 1 cases.
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Over�tting and generalization problems easily arise in estimating the probability
f(xnew)=P(y=1|xnew) of future observation xnew because of the sparseness of (x; 1)
in the training data. A natural way to overcome the problem of sparseness of class
1 cases is to increase their occurrence by replicating (x; 1) in the training data set
many times, say m times, where m is a constant number. The replicates are chosen
to be of the form (x+ �j; 1); j=1; : : : ; m, where �j is a small normal noise. In short,
we will call these replicates noisy replicates. As the variance of the noise tends to
zero, the noisy replicates (x + �j; 1); j = 1; : : : ; m, would become exact copies of
(x; 1). The numerous cases (x; 0) remain unchanged.
Let T ∗ denote the resulting noisy training data set when the original rare cases

in T are replaced by noisy replicates. In other words, T ∗ = {(xi ; 0); i= 1; : : : ; n0} ∪
{(xi + �ij; 1); i = 1; : : : ; n1; j = 1; : : : ; m}. Note that the sample size of the noisy
training data set has increased from n0 + n1 to n0 + m ∗ n1, and the skew between
class 0 and class 1 cases has decreased. Let f̂T (x) be an estimate of f(x), via a
certain classi�cation model, based on a training data set T . Let f̂T∗(x) be an estimate
of f(x), via the same classi�cation model, based on a noisy training data set T ∗

generated from T . It has been shown (Lee, 1999) that f̂T∗(x) can be slightly better
than f̂T (x) in four commonly used classi�cation models: nearest neighbor, neural
networks, classi�cation trees, and quadratic discriminant. In the present paper we
will extend the methodology by averaging multiple versions of f̂T∗(x). For a given
training data set T , we will independently generate several noisy training data sets
T ∗
k ; k=1; 2; : : : ; and will average the f̂T∗

k
(x); k=1; 2; : : : ; to obtain a �nal estimate of

f(x), which is denoted by f̂ �T∗(x). This estimate, f̂ �T∗(x), is found to be much better
than both f̂T (x) and f̂T∗(x) in terms of ROC area and Kullback–Leibler distance
(see below).
The roles of the noisy training data set T ∗ are two fold. First, it increases the

sample size of the rare class and thus decreases the skew between the two classes.
Second, it pushes di�erent estimates f̂T∗(x) of f(x) to di�erent local optima depend-
ing on T ∗, and by that produces a set of biased and relatively independent estimates
f̂T∗

1
(x); f̂T∗

2
(x); : : : . By averaging over these relatively independent estimators, the

variance of f̂ �T∗(x) will be decreased. We found that the trade o� between the bias
and the variance results in better predictions for the classi�cation models considered
in this paper. In other words, we discovered that the addition of noisy replicates
serves as an e�ective regularization technique.
Various regularization methods in classi�cation has currently appeared in the lit-

erature. Breiman (1996,1998) used a method called “bagging=arcing” to bootstrap
B times a given training data set of n cases with equal=unequal probabilities on
each case to generate B classi�ers, and combined them by simple voting. Freund
and Schapire (1996) proposed a boosting algorithm to generate and combine clas-
si�ers so as to drive the training data set classi�cation error to zero as quickly as
possible. Raviv and Intrator (1996) showed that adding some noise during neural net-
works training results in a better classi�cation for new objects for the deterministic
“Two-Spiral” pattern recognition problem. Although it has been mentioned by Ripley
(1996), the idea of regularization by adding noise is still quite new in the Statistics
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community and little work has been done in this direction. The initial success of
such regularization by adding noise (Lee, 1999) encouraged us to further investi-
gate the technique in the context of skewed binary classi�cation. To our excitement,
we found that adding suitable amount of noise and averaging multiple f̂T∗(x)s will
signi�cantly improve the classi�cation rate for the classi�cation models considered.
This paper is organized as follows. We will briey review several common clas-

si�cation methods in Section 2 and introduce two measures of predictive perfor-
mance. In Section 3 the idea of noisy replication during training is described and
implemented in an algorithm. This algorithm also allowed us to choose the optimal
amount of noise to be added. Computer simulation experiments were conducted on
two simulated data sets and two real-data sets. The two simulated data sets included
a standard stochastic task of classifying two bivariate normals, and a �nancial prob-
lem generated from a set of deterministic rules. The two real-data sets are medical
diagnosis problems and are available from the Information and Computer Science
repository of the University of California at Irvine. Despite the di�erent nature of the
data sets and the di�erent structure of the classi�cation models, signi�cant positive
results are obtained for all the data sets and classi�cation models considered. The
results are summarized in Section 4. Discussion and concluding remark for further
research are considered in Sections 5 and 6.

2. Classi�cation models

Given a training data set T={(xi ; yi); i=1; : : : ; n=n0+n1}={(xi ; 0); i=1; : : : ; n0}∪
{(xi ; 1); i=1; : : : ; n1}, there are many ways to develop the assignment rules for future
unknown object with explanatory vector x. In the case of binary classi�cation, they
could be viewed as methods to estimate the conditional probability f(x) = P(y =
1|x)=1−P(y=0|x), where x is any point in the q-dimensional space of all possible
explanatory vectors. We give a brief outline for each model: nearest-neighbor method,
neural networks, classi�cation trees, quadratic discriminant. Detailed descriptions of
them can be found in many books, for example, Ripley (1996).

2.1. Models

2.1.1. k nearest neighbor
The standard k nearest-neighbor (k-nn) method estimates f(x) = P(y = 1|x) by

f̂(x) =
1
k

n∑
i=1

1(||x− xi|| ≤ Ok(x))1(yi = 1);

where the distance ||x − xi|| is equal to
√
(x− xi)′(x− xi); Ok(x) is the kth-order

statistic of {||x − xi||}n1, and 1(·) is an indicator function such that 1(!) = 1 if !
is true and 0 otherwise. The method estimates f(x) as the proportion of class 1
(i.e., y = 1) training observations among the k closest neighbors of x. We chose
the smallest possible value of k, namely, k = 1, for the simulation experiments in
Section 3.
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2.1.2. Neural networks
There are many kinds of neural networks (see Hertz et al., 1991 for an introduc-

tion) and in this paper we restrict ourselves to only supervised feedforward single
hidden layer neural networks with logistic output activation function. The estimate
of f(x) is

f̂(x) = �


ŵ0 +∑

h

ŵh�


ŵ0h + q∑

j=1

ŵjhxj




 ;

where ŵ0; ŵh; ŵ0h; ŵjh are the connection weights and �(�) = 1=(1 + exp(−�)). This
type of networks has q units at the input layer, h hidden units at the middle hid-
den layer, and 1 output unit at the output layer. Such networks are very general
and we denote them by the notation q − h − 1 NN. It has been shown by many
authors that, for su�ciently large h, any continuous real-valued function f(x) in the
q-dimensional space can be approximated by these q− h− 1 neural networks to any
desirable degree of accuracy. Many numerical software packages exist to �nd the
connection weights for a given training data set, we chose to use the Splus library
nnet provided by Brian Ripley and is available at Statlib (http:==lib.stat.cmu.edu=).
The maximum number of training iteration to �nd the connection weights in nnet
is set to be 100 epochs by default. We increased it to 400 epochs at the expense
of more computing time to ensure numerical convergence. Since neural networks
are very exible nonparametric models, we will use the smallest possible non-trivial
neural net, q − 2 − 1 NN, to minimize over�tting. The q − 1 − 1 neural net will
collapse to logistic regression.

2.1.3. Classi�cation trees
A tree partitions the q-dimensional space of explanatory variables into locally

constant regions, often hypercubes parallel to the variables axes. There are many
di�erent schemes for estimating trees. The basic idea is to recursively choose a
variable or combination of variables and to split the variable’s space on a carefully
chosen value. These schemes di�er in allowing multiway splits or restricting binary
splits and in deciding how the best split is computed. Also, they di�er in when to
stop growing the tree and how to prune it back for generalization. The conditional
probability f(x) is estimated to be the proportion of y=1 observations among those
in the terminal node containing the prediction point x. In this paper, we will use the
Splus tree classi�er which is based on the well-known Breiman’s CART (1984). For
a given training data set, we chose to �t two kinds of trees: a full-grown tree with
no pruning, and a pruned tree obtained from the full-grown tree by snipping o� the
least important splits according to a cost-complexity factor (Venables and Ripley,
1994).

2.1.4. Quadratic discriminant
Quadratic discriminant (QD) method estimates f(x) via the Bayes formula

f(x) = P(y = 1|x) = P(x|y = 1)P(y = 1)
P(x|y = 0)P(y = 0) + P(x|y = 1)P(y = 1) ;
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where P(x|y= i) is the probability density function of x for the population of class i,
and P(y= i) is the prior unconditional probability of class i; i=0; 1. The probability
density function P(x|y = i) for class i; i = 0 and 1, is assumed to be a q-variate
normal with mean �i and variance covariance matrix �i. That is to say,

P(x|y = i) = 1
(2�)q=2|�i|1=2 exp

{
−1
2
(x− �i)′�−1

i (x− �i)
}
; i = 0; 1:

The parameters �i and �i are estimated from the training data T and the estimated
normal densities P(x|y= i) are substituted into the Bayes formula to estimate f(x).
The prior probability function is the porportion of y=1 in the original training data
set T .

2.2. Prediction assessment

We would evaluate the classi�cation performance using two di�erent kinds of
measures: discrimination and calibration. Many other measures, including misclassi-
�cation rate, Brier score, sensitivity, speci�city, and Gini (concordance) index, are
closely related to these two types of fundamental measures (Hand, 1997, Chapter 6).
The measure of discrimination (some call it separability, see Hand, 1997) refers to
the capability of the model to distinguish correctly the two classes. Perfect discrim-
ination means that the two classes could be separated into two non-overlapping sets
of model predicted probabilities. The measure of calibration (some call it precision,
see Hand, 1997) describes the closeness of the model’s predicted probabilities to
their target classes 0 and 1.

2.2.1. ROC area
A common measure of discrimination is the area under a receiver operating char-

acteristic (ROC) curve (Hanley and McNeil, 1982). Let us call class 0 cases as
negatives and class 1 cases as positives. A new case is classi�ed as positive if a
classi�cation model outputs a f̂(x) value larger than or equal to a pre-chosen thresh-
old value; otherwise, the case is classi�ed as negative. An ROC curve is a plot of
the true positive rate versus the false positive rate of a classi�cation rule as the
threshold value varies from 0 to 1. The true positive rate is de�ned as the number
of positives correctly classi�ed, divided by the total number of positives; the false
positive rate is de�ned as the number of negatives incorrectly classi�ed, divided by
the total number of negatives. An ideal model would have an ROC area equal to
1.0 (completely separable) since the true positive rate is 1 and the false positive
rate is 0 regardless of the threshold value. By comparing ROC areas we can de�ne
a dominance relationship between classi�ers. This dominance relationship is clear
when the ROC curve from one model is always above the other and the two curves
do not intersect. When they do intersect, one model is superior in some regions and
another elsewhere. The total area under the curve becomes an average collective
overall comparison between models. For example, in Fig. 1, it is said that classi�er
1 is a better model than classi�er 2 because classi�er 1 yields a larger area under
its ROC curve.
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Fig. 1. Comparison between two classi�ers using the areas under their ROC curves.

2.2.2. Kullback–Leibler distance
A natural measure of distance within the unit interval is the Kullback–Leibler

(KL) distance. This distance measures the closeness between the observed yi given
xi and the predicted f̂(xi); ∀i, via

∑
i

(
yi log

yi
f̂(xi)

+ (1− yi) log 1− yi
1− f̂(xi)

)
:

The smallest distance is obviously 0 which happens when f̂(xi) = yi; ∀i.

2.2.3. Relationship between ROC area and Kullback–Leibler distance
Discrimination and calibration are two related yet di�erent measures. Although a

model with good discrimination tends to have good calibration and vice versa, a
model may appear to be strong in one measure but weak in the other. Consider we
have 200 negatives and 200 positives in a data set. Suppose the predicted probabilities
from a model (say model A) are 0.20 for 100 negatives and 0.50 for the other 100
negatives, and 0.50 for 100 positives and 0.80 for the other 100 positives. The
resulting ROC area is 0.875 with a Kullback–Leibler distance of 183. From another
model (model B), the predicted probabilities are 0.00 for 100 negatives and 0.51
for the other 100 negatives, and 0.49 for 100 positives and 1.00 for the other 100
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positives. Model B results in an inferior ROC area of 0.75 (less separability than
model A) but a superior Kullback–Leibler distance of 143 (closer to the targets).
Harrell et al. (1996) recommended that good discrimination be preferred to good

calibration since a model with good separability can always be recalibrated but the
rank orderings of probabilities cannot be changed to improve separation. Although
we computed both the ROC area and the Kullback–Leibler distance to assess model
performance, we adopted the recommendation of Harrell, Lee, and Mark and used
ROC area as the guiding measure when it came to the selection of the optimal
amount of noise variance.

3. Simulations

We applied �ve classi�cation models, speci�cally, 1-nn method, q− 2− 1 neural
net, full-grown tree, pruned tree, and quadratic discriminant to the following four
data sets: two simulated data sets and two real-data sets. Five hundred pairs of train-
ing and validation data sets (T; V ) were either independently simulated from the
known distributions, or randomly drawn from the real-data sets. The �rst simulated
data involves a standard task of classifying two bivariate normals. The second sim-
ulated data is much di�erent from the �rst. The training data is generated from a
deterministic rule which is not known to the observer. The task is to learn the hid-
den rule from a �nite training data set and to classify future unseen cases. It seems
counterintuitive to introduce noisy replicates to a training data set generated from
a deterministic system with no noise, but we showed that, even in this case, train-
ing with noisy replicates does result in an improved prediction. The two real-data
sets concern medical diagnosis problems and are available from the Information and
Computer Science repository of the University of California at Irvine. To demonstrate
the e�ectiveness of our technique to skewed classi�cations, we made the problem
harder by increasing the skew between the two classes.

3.1. Data sets

The following is a brief description of the four chosen data sets:

3.1.1. Bivariate normals
The training data set T consists of the following:

T =
{
(xi ; 0); xi ∼ N

((
0
0

)
;
(
1 0
0 1

))
; i = 1; : : : ; 200

}
∪

{
(xi ; 1); xi ∼ N

((
1
1

)
;
(

1 −0:5
−0:5 1

))
; i = 1; : : : ; 20

}

Class 0 is the numerous class which has 200 observations and class 1 is the rare class
which has 20 observations. The validation data set V is independently simulated from
the same underlying distributions with the same number of class 0 and 1 observations.
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Table 1
Financial advising rule

(1) If (saving-adequate and income-adequate) then invest-stocks
(2) If dependent-saving-adequate then saving-adequate
(3) If assets-high then saving-adequate
(4) If dependent-income-adequate then income-adequate
(5) If debt-low then income-adequate
(6) If (saving ≥ dependents×5000) then dependent-saving-adequate
(7) If (income ≥ 2500 + 4000×dependents) then dependent-income-adequate
(8) If (assets ≥ income×10) then assets-high
(9) If (annual-debt ¡ income×0.3) then debt-low

3.1.2. Finance
The data set is generated from a deterministic rule adapted from (Luger and Stub-

ble�eld, 1989) and is shown in Table 1. It is a simpli�ed system trying to illustrate
issues involved in real-life �nancial advising. The system consists of �ve input vari-
ables, shown in bold in Table 1, and a binary response variable invest-stocks where 0
represents no investments in stocks and 1 represents investments in stocks. These �ve
input variables are generated randomly according to the following — savings: uni-
form random number ranging from $5000 to $50; 000, dependents: uniform random
integer ranging from 1 to 6, inclusively, income: uniform random number ranging
from $10; 000 to $50; 000, assets: income × uniform random number ranging from
0 to 20, annual-debt: income × uniform random number ranging from 0 to 0.6. The
training data set consisting of 200 class 0 cases and 20 class 1 cases is randomly
generated from this rule. The validation data set consists of the same number of
class 0 and 1 observations.

3.1.3. Diabetes
This is a data set gathered among the Pima Indians by the National Institute of

Diabetes and Digestive and Kidney Diseases. The data set consists of 768 cases and
8 input variables which are medical information and physical measurements on each
patient. The response variable y is one of two classes: tested positive for diabetes
(268 cases) or negative (500 cases). Mutually disjoint training and validation data
sets of the same size were randomly drawn from these 768 cases. To make the
classi�cation more skewed, we randomly selected 250 negatives and 15 positives in
the training data set. The validation data set consists of the same number of positive
and negative cases as the training data.

3.1.4. Hypothyroid
This is a data set with many qualitative and quantitative input variables and a lot

of missing values. Since it does not make sense to add noise to qualitative variables,
we just consider the �ve quantitative variables denoted by TSH, T3, TT4, T4U, and
FTI from the UCI repository. We cleaned up the data set by removing all missing
values. After such data preprocessing, there are 2000 cases left which consist of
1878 class 0 (negative) cases and 122 class 1 (positive) cases. Mutually disjoint
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training and validation data sets of the same size were randomly drawn from these
2000 cases. To make the classi�cation even more skewed, we randomly selected 900
negatives and 30 positives in the training data set. The validation data set consists
of the same number of positive and negative cases as the training data.

3.2. Simulation algorithm

The following algorithm was used to conduct the simulation experiments. There
are four pre-chosen simulation parameters in the algorithm: noisy.repl, noisy.train,
sigma.step, and num.sim. They represent, in order, the number of noisy replicates
generated for a given rare case, the number of noisy training data sets generated for
a given training data set, the increment of the standard deviation of the noise �noise,
and the number of pairs of training data set and validation data set generated in the
simulation.
Step A: Initialize �noise.
Step B: Initialize t, the index denotes the tth training data set T t and the tth

validation data set V t .
Step 1: T t and V t are independently drawn without replacement from a given

real-data set, or are randomly simulated from a known underlying distribution.
Step 2: Models are �tted to noisy:train versions of noisy training data sets T t∗k ; k=

1; : : : ; noisy:train.
(a) Initialize the �rst version of noisy training data set. Let k = 1.
(b) Noisy replicates of the rare cases in T t = {(xi ; 0); i = 1; : : : ; n0} ∪ {(xi ; 1); i =

1; : : : ; n1} are added, the resulting noisy training data is denoted by T t∗k ={(xi ; 0);
i = 1; : : : ; n0} ∪ {(xi + �ijk ; 1); i = 1; : : : ; n1; j = 1; : : : ; noisy:repl}, where
�ijk ∼ Nq(0; �2noise�q), and �q is the q×q diagonal matrix diag{s21; : : : ; s2q}, with s2l
the sample variance of the lth explanatory variable xl over the training data set.

(c) Classi�cation models are �tted to T t and T t∗k , and the estimated models are
denoted by ModelT t and Model:noisyTt∗k , respectively.

(d) Let Y be the vector of all the observed class labels in the validation data set V t ,
i.e., Y={y: (x; y) ∈ V t}. The vector Y is estimated via the two models ModelT t
and Model:noisyTt∗k . Let Ŷ denote the corresponding vector of conditional class

label probabilities estimated via ModelT t , i.e., Ŷ ={f̂T t (x): (x; y) ∈ V t}. Let Ŷ
∗
k

denote the corresponding vector of conditional class label probabilities estimated
via Model:noisyTt∗k , i.e., Ŷ

∗
k = { f̂T t∗k (x): (x; y) ∈ V

t}. Note that we suppressed
the index t in Y; Ŷ ; and Ŷ

∗
k for notational simplicity.

(e) If k ¡noisy:train, then k = k + 1, and go back to (a). Otherwise, continue to
Step 3.

Step 3: Average the noisy:train vectors Ŷ
∗
k ; k =1; : : : ; noisy:train, to obtain a vector

of conditional class label probabilities Ŷ
∗
estimated via the noisy:train noisy training

data sets. That is,

Ŷ
∗
=
∑noisy:train

k=1 Ŷ
∗
k

noisy:train
:



174 S.S. Lee / Computational Statistics & Data Analysis 34 (2000) 165–191

Table 2
Summary of the pilot study on the mean ROC area

Model
Original

noisy.repl noisy.train

ROC area 2 4 6 8 10

1-nn 0.585 1 0.607 0.651 0.684 0.701 0.709
2 0.692 0.728 0.744 0.751 0.769
3 0.710 0.751 0.766 0.774 0.779

q− 2− 1 NN 0.805 1 0.825 0.842 0.854 0.857 0.858
2 0.855 0.863 0.862 0.863 0.864
3 0.859 0.860 0.863 0.862 0.863

Full-grown tree 0.695 1 0.738 0.752 0.787 0.810 0.816
2 0.759 0.796 0.807 0.818 0.823
3 0.754 0.803 0.819 0.822 0.830

Pruned tree 0.709 1 0.758 0.786 0.816 0.825 0.825
2 0.775 0.818 0.824 0.835 0.841
3 0.779 0.819 0.832 0.839 0.839

QD 0.867 1 0.861 0.862 0.863 0.864 0.863
2 0.864 0.864 0.863 0.863 0.864
3 0.862 0.864 0.864 0.864 0.864

The quality of the two sets of predictions Ŷ and Ŷ
∗
is summarized by the ROC areas

ROCt and ROCt∗, and the Kullback–Leibler distances KLt and KLt∗, respectively.
Step C: Let num.sim represent the number of times we repeat the experiment. If

t ¡num:sim, then t = t + 1, and go to Step 1. If t = num:sim and the average of
{ROCt∗ − ROCt; t = 1; : : : ; num:sim} remains positive (which means that the noisy
replicates are still bene�cial in the average), then increase �noise to �noise+sigma:step,
set t = 1, and repeat Step B. Otherwise, stop.

We ran a pilot study on the Bivariate Normals data set to test out the di�erent
behavior of the simulation parameters noisy.repl, noisy.train, sigma.step, and num.sim.
We tried all combinations of noisy:repl = 1; 2; 3 and noisy:train= 2; 4; 6; 8; 10, while
keeping sigma:step = 0:5 and num:sim = 20. Tables 2 and 3 summarize the results
of the pilot study for the �ve classi�cation models: 1-nn, q − 2 − 1 neural net,
full-grown tree, pruned tree, and quadratic discriminant. The following facts were
observed. The smallest non-trivial noisy.repl, which is two, would be enough to
show improvement. We want to average at least several (the more the better) esti-
mates from di�erent noisy training data sets generated for a given training data. The
increment sigma:step=0:5 is su�cient to produce some positive results. The number
of pairs of training data set and validation data set generated is not a problem as long
as it is reasonably large, the larger the better. As a result of balancing computing time
and simulation details, we chose noisy:repl = 2, noisy:train = 10; sigma:step = 0:5,
and num:sim= 500 for all data sets and models (Tables 4 and 5). All classi�cation
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Table 3
Summary of the pilot study on the mean KL distance

Model
Original

noisy.repl noisy.train

KL distance 2 4 6 8 10

1-nn 6608 1 3988 2787 2193 1852 1658
2 4196 2538 1968 1592 1227
3 5997 3412 2670 2214 1975

q− 2− 1 NN 678 1 66 53 52 52 52
2 150 65 61 60 60
3 78 77 75 75 75

Full-grown tree 2149 1 1363 953 464 259 214
2 1162 456 275 161 127
3 1139 590 429 327 258

Pruned tree 462 1 155 60 57 57 56
2 130 82 59 59 59
3 92 67 65 66 65

QD 52 1 52 52 52 52 52
2 57 58 58 58 58
3 66 66 66 66 66

models are either standard Splus functions or are available in the extended Splus
library in Statlib. The simulations were performed on a HP-UNIX platform using
Splus version 3.4.

4. Results

For t=1; : : : ; 500, de�ne �ROCt=ROCt∗−ROCt , where ROCt and ROCt∗ denote
the respective ROC areas for the tth original and noisy model predictions. When
�ROCt is positive, the noisy model is better because its predictions Ŷ

∗
are more

“separable” than the original model predictions Ŷ . Based on {�ROCt; t=1; : : : ; 500},
we computed a 95% con�dence interval estimate for the unknown population means
��ROC , where ��ROC is the true mean change in the ROC area when noisy replicates
are introduced during training. To be precise, the mean change in ROC area ��ROC
should be written as ��ROC;�noise since the change in ROC area is a function of �noise.
We started with the smallest noise standard deviation at 0.001 instead of exactly at
0 to allow for non-identical noisy replicates.
If there is no signi�cant di�erence, at 5% type I error, in adding noisy replicates

during training, then the 95% con�dence interval will contain 0. If the addition of
noisy replicates during training improves the prediction, then the 95% con�dence
interval should not contain 0 and the entire interval should be positive (i.e., above
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Table 4
Summary of the 500 ROC areas for the original and optimal noisy models for the four data sets

Data Model Opt. �noise Mean ROC areaa % increase
Orig vs. Noisy

Normals 1-nn 0.5 0:603¡ 0:771 27.9%
q− 2− 1 NN 0.5 0:812¡ 0:869 6.9%
Full-grown tree 0.5 0:709¡ 0:838 18.2%
Pruned tree 0.5 0:735¡ 0:849 15.4%
QD 0.5 0:869¡ 0:873 0.6%

Finance 1-nn 1.0 0:632¡ 0:788 24.7%
q− 2− 1 NN 0.5 0:756¡ 0:849 12.3%
Full-grown tree 0.5 0:704¡ 0:840 19.4%
Pruned tree 0.5 0:671¡ 0:815 21.4%
QD 1.0 0:733¡ 0:804 9.8%

Diabetes 1-nn 1.5 0:544¡ 0:609 11.9%
q− 2− 1 NN 0.5 0:676¡ 0:779 15.1%
Full-grown tree 1.0 0:621¡ 0:735 18.3%
Pruned tree 1.0 0:672¡ 0:755 12.4%
QD 1.0 0:629¡ 0:687 9.2%

Hypothyroid 1-nn 1.0 0:712¡ 0:861 20.9%
q− 2− 1 NN 0.5 0:867¡ 0:958 10.5%
Full-grown tree 1.0 0:873¡ 0:932 6.7%
Pruned tree 1.5 0:903¡ 0:942 4.4%
QD 0.5 0:898¡ 0:903 0.5%

aa¡b indicates that the mean ROC area a is signi�cantly smaller than the mean ROC area b
with p-value less than 0.01.

the x-axis), and vice versa. The con�dence intervals computed for all the �ve levels
of �noise = 0:001; 0:5; 1:0; 1:5; 2:0 were plotted in Figs. 2–5.
Each �gure consists of �ve plots which correspond to the �ve classi�cation models,

1-nn, q− 2− 1 neural net, full-grown tree, pruned tree, and quadratic discriminant,
�tted to each data set. Each plot consists of two lines connecting the �ve con�dence
intervals obtained according to the �ve levels of �noise. The solid line connects the
�ve con�dence intervals obtained with averaging when noisy:train = 10, and the
dashed line connects the �ve con�dence intervals obtained with no averaging, i.e.,
when noisy:train=1. The main result obtained by averaging multiple model estimates
is represented by the solid line; the dashed line is drawn as a baseline reference to
illustrate the substantial gain achieved by averaging. The solid line is above the
dashed line, showing that averaging does improve the results. The improvement is
signi�cant when the 95% con�dence intervals are disjoint. In other words, at those
levels of �noise with disjoint con�dence intervals, the estimate, f̂ �T∗(x), is found to
be signi�cantly better than f̂T∗(x).
It is clear from these �gures that most of the con�dence intervals joined by the

solid line are positive and lie well above the x-axis, indicating the existence of an
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Fig. 2. 95% Con�dence Intervals of the ROC area di�erences for the Normals Data. (Solid line
is for averaging; dashed line is for no averaging).

optimal �noise which could maximize the signi�cant improvement. We start to see
some positive results even at �noise = 0:001 for some models, especially for neural
nets. It is interesting to observe the jump increase from �noise= 0.001–0.5 in many
models. As expected, the performance eventually drops for �noise larger than 2.0
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Fig. 3. 95% Con�dence Intervals of the ROC area di�erences for the Finance Data. (Solid line is
for averaging; dashed line is for no averaging).

because further increase in the noise standard deviation will seriously corrupt the
original training data set. Optimal value of �noise is selected when the ROC area
reaches its peak performance. That is to say, ��ROC;optimal�noise is the highest of the
�ve �noise =0:001; 0:5; 1:0; 1:5; 2:0. At this optimal �noise, the estimate, f̂ �T∗(x), would
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Fig. 4. 95% Con�dence Intervals of the ROC area di�erences for the Diabetes Data. (Solid line is for
averaging; dashed line is for no averaging).

be signi�cantly better than the original (no noisy replicates) estimate f̂T (x) when
the corresponding con�dence interval stays above the x-axis.
To further summarize our �ndings when the optimal �noise was chosen, we tabu-

late the mean ROC areas and the mean Kullback–Leibler distances for all the data
sets and models combinations in Tables 4 and 5. In Table 4, the label Opt. �noise
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Fig. 5. 95% Con�dence Intervals of the ROC area di�erences for the Hypothyroid Data. (Solid line is
for averaging; dashed line is for no averaging).

represents the selected optimal �noise level. The label Orig represents the original
model without noisy replicates, and Noisy represents the optimal noisy model with
optimal �noise and with noisy:train = 10. Paired t-tests were conducted to compare
the ROC area and Kullback–Leibler distance for the optimal noisy model versus
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Table 5
Summary of the 500 KL distances for the original and optimal noisy models for the four data
sets.

Data Model Mean KL distanceb % decrease
Orig vs. Noisy

Normals 1-nn 6570¿ 1599 76%
q− 2− 1 NN 485¿ 57 88%
Full-grown tree 2093¿ 203 90%
Pruned tree 463¿ 57 88%
QD 50¡ 53 −5%

Finance 1-nn 2287¿ 617 73%
q− 2− 1 NN 877¿ 44 95%
Full-grown tree 1181¿ 174 85%
Pruned tree 520¿ 41 92%
QD 64¿ 32 50%

Diabetes 1-nn 5445¿ 2383 56%
q− 2− 1 NN 1550¿ 85 95%
Full-grown tree 2401¿ 704 71%
Pruned tree 863¿ 117 86%
QD 177¿ 101 43%

Hypothyroid 1-nn 6126¿ 2146 65%
q− 2− 1 NN 976¿ 108 89%
Full-grown tree 2596¿ 970 63%
Pruned tree 1254¿ 448 64%
QD 152¿ 138 9%

ba¡b indicates that the mean Kullback–Leibler distance a is signi�cantly smaller than the
mean Kullback–Leibler distance b, a¿b indicates that the mean Kullback–Leibler distance a is
signi�cantly larger than the mean Kullback–Leibler distance b, both with p-value less than 0.01.

the original model. All ROC areas obtained from optimal noisy models are signi�-
cantly larger than that from original models with p-values less than 0.01. All, except
one, Kullback–Leibler distances obtained from optimal noisy models are signi�cantly
smaller than that from original models with p-values less than 0.01. The percentage
change (increase or decrease) is calculated via (Noisy−Orig)=Orig× 100%. All op-
timal noisy models have superior (increased) ROC areas with percentage increases
ranging from 0.5% to 27.9% and most of them exceed 10%. All, except one, have su-
perior (decreased) Kullback–Leibler distances with impressive percentage decreases,
most of them are larger than 50%. The only exception is the Quadratic discriminant
method in the Normals data set. The noisy model still produces a slightly superior
(0.6% increase) ROC area, but an inferior (5% increase) Kullback–Leibler distance.
We would de�nitely prefer the original Quadratic discriminant method to separate
two normals with di�erent covariance matrices; this is an expected exception in this
case!
We also provided boxplots for the 500 ROC areas and Kullback–Leibler distances,

Figs. 6–13, when optimal noisy replicates were introduced. From these �gures, it
is clear that the optimal noisy model predictions are better than the original model
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Fig. 6. Boxplots for the 500 ROC areas obtained from the Original and the optimal Noisy models for
the Normals Data.

predictions since the former are more “separable” (larger ROC area) and are “closer”
to the target values (smaller Kullback–Leibler distance). It is interesting to observe
that the optimal �noise chosen via ROC area also produce better Kullback–Leibler
distance.
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Fig. 7. Boxplots for the 500 ROC areas obtained from the Original and the optimal Noisy models for
the Finance Data.

5. Discussion

The success of adding noisy replicates to the rare cases during training is demon-
strated for the 1-nn method, q − 2− 1 neural net, full-grown tree, pruned tree, and
quadratic discriminant in the context of skewed binary classi�cation. The improve-
ment could be explained by the trade o� between bias and variance of the estimates
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Fig. 8. Boxplots for the 500 ROC areas obtained from the Original and the optimal Noisy models for
the Diabetes Data.

in the process of averaging biased and relatively independent model estimates. It is
clear that adding noise will increase the bias of an estimator. However, the variance
of the estimate can be drastically reduced by averaging the estimates over several
noisy training data sets due to their relative independence. We have shown that,
for the skewed classi�cation considered, the net gain in the overall performance is
impressive. It results in a larger ROC area and a smaller Kullback–Leibler distance.
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Fig. 9. Boxplots for the 500 ROC areas obtained from the Original and the optimal Noisy models for
the Hypothyroid Data.

The success lies in the fact that averaging the estimates from di�erent noisy training
sets help to regularize the models.
Many forms of regularization exist for di�erent models and they are model-speci�c.

For example, neural networks could be regularized via weight decay, classi�cation
trees could be regularized through pruning (Venables and Ripley, 1994), and many
regularization techniques exist for quadratic discriminant (Mkhadri et al., 1997). In
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Fig. 10. Boxplots for the 500 KL distances obtained from the Original and the optimal Noisy models
for the Normals Data.

this paper, positive results were obtained even in the case of pruned trees, suggesting
that the e�ect of noisy replicates is complementary to pruning — a model-speci�c
regularization. The regularization by noisy replicates is conceptually di�erent from
the model-speci�c regularization. For the classi�cation models considered, adding
noisy replicates to the rare cases in skewed binary classi�cation o�ers a simple,
elegant, and uni�ed treatment for regularization which is model-free.
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Fig. 11. Boxplots for the 500 KL distances obtained from the Original and the optimal Noisy models
for the Finance Data.

6. Concluding remark

Note that we uniformly chose noisy:repl= 2; noisy:train= 10; sigma:step= 0:5,
and num:sim=500 for all classi�cation models and all data sets to demonstrate that
the averaging of noisy replicates is superior. Better result could be obtained when
the aim is to �nd an optimal classi�cation of a particular data set. In that case,
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Fig. 12. Boxplots for the 500 KL distances obtained from the Original and the optimal Noisy models
for the Diabetes Data.

the choice of noisy:repl; noisy:train, and �noise (a multiple of sigma:step) can be
uniquely determined by resampling through cross validation. The idea is to gradually
increase the value of the parameters noisy:repl; noisy:train, and �noise until the cross
validation ROC area begins to decrease. The optimal values of these parameters are
located at the turning point where the cross validation ROC area changes from
increasing to decreasing.
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Fig. 13. Boxplots for the 500 KL distances obtained from the Original and the optimal Noisy models
for the Hypothyroid Data.

This technique of averaging noisy replicates, however, is not recommended for rel-
atively simple models such as linear discriminant and logistic regression. To demon-
strate this point, we performed simulation (with noisy:repl = 2 and num:sim = 500
across all the �ve levels of �noise) on both of these two models and observed that
noisy models slightly degraded the original performance. Due to the simplistic nature
of the two models, the introduction of the noisy replicates did not change f̂T∗(x)
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much and produced only a slight bias. Subsequently, averaging similar values of
f̂T∗(x) from di�erent noisy training data sets did not yield any improvement over
f̂T (x). We tried averaging (noisy:train=10) as well as no averaging (noisy:train=1)
for these two models and the results were not much di�erent. The models seemed to
produce very stable estimates of f̂T∗(x) for various T ∗ and thus this regularization
technique was unnecessary for linear discriminant and logistic regression.
It is not clear to us why the improvement for the quadratic discriminant is least

generally. Based on what we have observed so far, we conjecture that parametric
models will generally produce more stable estimates of f̂T∗(x) for various T ∗. As a
consequence, the improvement for QD is not as impressive as the other nonparametric
methods.
To conclude, we demonstrated that adding noisy replicates to skewed binary clas-

si�cation is a successful and natural form of regularization for the classi�cation
models considered. The improvements were shown to be statistically signi�cant with
p-values less than 0.01 and practically signi�cant with impressive percentage gains
in terms of ROC area and Kullback–Leibler distance. It is our hope that the success
for these models studied in this paper will provide a basis of extending the tech-
nique to other models, including k nearest-neighbor method with k ¿ 1 and neural
networks with more than 1 hidden layer or more than two hidden units in a single
hidden layer. It is observed that the classi�cation models considered in this paper
have these characteristics: highly local and case-based (1 nearest neighbor method),
highly nonparametric and exible (q − 2 − 1 neural networks, classi�cation trees),
or low cases to parameters ratio (rare cases to �1 and �1 in QD). An open re-
search question is: for models with the above-mentioned characteristics (e.g., general
additive model GAM and projection pursuit regression), how e�ective is the noisy
replication technique to skewed binary classi�cation? Other potential areas include
�ne tuning of the various simulation parameters noisy:repl ; noisy:train; sigma:step,
and relaxing the assumption of the variance covariance matrix of the noise �q being
diagonal. Our immediate interest is to see how the technique performs when applied
to general classi�cation problems which are not necessarily skewed or binary.
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