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Abstract—The design of a pattern recognition system requires care-
ful attention to error estimation. The error rate is the most important
descriptor of a classifier’s performance. The commonly used estimates
of error rate are based on the holdout method, the resubstitution
method, and the leave-one-out method. All suffer either from large bias
or large variance and their sample distributions are not known. Boot-
strapping refers to a class of procedures that resample given data by
computer. It permits determining the statistical properties of an esti-
mator when very little is known about the underlying distribution and
no additional samples are available. Since its publication in the last
decade, the bootstrap technique has been successfully applied to many
statistical estimations and inference problems. However, it has not been
exploited in the design of pattern recognition systems. We report re-
sults on the application of several bootstrap techniques in estimating
the error rate of 1-NN and quadratic classifiers. Our experiments show
that, in most cases, the confidence interval of a bootstrap estimator of
classification error is smaller than that of the leave-one-out estimator.
The error of 1-NN, quadratic, and Fisher classifiers are estimated for
several real data sets.

Index Terms—Bootstrap, confidence interval, error rate estimator,
Fisher's classifier, pattern, quadratic classifier, 1-NN classifier.

I. INTRODUCTION

T is common to use the estimated error rate to evaluate

the performance of a classifier. In the nonparametric
framework the leave-one-out method (also referred to as
cross-validation or the U method) proposed by Lachen-
bruch and Mickey [13] has been shown to have a much
smaller bias than the resubstitution method [2], and has
become a popular nonparametric error estimator in small
sample size situations. However, Efron [8] has shown that
the leave-one-out method can have a much larger variance
than competing estimators. In some cases, this variance
is sufficiently large that competitors with slightly larger
bias but smaller variance will outperform the leave-one-
out estimator. In this paper, we establish confidence in-
tervals on various error rate estimators, compare them to
those obtained for the leave-one-out method, and show
that some estimators based on bootstrapping techniques
do provide shorter confidence intervals than the leave-one-
out method.

The organization of the paper is as follows. Section II
defines the error rate estimators. Section III reports the
performance of various estimators for the error rate of the
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nearest neighbor (1-NN) decision rule. Section IV con-
tains experimental results for estimating the error rate of
a quadratic classifier. Section V examines the perfor-
mance of various estimators for the error rate of 1-NN,
quadratic and Fisher classifiers on three real data sets.
Section VI gives the conclusions of our study.

II. DEFINITIONS OF ERROR RATE ESTIMATORS
We follow Efron’s [8] notations. Let {v,, v, - - -,
v, } be a set of d-dimensional training vectors with cor-

responding categories { v,, ys, , Y.} taken from
classes {C,, C,, , Cg }. For convenience, denote
training pattern x; = (v, y;)and X = {x;}/_ .

Let n(v, X ) be a decision rule based on the training set
Xandlet Q[ y, n(v, X )] be 0 if the classification of vec-
tor v by 5 is correct.

Oy, n(v, X)] =0 ify(v. X) =y,
1 otherwise.

Several error rate estimators are now defined. The ex-
pected error rate (Err) is the probability of misclassifying
a randomly selected pattern x, = (g, y) independent of
X.

Err = E{Q[ 50, 7(v0, X)]} (2.1)

In general, this expectation cannot be evaluated explicitly
and is not known. We estimate it by classifying 1000 test
patterns (equal number of patterns from each class) in-
dependently generated from the distributions of the train-
ing patterns, We report Err to assess the bias of each es-
timator.
The apparent error rate (App), or the resubstitution es-
timate, is obtained by reclassifying the training patterns.
1 n
App = ~ 2 Oy, n(vi, X)] (2.2)
The leave-one-out estimate saves each training pattern for
testing and uses the remaining (n — 1) patterns as new
training patterns,

l n
Ecv = ;;.;1 Q[ yi, (v Xiiy)]

where X;; = X — {x,-}.

It is well known in pattern recognition literature that the
apparent error rate is optimistically biased; i.e., App usu-
ally underestimates Err. The leave-one-out estimate, on
the other hand, is nearly unbiased but has large variance

(2.3)
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[2]. Bootstrapping allows us to define alternative esti-
mators.

Bootstrapping techniques sample the training patterns
with replacement to establish nonparametric estimators of
bias, variance, and other statistics. This resampling gen-
erates ‘‘fake’’ data sets from the original data to assess
the variability of a statistic or parameter from its vari-
ability over all the sets of fake data [3]. Bootstrapping is
similar to other resampling schemes such as cross-vali-
dation and jackknifing [7]. The difference lies in the man-
ner in which fake data sets are generated.

Let F be the empirical probability distribution of X,
WP
U2, i

; 1 :
F:massof—onx;, =
n

A bootstrap sample, X*, is a random sample of size n
from F. In other words, X* is a set {xf, x5, - - -, x}}
randomly selected from the training set {x;, x,, - - ,

x, } with replacement. For a given set of training patterns,
let op (X, F) be the positive or optimistic bias defined as

op (X, F) = Err — App, (2.4)

where F' is the underlying unknown mixture distribution.
The expectation of this bias, denoted as w(F), can be
written as

w(F) = Eg[op (X, F)]. (2:5)
If w were known, then Err could be estimated as
Err = App + w. (2.6)

The bootstrap procedure for estimating the bias w is
defined below:

1) Select a bootstrap sample according to F, say X** =
{-’f.*b ST

2) Compute w, = £/, ((1/n) — P!) Qly;, n(v;,
X**)] with P** indicating the proportion of the boot-
strap sample on x;, i.e.,

P = Cardinality of { j| x* = x;}/n.

3) Repeat steps 1) and 2) B times to get { w;, wa, * * *,
wpg }. The bias of the bootstrap error rate is estimated by

1 B
boot = — 2, .
i Bbszb

The bootstrap error estimate, Boot, is:

Boot = App + wboot. (2.7)

Bootstrapping mimics the process of selecting many sam-
ples of size n. The choice of B is not critical as long as it
exceeds 100. Efron [8] suggests that B need not be greater
than 200.

Another bootstrap estimator, called the EO estimator,
counts the number of those training patterns misclassified
which did not appear in the bootstrap sample. The EO es-
timate is obtained by summing the misclassified samples
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over all bootstrap samples and dividing the sum by the
total number of training patterns not appearing in the
bootstrap sample. Thus, EO uses a subset of a training set
as a test set. Let 4, = {i | P}’ = 0} denote the index set
of training patterns which do not appear in the bth boot-
strap sample, then

szl % Q[yh 'I(Uiv X*b)]

E0 = 3

B (2.8)
Ei |4, |

where | 4, | denotes the cardinality of the set A,.

Finally, we define the *‘0.632"" error estimator, de-
noted E632. The rationale for the 0.632 estimator is given
by Efron [8]. Note that App is the error rate for patterns
which are ‘‘zero’’ distance from the training set, whereas
patterns contributing to EQ are “‘too far out’ from the
training set. Since the (asymptotic) probability that a pat-
tern will not be included in a bootstrap sample is approx-
imately 0.368, the weighted average of App and EO in-
volves patterns at the ‘‘right’’ distance from the training
set in estimating the error rate.

E632 = 0.368 * App + 0.632 * EO (2.9)

Our primary interest in studying the behavior of error
rate estimators is in small sample size situations. When
the sample size is large, most of the estimators give iden-
tical results because of the consistency property. To high-
light the difference in the performance of various esti-
mators, we are mainly interested in situations where the
true error rates are moderate but not greater than 0.35.

III. NearesT NEIGHBOR DEcCIsION RULE
Consider n; training vectors {#{’, 5", -+ , v}
from class C;, where i = 1, 2, -+ - , K. The nearest
neighbor decision rule classifies a d-dimensional test vec-

tor vy as follows:

Assign v to class C;if min, { || v, — v{’’ | } = min,
{Il vo — v{™ |}, forall m # j, where || - || denotes
the Euclidean norm.

Ties are resolved randomly. We will now use the esti-
mators defined in Section II to estimate the error rate of
the 1-NN decision rule. Since App uses the same data for
training and testing, it is almost zero for the 1-NN deci-
sion rule (ties in certain interpoint distances may result in
App greater than zero). Therefore, Boot and E632, which
require App in their computations [see equations (2.7) and
(2.9)], were not used in these experiments. Each experi-
ment involves 100 trials, so 100 independent sets of train-
ing samples are generated with 200 bootstrap samples for
each trial (B = 200) with dimensions d = 2, 4, 8, and
two classes (K = 2). The 68 percent nonparametric con-
fidence interval of an error estimator based on these 100
values is defined to be [a, b], where a is the 17th smallest
estimate, and b is the 84th smallest estimate among the
100 trials.
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Experiment 1 follows Efron’s [8] paradigm. The train-
ing patterns are generated from d-dimensional Gaussian
distributions N (u;, E,), i = 1, 2. The parameters of these
distributions are as follows:

u; = (0, 0, , 0),

u, = (2.5634, 0, 0, ,0),
and

E, =L, =1

where [, is the d-dimensional identity matrix. The mean
vectors u, and u, fix the Bayes error at 0.10 when the
class prior probabilities are equal.

Class I: 10 training patterns per class.

Class 2: 20 training patterns per class.

Table I summarizes the results in the form of the mean,
standard deviation (s.d.), 68 percent confidence interval
(C.1.) and width of the interval for each estimator.

All of the parameters in Experiments 2 and 3 are the
same as those in Experiment 1 except for u,. In Experi-
ment 2, u, = (1.6836, 0, 0, , 0) and in Experiment
3, u, = (1.0488, 0, 0, -+ -, 0). This fixes the Bayes
error at 0.20 and 0.30, respectively, for equal class prior
probabilities. Tables II and III summarize the results of
Experiments 2 and 3.

In all of the results reported in Tables I-III, the EO es-
timator provides shorter 68 percent confidence intervals
and smaller standard deviations than the leave-one-out es-
timator, although the EO estimator has a slightly larger
bias in some cases. These results are independent of the
dimensionality, size of the training samples, and the true
error rate. This suggests that EO is a better estimator of
the error rate than the commonly used leave-one-out
method (Ecv). Of course, EQ requires more computation
than Ecv. Note that the usual definition of confidence in-
terval as (mean — s.d., mean + s.d.) assumes a normal
distribution of the error rate estimator. This motivates our
use of the nonparametric 68 percent confidence interval.
As expected, the mean value of Err always lies in the con-
fidence intervals of bath EO and Ecv.

IV. QuaADRATIC CLASSIFIER
Consider n; training vectors {v{’, v, -+, v{V}
from class C; fori = 1, 2, , K. The maximum-like-
lihood estimators of mean vectors and covariance ma-

trices for the pattern classes are defined as:

— (i)
u‘-——z s

»

n;j=1
e i ; T
£.== 2 [vf” - a) [y - ],
nij=1
i=12 " . K

A quadratic classifier based on the multivariate Gauss-
ian model is defined as [5]:
Assign v to class C; if
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TABLE I
ERROR RATES FOR 1-NNR, BAYES ERROR = 0.10

Case 1 ny= nzzlﬁ, K=2

[ Wi Err EQ Ecwv
mean @.12d @.188
&5 (e 1%50361561 1) 9?1133297 (@. @ 189
Cidini 1912785 <051 555297 @5%5 i
d= 4 ETF E@ Ecv
mean G188 @.197 3,161
5‘?‘ T 12993123a1 (] 1320352751 1o %éllz
Sigtni 1213%8> 18%1% 9322662
d=8 Err E@ Ecv
mean 2.216 @.261

‘?‘ (e 1?46392521 (e.161,@.355) (e. : %?g
Siatn: "251e% 151184 13248627

Case 2 ny= n2—20 K=2
d =2 Err E@ Ecv
mean 2. 150 @.104 @ 146
3-d. @28 @.066 . 280
(o 12.128,@.184] [0.090,0.210] (@. 075 o 2251
Vigth 656 @.120 @.
d =4 Err E@ Ecv
mean ?.174 ?.168 .182
s.d. ®.029 ?.069 @.082
C.l. & 10.146,8,194) [0.129,0.260) [0.109,9.275)
width: @. 048 2.131 @.175
d=8 Err: E@ Ecv
mean ﬁ 269 @.209 @.156
s.d. ©.072 ?.087
i (0.180°6.2331 10.141.0-280]1 (0.100.0,300)
width @.053 @.133 @. 500
TABLE 1l

ERROR RATES FOR 1-NNR, BavEes Error = 0.20

Case 1 ny= n2=10. K=2
d=2 Err E@ Ecv
mean ©.255 @ 324 @.315
s.d. @ 2.048 @.126 @.148
C.l. : [@.,247,0.348) [0.190,0.452] [(0.150,0.450)
width: e.iel @.261 @. 500
d = 4 Erm E@ Ecv
mEan ¢.321 2.335 D, 32?
s.d. : @.243 Q.16 @.130
C.l. & [@.277,0.366] [@.240,0.422] [(@. ?@O @.4501
width: 0.689 e.i82 .250
d =8 Er® E@ Ecwv
mean @.347 ?.398 @.391
e e @.043 0 113 @.147
C.1. : [@.3@4, 0.385) [@.297,6.505] [@.250,9.55@]
widih: 2.081 ®.2e9 2. 300
Case 2 : ny= ny=20, K=2
d =2 Err E® Ecv
mean L2392 @.293 @.284
gid = @.036 @.084 @.099
Sty s 261 @.330] (9.207,0.381) [2.175,0.400]
widtn: ©.063 0.174 @.225
d= 4 Err E@ Ecwv
mean : @. @. 326 8.320
s.d. : @.037 ©.@83 .10
C.l. : (0.274,@.338) [0.246,0.414] [©0.225,@.425]
width: 2.664 o.168 2. 200
d =18 Err E® Ecv
mean Q.343 Q. 343 ©.333
g.d.. @ @.032 8. 284 ?.104
Calia [@.310,0.373] 1©0.252,0.426] [0.200,0.425]
width: @.663 0.i74 ©.225
A NT =1 Ta—| "
(v — 4;) E;‘ (v — &) — (v —a) (v — @)

> 2 log [ﬁ(c,:) 1 ﬁflliz/ﬁ(cf) | 2;‘ llﬁ]’

for all j # i, where |£;| is the determinant of £;, and
P(C) =n;/(n, + ny+ - -+ + ng) is the estimated prior
probability for class C;.
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TABLE III
ERROR RATES FOR 1-NNR, BAYES ErRrOR = 0.30

Case 1 ny = n2=1®‘ K=2
= Err E@ Ecv
mean ! @.a02 ©.437 @.435
s.d. : @.045 ©.128 @.165
C.l. : 1®©.356,0.447) [©.297,0.559]1 [(0.250,0.600]
width: @.eai @.263 @.550
d =4 Ere E@ Ecv
mean : @.419 ©.439 @ 4359
s.d. : ?.038 .14 @.138
C.1. : 10.378,0.459) [(@.345,0.546) [(0.300,0.550)
width: 2.68i 0.201 @.250
d=8 Err E@ Ecwv
mean @.432 @.473 Q. 469
s.d. ©.036 @.108 @146
C.1. : [2.402,0.464) (0.382,0.596) [(0.350,0.600]
vidth: @062 @.214 . 250
Case 2 : n= n2:2@. K=2
d=2 Erc EQ Ecv
mean : @. 407 Q. 400 ;
5.d. @.033 @.083 Q.98
sl [©.377,08.438] [(2.315,0.488] 1[0.275,0.475]
vidth @061 @.173 0. 200
d =4 Err E@ Ecv
mean @.411 @.421 LE17
=i Q@.034 @.077 . @98
C.1. : 1©.381,0.439) (0.340,0.491] (0.325,0.525)
width! 2.658 @.1si L 208
d=8B Err E® Ecv
mean @.444 @.437 .434
s.d. 027 @.081 ?.106
e (@.406,0.459) [2.345,0.5171 10.325,0.525]
width _653 e.172 )

If the underlying class-conditional densities are multi-
variate Gaussian with known parameters, then the form
of the above decision rule is Bayes optimal. We are using
estimated parameters in place of the true parameters, so
the above rule is called the “‘plug-in’’ rule.

Experiment 4 generates the training patterns from two-
dimensional Gaussian distributions N (u;, I;) with the
following parameters.

u = (0,0), u, =(1,1),and Z, = b, L, = 1.441,.
In Experiment 5, the training patterns are generated from
four-dimensional Gaussian distributions with the follow-
ing parameters. ]

u; = (0,0,0,0), u, =(1,1,1,1), and L, = 1.691,,
¥, = 2.25I,. These parameters provide moderate error
rates. Tables IV and V summarize the results for n;, = n,
= 20.

The purpose of Experiment 6 is to evaluate the perfor-
mance of bootstrap error estimators for multiclass prob-
lems. The training patterns are generated from two-di-
mensional Gaussian distributions with 4 classes having the
following parameters

i, =(1.5,00), u, =1(0; 1.5), s =(~1.5,0),

ug=(0,—-15), and I;=11h, i=123,4.

Table VI summarizes the performance of various error es-
timates for n, = n, = ny = n, = 20. Tables IV, V, and
VI show that almost all of the estimators based on the
bootstrapping techniques (Boot, E0, E632) have shorter
68 percent confidence intervals and smaller standard de-
viations than the leave-one-out estimator Ecv. The only
exception is Boot in experiment 6 which has a slightly
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TABLE IV
ERROR RATES FOR QUADRATIC CLASSIFIER, d = 2, K = 2

mean S.d. Gl width
Err ©.319 ©.006 10.314,0.324) ©.010
App ©.232 @.e69 1@.175,0.275) Q. 100
Boot @.273 ©.080 1©.198,8.3411 ©.143
E@ 2.301 @.e77 (0.223,0.372) @.149
EG32 @.276 2.073 (@.202,0.341) @.138
Ecy @.289 @.e83 [@.200,0.375] ?.175

TABLE V

ERROR RATES FOR QUADRATIC CLASSIFIER, d = 4, K =)

mean s.d. c.1.

width
Err @.318 @. 05 [0.314,0.324) @.e10
App 2.16@ @.063 [0.10@,2.225) 2.125
Boot 9.256 @.a78 [@.171.©.336) 2,165
E@ @.339 @.e74d 10.261,0.404) @.143
EG32 @.273 @.e’ae [@.21@.@.347]) @.138
Ecv ©.294 =] 10.200.9.375) @.175

TABLE VI

ERROR RATES FOR QUADRATIC CLASSIFIER, d = 2, K = 4

mean s.ds S width
Err 2.325 2.911 12.314,0.334] ?.02¢
App 0.285 ©.046 10.237.,08.337] 2. 100
Boot ©.331 @.050 l@.282,9.387] @.1e5
E@ @, 360 @.045 [©.312,0.403) 9.991
E&32 @.332 @.044 l@.288,0.379] @.091
Ecw ©.335 @. 248 10.276,@.375] @.099

larger confidence interval than Ecv in Table VI. Among
the various error estimators, E632 appears to have the
smallest standard deviation and shortest confidence inter-
val. This result agrees with Efron [8] and Chemick ¢7 4.
[1] for Fisher’s linear classifier. None of the estimateg
exhibits consistently lowest error bias.

V. CLASSIFICATION OF REAL DATA SEeTs

This section evaluates the performance of bootstrap es-
timators on several real data sets with three classifiers
(1-NN, Fisher, quadratic classifiers). We first defipe
Fisher’s classifier. Consider n; training vectors {y{"
pe ) e v} fromeclass G, i = 1,2, -+ K. Esli:
mators for the mean vector #; and covariance matrix £ ; of
the ith pattern class are defined in Section IV. The pooled
mean vector and within-class scatter matrix are estimateq

by

K
where n = .Z n;,

i=1

=
]
= =
M=
=
=

13t

e

=
i

The Mahalanobis distance between pattern v and the es-
timated mean vector of class C; is denoted by g, (v),
where

g (v)=(v—a)" $ (v - ay),
forjy=1,2, -+, K
The Fisher’s classifier can be defined as [14]:
Assign v to class C; if g; (v) = mjin {gj(y]}.
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We now estimate various error rates of these three clas-
sifiers on three sets of real data. The 80X data set is de-
rived from the Munson’s hand printed Fortran character
set. Included are 15 patterns from each of the characters
‘8, ©*0,” **X’". Each pattern consists of 8 feature mea-
surements [4]. The IRIS data set contains measurements
of three species of IRIS (setosa, versicolor, virginica). It
consists of 50 patterns from each species on each of 4
features (sepal length, sepal width, petal length, petal
width) [11]. The IMOX data set contains 8 feature mea-
surements on each character of “‘I,”” “‘M,"” ““0,”” “*X"".
It consists of 192 patterns, 48 in each character. This data
set is also derived from the Munson’s database [4].

The results are shown in Table VII. We do not know
the true error rates of these data sets nor do we know their
distributions so we cannot compare the performance of
various estimators. The purpose of reporting these results
is to provide some feeling about differences between var-
ious error estimates for a fixed classifier. Generally, EO
is more conservative than Ecv, that is, EQ provides higher
error estimate than Ecv. However, E632 is comparable to
Ecv.

Note that when the quadratic classifier is applied to the
80X data set, estimated covariance matrices for each
bootstrap sample are frequently singular so we use the
first two principal components [14] of the original data as
new features and apply the quadratic classifier to the pro-
jected data. This suggests that the size of the training sam-
ple should exceed the dimensionality by a factor of at least
five [12]. Note that, as expected, App (resubstitution es-
timate) provides an optimistic estimate of the error rate
for all data sets. The estimates of confidence intervals for
error rates in Tables 1-VI were derived from a Monte
Carlo analysis in which fresh training patterns were ob-
tained on each trial. This procedure cannot be applied to
real data since real data provide only one set of training
patterns. Efron [9] shows how confidence intervals on
parametric estimators can be obtained with bootstrapping.
Each bootstrap sample leads to one estimate and the B
bootstrap samples generate a distribution for the estimator
from which various statistics, such as confidence inter-
vals, can be estimated. This bootstrap method cannot re-
peatedly be applied to real data because all B bootstrap
samples are used to compute one value of Boot, EO, and
E632. Thus one would need to create several sets of
bootstrap samples of size B to generate a distribution for
these estimators. The smaller confidence intervals of
bootstrap estimators compared to Ecv established in Ta-
bles I-VI further support our contention that bootstrap es-
timates should be considered in the design of pattern rec-
ognition systems.

VI. SuMMARY AND CONCLUSIONS

The bootstrap procedure [3], [6]-[10] has been de-
scribed as a nonparametric maximum likelihood estima-
tion technique. The simulations of Efron [8] and Chernick
et al. [1] show that estimators based on bootstrapping per-
formed somewhat better than the traditional leave-one-out

TABLE VII
ERROR ESTIMATION FOR REAL DATA: 80X, IRIS, IMOX

A. BOX

Classifier App Boot E® EB32 Ecv
1-NN » * 2.103 L 2.067

#¥ QUADRATIC @.178 @.237 ©.303 0.257 ©0.244

FISHER ©.022 @.067 ©.127 ©0.088 ©.089
B. IRIS
Classifier App Boot E@ E632 Ecv
1-NN ® * 2.045 " 2.040
QUADRATIC 2.020 ©.025 ©.026 0.224 O.@?ér
F ISHER 2.02¢ 0.022 0.023 ©0.022 .033
C. IMOX

Classifier App  Boot E@ E632 Ecv
1-NN » " @.055 " @.052

9.026 ©.042 0.056 ©0.045 @.047
2.073 ©.285 ©2.095 0.087 0.078

QUADRATIC

Fi1SHER

¥ : Mot defined for 1-NN classifier

®¥ : Use two principal comporents only

estimator in estimating the error rate of Fisher’s linear
classifier. In this paper, we have extended the simulation
results to 1-NN classifiers and quadratic classifiers. The
apparent error rate is almost zero for the 1-NN classifier,
which makes some bootstrap estimators, such as Boot and
E632, not appropriate for nearest neighbor classifiers.
Therefore, for 1-NN classifier we only used the EO esti-
mator and compared it with the leave-one-out estimator.
In all our experiments, the conditional expected error rate,
Err (based on testing 1000 independent test samples) falls
in the 68 percent confidence interval of all the error esti-
mators. This suggests that these error estimators are reli-
able. In almost all of our limited experiments, the boot-
strap estimators have smaller variances and shorter 68
percent confidence intervals than the leave-one-out esti-
mator. For quadratic classifiers, the E632 estimator out-
performs the other estimators, which is consistent with
earlier reported results for Fisher’s classifier. This sug-
gests that boostrapping is a powerful nonparametric tech-
nique for evaluating a classifier’'s performance.

REFERENCES

[1] M. C. Chernick, V. K. Murthy, and C. D. Nealy, **Application of
bootstrap and other resampling techniques: Evaluation of classifier
performance,”” Partern Recognition Lert., vol. 3, pp. 167-178, 1985.

[2] P. A. Devijver and J. Kittler, Pattern Recognition: A Statistical Ap-
proach. Englewood Cliffs, NJ: Prentice-Hall International, 1982.

[3] P. Diaconis and B. Efron, *‘Computer-intensive methods in statis-
tics,”* Sci. Amer., pp. 116-127, 1983. )

[4] R. Dubes and A. K. Jain, ‘‘Clustering technigues—The user’s di-
lemma,"’ Partern Recognition, vol. 8, pp. 247-260, 1976.

{5] R. O. Duda and P. E. Hart, Partern Classification and Scene Analy-
sis. New York: Wiley, 1973. ;

[6] B. Efron, ‘‘Bootstrap methods: Another look at the jackknife,”” Ann.
Statist., vol. 7, pp. 1-26, 1979.



JAIN

7

(8]

(9]

[10]
(1]

2]

[13]
[14]

et al.; BOOTSTRAP TECHNIQUES FOR ERROR ESTIMATION

___. **The jackknife, the bootstrap, and other resampling plans,’" in
CBMS-NSF Regional Conf. Series in Applied Mathematics, no. 38,
SIAM, 1982.

. “*Estimating the error rate of a prediction rule: Improvement on
cross-validation, " J. Amer. Statist. Ass., vol. 78, pp. 316-331, 1983.
——, **Nonparametric standard errors and confidence intervals,’’ Ca-
nadian J. Statist., vol. 9, pp. 139-172, 1981.

B. Efron and G. Gong, **A leisurely look at the bootstrap, the jack-
knife and the cross-validation,'’ Amer. Statistician, vol. 37, pp. 36~
48, 1983.

R. A. Fisher, *‘The use of multiple measurements in taxonomic prob-
lems,”* Ann. Eugenics, vol. 7, part I1, pp. 179-188, 1936.

A. K. Jain and B. Chandrasekaran, *‘Dimensionality and sample size
considerations in pattern recognition practice,’" in Handbook of Sta-
ristics, vol. 2, P. R. Krishnaiah and L. N. Kanal, Eds. Amsterdam,
The Netherlands: North-Holland, 1982, pp. 835-855.

P. Lachenbruch and M. Mickey, “*Estimation of error rates in dis-
criminant analysis,” Technometrics, vol. 10, pp. 167-178, 1968.
D. F. Morrison, Multivariate Statistical Methods. New York:
McGraw-Hill, 1976.

Anil K. Jain (S8'70-M'72-SM'86), for a photograph and biography, see
this issue, p. 620.

633

Richard C. Dubes was born in Chicago, IL. He
received the B.S. degree from the University of
Illinois in 1956 and the M.S. and Ph.D. degrees
from Michigan State University, East Lansing, in
1959 and 1962, respectively, all in electrical en-
gineering.

He is currently a Professor in the Depariment
of Computer Science at Michigan State Univer-
sity.

Dr. Dubes is a member of the Pattern Recog-
nition Society, the Classification Society, Sigma
Xi, and is an Associate Editor of Partern
Recognition.

Chaur-Chin Chen (S'85) received the B.S. de-
gree in mathematics from National Taiwan Uni-
versity, Taiwan, in 1977, and the M.S. degree
from Michigan State University, East Lansing, in
applied mathematics and computer science, in
1982 and 1984, respectively.

He is currently working toward the Ph.D. de-
gree in computer science at Michigan State Uni-
versity. He has been a research assistant since
April 1985. His research interests are in the areas
of spatial point process, patiern recognition, and
image processing.

Mr. Chen is a student member of the Pattern Recognition Society, the
Association for Computing Machinery, and is a member of Phi Kappa Phi




