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Statistical Exploratory Analysis of
Genetic Algorithms

Andrew Czarn, Cara MacNish, Kaipillil Vijayan, Berwin Turlach, and Ritu Gupta

Abstract—Genetic algorithms have been extensively used and
studied in computer science, yet there is no generally accepted
methodology for exploring which parameters significantly affect
performance, whether there is any interaction between param-
eters, and how performance varies with respect to changes in
parameters.

This paper presents a rigorous yet practical statistical method-
ology for the exploratory study of genetic and other adaptive al-
gorithms. This methodology addresses the issues of experimental
design, blocking, power calculations, and response curve analysis.
It details how statistical analysis may assist the investigator along
the exploratory pathway. As a demonstration of our methodology,
we describe case studies using four well-known test functions.

We find that the effect upon performance of crossover is pre-
dominantly linear, while the effect of mutation is predominantly
quadratic. Higher order effects are noted but contribute less to
overall behavior. In the case of crossover, both positive and nega-
tive gradients are found suggesting the use of a maximum crossover
rate for some problems and its exclusion for others. For mutation,
optimal rates appear higher compared with earlier recommenda-
tions in the literature, while supporting more recent work. The sig-
nificance of interaction and the best values for crossover and mu-
tation are problem specific.

Index Terms—Adaptive algorithms, experimental design, ge-
netic algorithms (GAs), methodology, statistical analysis.

I. INTRODUCTION

ADAPTIVE algorithms such as genetic algorithms (GAs)
[1] work by iteratively adapting members of a population

of potential solutions. The individuals interact either through the
adaptation operators themselves, or through competitive selec-
tion mechanisms for determining subsequent generations. If the
adaptation strategy is successful, the population (or part thereof)
will converge on an optimal (or at least “good”) solution.

While the mechanics of each individual adaptation are quite
straightforward, the way individual changes affect the success
of the population as a whole is more difficult to determine. This
is also true of the many parameters that are used to fine tune, or
improve the success of adaptive algorithms. Examples include
population size, mutation and crossover rates, elite group sizes,
acceleration constants, step sizes, and so on. Values for these
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parameters are most commonly set through a process of trial
and error, or based on recommendations from related problems
in the literature, rather than through statistically sound analysis
of their effects on algorithm performance.

In this paper, we propose a rigorous yet practical statistical
methodology for assessing the impact of parameter settings. The
methodology addresses issues of experimental design, blocking,
power calculation, and response curve analysis. We demonstrate
the approach with a case study applying GAs to benchmark
problems from De Jong’s [2] and Schaffer’s [3] test suites.

In Section II, we provide some background to the problem
of analyzing GA performance. This is followed in Section III
by a discussion of nonstatistical exploratory work in this area.
Section IV examines work which has used a statistical con-
struct, recognizing the appropriateness of statistical analysis to
this problem. However, a number of limitations are found. In
Section V, we discuss a range of factors that must be considered
in developing a suitable methodology and outline our approach.
The results of applying this methodology to the GA in our case
study are reported in Section VI. This includes some unexpected
outcomes, particularly on the use of crossover. A discussion in
Section VII concludes the paper.

II. BACKGROUND

A GA works by encoding potential solutions to a problem as
a series of bits or genes on a bit-string or chromosome. The me-
chanics of a GA are straightforward: in its simplest form new so-
lutions are generated using crossover, where genes are crossed
over between pairs of chromosomes, and mutation, where the
binary value of a gene is inverted.

In contrast, the way in which a GA population converges
on solutions has been more complex to describe [1]. Holland
put forward the idea of schemata [4]: similarity templates de-
scribing a subset of strings with similarities at certain positions
[5]. When the chromosome possesses these schemata its fitness
improves. Operators such as crossover and mutation work by al-
tering chromosomes to contain more good schemata. Goldberg
elaborated by conceptualizing building blocks (highly fit, short-
defining-length schemata) and implicit parallelism [5]. How-
ever, the increase in sophistication and differences in implemen-
tations of GAs, such as quantum-inspired GAs [6] and the use
of transposition [7], has made it increasingly difficult to propose
newer models of convergence.

In addition, previously accepted aspects of GAs are being
debated. For example, while it has been traditionally main-
tained that crossover is a necessary inclusion, the conjecture
of naive evolution (using selection and mutation only) places
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this in question [8], [9]. Such debates have been fuelled by the
fact that little research has been done on how to decide whether
a parameter significantly affects performance and how perfor-
mance varies with respect to changes in parameters. There is
currently no generally accepted methodology for exploring a
GA in order to address these issues.

The difficulty in developing such a methodology is il-
lustrated by problems encountered in both working from
theoretical models and real-world data. In the first instance,
trying to formally describe GAs has been attempted using
various mathematical approaches such as Markov chains [10],
[11]. These approaches have been limited by the complexity
of the calculations. Moreover, the assumptions made in much
of the theoretical work may simply not be applicable nor
attainable in practice, such as assuming an infinite population
size when considering the processing of schemata. There has,
therefore, been a realization that research involving real-world
data will be necessary in order to provide guidelines that may
come to be generally accepted by GA practitioners.

Initial empirical work of this kind was carried out by De Jong
[2] whose experiments resulted in a set of recommendations
that came to represent early guidelines [8]. Later recommenda-
tions by Grefensette [12] using a meta-level genetic algorithm
(meta-GA) produced results which did not wholly agree with De
Jong. The meta-GA approach is limited in that independent runs
of the meta-GA can result in different best values. Furthermore,
it does not provide any information as to whether any interac-
tion occurs nor the trend of the performance behavior over the
range of values studied.

A limited number of studies have made use of statistical anal-
ysis, recognizing the ability of statistics to address many of these
issues. However, as discussed in Section IV, these studies have
been limited by failing to fully address important issues such
as blocking for seed, calculating power, and thorough response
curve analysis. Thus, results and recommendations from these
studies, though obtained from real-practical experience, are still
subject to debate.

We describe a statistical methodology for such exploratory
work with real-world data. This methodology is rigorous yet
practical with general principles that can be applied to the prac-
tical analysis of other kinds of adaptive algorithms.

In the next sections, we look more closely at the various
studies in this area. In doing so, we note the inconsistency of the
results and the limitations of the methodologies. We then define
our experimental setup and describe our statistical methodology.

III. NONSTATISTICAL EXPLORATORY ANALYSIS

As stated above, there is currently no generally accepted
methodology for analyzing the relationship between parame-
ters and performance of a GA. Attempting to mathematically
describe GAs is complex and has not resulted in practical
guidelines. This has given rise to various studies which attempt
to provide such data. However, both the methodologies and
results have varied.

Early work was provided by De Jong who altered the values
of parameters such as population size, crossover rate and mu-
tation rate in order to assess the effect on performance. This

TABLE I
RECOMMENDATIONS FOR BASIC PARAMETER SETTINGS

TABLE II
RECOMMENDATIONS FOR BASIC PARAMETER SETTINGS USING STATISTICS

was defined in terms of online performance, the average perfor-
mance of all chromosomes tested during the search, and offline
performance, the current best chromosome value for each iter-
ation [8]. Five test problems of increasing difficulty were used
which became known as the De Jong suite [2]. Table I lists De
Jong’s recommendations for optimal performance for the pa-
rameters listed.

At this stage, there was little evidence to dispel the idea that
such data could serve as generic guidelines for different problem
domains. Hence, these data came to represent guidelines for
GA practitioners. Subsequent work, however, was not consis-
tent with these recommendations.

This is illustrated in the results of Grefensette who pioneered
the use of meta-level genetic algorithms (meta-GAs) [12] for
finding optimal values for parameters. His results for the De
Jong suite are shown in Table I. Other studies using the meta-GA
approach also produced differing results, as seen in the work by
Freisleben and Härtfelder [13] in the domain of neural network
weights optimization (see Table I).

IV. STATISTICAL EXPLORATORY ANALYSIS

As the previous studies did not clarify the relationship be-
tween parameters and performance statistical analysis has been
used for this purpose. For example, Schaffer et al. [8] con-
ducted a factorial design study using the analysis of variance
(ANOVA). This study used the De Jong suite plus an addi-
tional five problems. The recommendations for best online per-
formance from this study are shown in Table II. Close examina-
tion of the best online pools suggested a relative insensitivity to
crossover which in turn suggested that naive evolution may be a
powerful search algorithm in its own right when using bit string
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encoding [8], [9]. Work by Yao et al. suggests that this may be
also true when using real values [14]. These data challenge the
traditional assumption that the crossover operator is a necessary
inclusion in a GA [3].

Statistics was also used by Petrovski et al. [15] who carried
out fractional factorial experiments in the domain of anti-cancer
chemotherapy. These were combined with linear regression in
order to pinpoint which parameters were significant and esti-
mate their best values. The outcome measure was the number
of generations required in order to reach the feasible region in
the solution space. The results are shown in Table II.

In overview, it is clear from both the nonstatistical and statis-
tical approaches that results have varied, notably for mutation
where the more recent studies, including those using statistics,
suggest higher rates. This may indicate a more complex effect
for this parameter or alternatively that best values are problem
specific. Moreover, the influence of differing problem domains
must also be considered [16].

Importantly, however, the variation seen in these studies may
also be a result of the differing methodologies that have been
employed and, therefore, suggests the need to develop a gen-
erally accepted methodology for carrying out such exploratory
work. While statistics is promising for this purpose, a number
of limitations need to be addressed.

First, little attention has been given to blocking for seed as
a source of variation or noise. As pointed out by Davis [17],
finding good settings for parameters can be difficult due to the
fact that the same parameter settings on the same problems can
lead to different results. In practice, these differences can be
traced to different pseudorandom number generator seeds in the
initialization of populations and in the implementation of se-
lection, crossover and mutation. Blocking for seed by grouping
experimental units into homogenous blocks, so that each run
of the GA for differing levels of crossover and mutation occurs
with the same seeds, limits the cause of variation within blocks
to the parameters under study. In this way, variation or noise is
reduced and comparisons are sharpened [18].

Adding to this, issues dealing with the calculation of power
and sample size have also largely been ignored. This has meant
that it is uncertain whether the studies carried out have had ad-
equate power and, thus, sample size to detect differences that
could be considered noteworthy. Sample sizes which are too
small will generally fail to result in statistical significance. This
is particularly important if blocking is not carried out since the
data-set is akin to a completely randomized design. In such a
design, effects may not be detected due to the extent of back-
ground noise in the data-set produced by seed. Thus, a much
larger sample size is required to detect effects of interest.

A detailed analysis of response curves has also been limited.
It is important to undertake such an analysis as it allows one to
study the behavior of the parameter over the range of values im-
plemented. Such data are useful in the optimization process. For
example, knowing that a parameter has a linear relationship to
performance may suggest that either the value for the parameter
is set as high as possible or that the parameter is excluded.

In Section V, we define our experimental setup and describe
our statistical methodology.

V. METHODS

Before describing our methodology, we briefly introduce the
test functions and the algorithm used to illustrate our approach.

A. Choice of Standard Test Functions

It was important to select test functions which are well
known. Initially, the first three problems from the De Jong [2]
suite were tackled which are relatively easy for a GA to solve.
This provided a useful set of problems, widely referenced in
the literature, on which to demonstrate the initial applicability
of our methodology. These were F1 known as the SPHERE,
F3 known as the STEP function, and F2 known as ROSEN-
BROCK’S SADDLE.

We then proceeded to a more difficult problem and so chose
the well known Schaffer’s F6 [3]. These were all implemented
as minimization problems and are displayed in (1)–(4), respec-
tively

(1)

(2)

(3)

(4)

B. Implementation of the GA

We implemented a GA as detailed in Table III. The imple-
mentation of the GA was deliberately simple so that a clear and
concise demonstration of the proposed methodology and results
could be made. In this regard, parameters such as the population
size and bits per variable were not varied but kept at the values
shown in Table III and only crossover and mutation were in-
vestigated in the present research. The same methodology can
be straightforwardly applied to the many other parameters sug-
gested in the literature.

C. Experimental Design and Statistical Test

In order to decide upon the most appropriate type of exper-
imental design and statistical test, it was necessary to address
several items:

1) blocking for variation or noise due to seed;
2) choice of an appropriate statistical test;
3) statistical testing of individual parameters and their in-

teractions;
4) response curve analysis—this should allow for an esti-

mate to be made of the best value for individual param-
eters with confidence intervals;

5) calculation of power;
6) a methodology that is rigorous yet practical enough to be

undertaken with common statistical packages and avail-
able desktop computing power;

7) statistical principles that can be generically applied to
other adaptive algorithms.

These are discussed in turn.
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TABLE III
DETAILS OF THE GENETIC ALGORITHM

1) Blocking. The variation seen in GA runs is due to the dif-
ferences in the starting population and the probabilistic
implementation of mutation and crossover. This is in turn
directly dependent on seed: the value used to generate the
pseudorandom sequences. In usual implementations of a
GA, the effect of seed is not regulated and so the exper-
imental design may be conceived as being entirely ran-
domized. In order to demonstrate statistically significant
effects, a very large data-set is required in order to detect
effects over and above variation or noise due to seed.

To address this issue, it was necessary to control for
the effect of seed via the implementation of a random-
ized complete block design. In such a design every com-
bination of levels of parameters appears the same number
of times in the same block and in the present study the
blocks are defined through seeds. For example, if there
are levels of parameter A and levels of parameter B,
then each block contains all combinations.

Seed is blocked by ensuring that the seeds used to im-
plement items such as initialization of the starting pop-
ulation of chromosomes, selection, crossover, and mu-
tation are identical within each block. An increase in
sample size occurs by replicating blocks identical except
for the seeds. Replicates of this type are necessary to as-
sess whether the effects of parameters are significantly
different from variation due to changes in seed. This is
illustrated in Table IV.

2) ANOVA. In order to compare performances for two or
more parameters using a randomized complete block de-
sign, we use the statistical test for the equality of means

TABLE IV
CREATING A DATA-FILE FROM REPLICATES OF BLOCKS

known as the analysis of variance (ANOVA). In ANOVA,
the null hypothesis is that the means for different levels of
a parameter are equal. The alternative hypothesis is that
the means for levels of a parameter are not equal and,
thus, we conclude that the parameter has an effect upon
the response variable.

ANOVA is so called as it essentially splits the total
variation in the observations into variation contributed
by the parameters (crossover and mutation), their inter-
action, block, and error. Error is conceptualized in terms
of residuals, which are simply the individual deviations
of the observations from the expected values based on
the assumption that there is no effect.

Testing to ascertain if a parameter such as crossover
or mutation has a statistically significant effect is a
straightforward process. First, we divide the variation
contributed by the parameter adjusted by the number of
levels of the parameter by the variation contributed by
error adjusted by the number of levels of the parameters
and the observations. This results in a ratio which is
called an value. Second, we determine the probability
that we would observe an value as large as we did
under the null hypothesis. This is the -value associated
with the value or simply .

If the -value is equal to or less than a chosen level
of significance (see Section V-D) this is taken to sug-
gest that the parameter has an effect upon the response
variable. A typical output from ANOVA is shown in
Table VI. Here, it can be seen that crossover, mutation,
and block would be considered to have an effect at a 1%
level of significance.

In ANOVA, the values for ( -values) are only
(exactly) valid if the responses are normally distributed.
Although even moderate departures from normality
do not necessarily imply a serious violation of the as-
sumptions on which ANOVA is based [19], particularly
for large sample sizes, it is standard procedure to use
methods such as plotting a histogram of the residuals or
constructing a normal probability plot of the residuals
to verify normality of the sampling populations. In the
present research analysis of the residuals did not provide
any evidence suggesting that the assumptions on which
ANOVA calculations are made were compromised.

3) Testing individual parameters and interaction. ANOVA
allows for the testing of significance of individual param-
eters permitting the effect of crossover and mutation to
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be statistically demonstrated. For issues which have been
raised in the literature such as naive evolution [8], [9],
ANOVA provides evidence which may or may not sup-
port the inclusion of the crossover parameter.

In addition, ANOVA allows for the testing of inter-
action between parameters. Interaction is simply the
failure of one parameter to produce the same effect
on the response variable at different levels of another
parameter [19]. Examining interaction is important
because a significant interaction means the effect of
each parameter cannot be considered independently
of the others. The interaction parameter is created by
multiplying the crossover parameter by the mutation
parameter and adding this parameter to the ANOVA
model.

4) Response curve analysis. In ANOVA, once a parameter
is demonstrated to be statistically significant the effect of
the parameter may be modeled through an appropriate
polynomial. Statistical testing can be carried out to as-
sess if the shape of the response curve is predominantly
linear or is comprised of higher order polynomials by
partitioning the total variation of each parameter into its
orthogonal polynomial contrast terms.

Once the shape of the response curve is established,
polynomial regression can be carried out to obtain esti-
mates of the coefficients of the various parameters in the
response curve equation. Importantly, if the interaction
parameter is significant in the ANOVA model, then the
overall equation must be found. If not, then the equations
for crossover and mutation can be obtained separately.

For fitted response curves which are comprised of
quadratic or higher components, we can obtain the
derivatives and find the values where the derivatives
equal zero which yield estimates of the best value for
each parameter. Additionally, confidence intervals can
be calculated.

However, if the fitted response curve is linear then a
negative coefficient will correspond solely to a best rate
of 100%, while a positive coefficient will correspond
solely to a best rate of 0% since the minimum of a straight
line can only occur at either end.

5) Power. The calculation of power for ANOVA can be
made by using the effect size index as described by
Cohen [20].

6) Availability. ANOVA and regression are standard statis-
tical models available in virtually all statistical software
packages which are used on desktop computers.

7) Applicability. Randomized complete block design can be
applied to other adaptive algorithms with little difficulty.
It simply requires that the seeds, or any other sources of
noise, are kept identical within each replicate so that the
source can be blocked.

The GA was implemented in Java [21]. Statistical analysis
was carried out using S-PLUS [22]. Power calculations were
carried out using GPOWER [23].

A number of aspects of the analysis are discussed in more
detail next.

D. Choice of Level of Significance

There are two types of errors associated with statistical
testing. A type I error is the rejection of the null hypothesis
when it is true. A type II error is the nonrejection of the null hy-
pothesis when the alternative hypothesis is true. The probability
of making a type I error is denoted by and the probability
of a type II error is denoted by . Since the null hypothesis
represents the most conservative proposal it is considered that
a type I error is more serious than a type II error [18]. Thus,

is generally and arbitrarily set at a low level. This level of
significance is traditionally set at values such as 10%, 5%, or
1%.

For published research a level of significance of 1% is often
used [24]. -values less than 1% suggest that the null hypoth-
esis is strongly rejected or that the result is highly statistically
significant [18]. In the present paper, we have employed 1% as
our level of significance and correspondingly calculated 99%
confidence intervals.

E. Level of Significance for Orthogonal Simultaneous Multiple
Comparisons

In a situation of orthogonal simultaneous multiple compar-
isons within a parameter, it is necessary to modify the level of
significance. This is because the probability of achieving one or
more statistically significant results in simultaneous multiple
comparisons will exceed the level of significance chosen (1% in
the present study). This is illustrated in (5)

at least one significant result in (5)

This occurs in ANOVA when the sum of squares for each pa-
rameter is partitioned into orthogonal contrast terms. In order
to ensure that the probability of achieving one or more statisti-
cally significant results in simultaneous multiple comparisons
is exactly 1%, we use a modified level of significance for testing
each of orthogonal polynomial contrast terms calculated in
accordance with (6)

Modified level of significance (6)

Our approach is different from the Bonferroni method [22]
which, for the present work, would simply divide the overall
level of significance by the number of simultaneous multiple
comparisons. The Bonferroni method will ensure that the prob-
ability of achieving one or more statistically significant results
in simultaneous multiple comparisons is no greater than 1%.
Thus, it yields an upper bound such that the actual probability
of achieving one or more statistically significant results in si-
multaneous multiple comparisons may be much smaller.

F. Power

As is the probability of rejecting the null hypothesis
when it is false, this is known as the power of the test. A power
of 80% when there is moderate departure from the
null hypothesis is considered desirable by convention [20]. The
value of is related to sample size. A sample size that is too
small will generally fail to produce a significant result, while
a sample size that is too large may be difficult to analyze and
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wastes resources. It is, therefore, necessary to have some means
of calculating whether the size of the sample chosen has suffi-
cient power.

In order to calculate power, it is necessary to specify the de-
gree to which the null hypothesis is false. This is quantifiable as
a specific nonzero value using the unit-less effect size indices
and as described by Cohen [20]. For ANOVA, by convention,
a small effect size is an value of 0.10, a medium effect size is
an value of 0.25, and a large effect size is an value of 0.40.

In the present paper, differences in a specified number of
epochs were first converted to the effect size index , where

(7)

where is the largest population mean of a parameter level,
is the smallest population mean of a parameter level, and

is the population standard deviation.
This results in a unit-less number to index the degree of de-

parture from the null hypothesis of the alternative hypothesis,
or more simply, the effect size we wish to detect [20].

Next, the conversion from to for ANOVA requires a
knowledge of the pattern of separation for all means for all
levels of the parameter. Patterns identified by Cohen [20] are
the following.

1) Minimum variability: One mean at each end of , the
remaining means all at the midpoint.

2) Intermediate variability: The means equally spaced
over .

3) Maximum variability: The means are all at the end points
of .

Tables are available for the conversion from to for each
scenario. If the pattern of separation is unknown an inspection
of these tables illustrates that the most conservative approach
is to assume the minimum variability pattern which results in
being at its smallest. In this case, is calculated as

(8)

It should be noted that power may be calculated a priori or
post hoc. If the population standard deviation is known from
prior research one can calculate a priori the sample size required
to confer a specified power. On the other hand, if the population
standard deviation is unknown but can be estimated once the
study is concluded then post hoc power calculations indicate the
ability of the present sample size to detect specified effect sizes.

As the present study was exploratory in nature and a priori as-
sumptions about the population standard deviation could not be
made, we strictly adhered to post hoc calculations. Thus, unless
statistical significance had been already demonstrated in the
ANOVA analysis for the interaction parameter, we continued
to increase sample size by a factor of 5. This was enacted until
at least 80% power was achieved for detecting a difference of
five epochs for the interaction between crossover and mutation.
This is because is smallest for the interaction parameter since

is greatest for this parameter.
As a final remark, in the present research, we choose to cal-

culate power based upon the ability to detect a difference of at

least five epochs as noted above. This number was chosen as
it most closely approximated the difference in the number of
epochs detectable for the simplest problem F1, if we had calcu-
lated power using an of 0.4 (large effect).

G. Simultaneous Confidence Intervals for the Plotted
Response Curve

Plotting mean performance against parameter levels provides
an initial estimate of the shape of the response curve. However,
the shape of the curve may be compromised if the sample size is
insufficient. To gauge the reliability of the trend, 99% simulta-
neous confidence intervals about each mean can be calculated.
The value for calculating simultaneous confidence intervals
for levels of an individual parameter corresponds to the prob-
ability given by (9)

(9)

Note that while confidence intervals tighten as sample size
increases, showing increased confidence about the location of
the population mean, there is still a great deal of randomness in
each individual run.

H. Pooled Analysis Design

If large data-sets are required these may not be able to be
analyzed when a parameter has too many levels resulting in the
statistical software having to deal with too many and too large
matrices. In order to address this issue, we devised a pooled
analysis design for the present study as follows.

1) For each individual experiment, we calculated the mean
of the performance measure for each combination of
crossover and mutation.

2) These data from individual experiments were concate-
nated into a new pooled data file. The response variable
was now the mean of the performance measure averaged
over the number of replicates in the individual experi-
ment. This results in a smaller error variance as the av-
erage of a number of observations is expected to be closer
than a single observation to the population mean. Each
individual experiment denoted one level of the block
parameter.

3) Analysis was carried out in the same manner as for indi-
vidual experiments.

I. Estimates of Best Values for Parameters

Once the coefficients are obtained from the polynomial re-
gression model it is straightforward to obtain an estimate of
the best value for the specified parameter by differentiating and
solving the response curve equation. 99% confidence intervals
are then calculated using Taylor’s Expansion ( method) [25].

J. Workup Procedures to Ensure a Balanced ANOVA Design

A balanced design for ANOVA occurs if no data are missing
or censored (threshold is not reached during the run of the GA).
This is desirable since it results in the test statistic being more
robust to small departures from the assumption of equal vari-
ances for the number of treatments. In addition, the power of
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Fig. 1. Dot diagram for F1. Each dot represents an instance of censoring.

the ANOVA test is maximized. This was achieved by two con-
secutive workup procedures which were carried out for all four
test functions.

1) Dot Diagrams: First, to minimize the occurrence of cen-
soring in the present study a data-set of an arbitrary ten repli-
cates was generated for all functions using crossover with values
of zero to 1 with an interval of 0.1, and mutation with values of
zero to 1 with an interval of 0.01. If on at least one occasion
the threshold was not reached for a particular crossover rate and
mutation rate combination, this was shown as a dot on the re-
sultant dot diagram.

As illustrated in Fig. 1, for F1 mutation rates of less than 0.15
and greater than zero were not associated with censoring. In con-
trast, all crossover rates from 0 to 1 were valid. Thus, at this point
for F1 the rates which could be considered to be reasonably free
from censoring, so that the threshold value would be reached or
exceeded on every run of the GA, were crossover rates of 0 to 1
with an interval of 0.1, and mutation rates of 0.01 to 0.14 with
an interval of 0.01.

2) Finalizing Ranges for Exploratory Statistical Anal-
ysis: Second, to further ensure that no censored data would
appear in the data-sets for analysis, and so finalize the ranges
for exploratory statistical analysis to begin, we conducted the
following exercise.

Using crossover and mutation rates not associated with cen-
soring from the dot diagrams, an arbitrary ten data-sets of 100
replicates each were generated. Using S-PLUS, the combination
of crossover rate and mutation rate resulting in the best perfor-
mance was found in each data-set. When these ten combinations
were collated, they demonstrated the lowest and highest rates of
crossover and mutation associated with best performance. For
F1 crossover ranged from 0.8 to 1 and mutation ranged from
0.05 to 0.08.

However, to ensure that the ranges we would study could be
considered robust, we allowed the ranges to widen one interval
step on either side. Thus, as displayed in Table V, this made the
finalized range for F1 for crossover 0.7 to 1 with an interval of
0.1, and for mutation 0.04 to 0.09 with an interval of 0.01.

As a result of these two consecutive workup procedures, a
balanced ANOVA design was achieved.

TABLE V
FINAL RANGES FOR CROSSOVER AND MUTATION

TABLE VI
F1-ANOVA OF 100 REPLICATES

VI. RESULTS

A. Exploratory Analysis of Test Function F1

The results of analysis of data-sets containing 100 replicates,
500 replicates, and pooled results from five data-sets of 500
replicates are described consecutively to illustrate how statis-
tics can be used to assist in exploratory analysis.

1) Results With 100 Replicates: Table VI displays ANOVA
of 100 replicates.

Crossover and mutation were both highly statistically signifi-
cant, while the interaction between crossover and mutation was
not. Post hoc power calculations as shown in Table XVI show
that while the power for detecting a difference of five epochs was
greater than 97% for both crossover and mutation, the power for
the interaction parameter was only 3.38%. Thus, the use of 100
replicates was too small to demonstrate statistical significance
for interaction.

The response curve plots for crossover and mutation are dis-
played in Fig. 2(a) and (b).

While the response curve plot for mutation suggested a
quadratic trend, the response curve plot for crossover was less
obvious. Since only 100 replicates were used, the width of the
simultaneous confidence intervals was very wide so that for
crossover either a linear curve or a higher order polynomial
such as a cubic curve could conceivably have fitted between
the simultaneous confidence intervals. This is illustrated in
Fig. 3(a) and (b).

As it is preferable to formally test for the shape of the re-
sponse curve rather than relying on visual inspection, better in-
formation was obtained from the sum of squares partitioned
into terms corresponding to orthogonal contrasts which repre-
sent polynomials. These data are shown in Table XXIII and
suggested a linear trend for crossover and a quadratic trend for
mutation.

However, given the lack of power associated with interaction
it was necessary to repeat the analysis using an increased sample
size. Adhering to our protocol of carrying out power calcula-
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(a)

(b)

Fig. 2. (a) F1-Crossover response curve plot with 100 replicates.
(b) F1-Mutation response curve plot with 100 replicates.

tions on a strictly post hoc basis, we enacted a fivefold increase
in the number of replicates.

2) Results With 500 Replicates: ANOVA of 500 replicates
is shown in Table VII.

A similar pattern for the overall results was evident. That is,
a highly significant result for crossover and mutation while a
nonsignificant result for the interaction parameter.

Table XVII illustrates the improvement in power obtained by
increasing the sample size though the power associated with the
interaction parameter remained below the study threshold. The
effect of increasing the number of replicates upon the width of
the simultaneous confidence intervals for the response curves is
shown in Fig. 4(a) and (b). The increase in the number of repli-
cates reduced the width of the simultaneous confidence intervals
producing clearer linear behavior for crossover and quadratic
behavior for mutation. Both trends were affirmed in the parti-
tioned sum of squares displayed in Table XXIV.

However, the continued lack of power associated with the in-
teraction parameter meant that a further increase in the sample
size was again required. We opted again for a fivefold increase
in the number of replicates to 2500. However, this data-set could
not be analyzed by S-PLUS due to the fact that the large number

(a)

(b)

Fig. 3. (a) F1-Linear curve fitted through simultaneous confidence intervals.
(b) F1-Cubic curve fitted through simultaneous confidence intervals.

TABLE VII
F1-ANOVA OF 500 REPLICATES

of levels for the block variable meant that the calculations in-
volved too many and too large matrices. As such, the pooled
analysis design was implemented.

3) Results of the Pooled Analysis: Table VIII shows
ANOVA of the pooled data-set from five data-sets of 500
replicates. Both crossover and mutation were again highly
statistically significant. However, the interaction between
crossover and mutation was not with a -value of 0.0377.

Post hoc power calculations are displayed in Table XVIII. The
increase in replicates now resulted in 100% power to detect a
difference of five epochs for the interaction parameter. As the
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(a)

(b)

Fig. 4. (a) F1-Crossover response curve plot with 500 replicates.
(b) F1-Mutation response curve plot with 500 replicates.

TABLE VIII
F1-POOLED ANOVA ANALYSIS

power threshold of the study had been exceeded, it was not nec-
essary to increase the sample size any further.

The response curve plots for crossover and mutation from
the pooled analysis are displayed in Fig. 5(a) and (b). As can
be seen the width of the simultaneous confidence intervals has
been further tightened. The partitioned sum of squares shown
in Table XXV illustrated strong agreement with the plots. How-
ever, for mutation a cubic effect was now significant though the
quadratic effect remained predominant as evidenced when com-
paring the magnitude of the respective sum of squares.

In conclusion, these data suggested that both crossover and
mutation are highly important parameters in the GA for the
F1 problem domain. The behavior of crossover is linear, while

(a)

(b)

Fig. 5. (a) F1-Crossover response curve plot from pooled analysis.
(b) F1-Mutation response curve plot from pooled analysis.

the behavior of mutation is predominantly quadratic with some
cubic component. The interaction observed between crossover
and mutation is not significant and, therefore, is of little prac-
tical importance.

Using polynomial regression separate fitted response curves
for crossover and mutation were obtained. These are illustrated
in Fig. 6(a) and (b) and the equations are given in Table XXX.
Using these equations the best values for crossover and mutation
were calculated and the overall results are displayed in Table IX.

B. Exploratory Analysis of Test Function F3

ANOVA of the pooled data-set for F3 is shown in Table X.
Crossover and mutation were highly statistically significant,
while the interaction between crossover and mutation was not.
Post hoc power calculations displayed in Table XIX show that
the power for detecting a difference of five epochs for the
interaction parameter was 88.27%, exceeding the threshold for
the present study. As such, there was no further need to increase
the sample size.

An examination of the partitioned sum of squares shown
in Table XXVI confirmed a linear trend for crossover and a
quadratic trend for mutation. Using polynomial regression
the fitted response curves for crossover and mutation were
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(a)

(b)

Fig. 6. (a) Fitted response curve: F1-crossover. (b) Fitted response curve:
F1-mutation.

TABLE IX
F1-OVERALL RESULTS FOR CROSSOVER AND MUTATION

TABLE X
F3-POOLED ANOVA ANALYSIS

obtained. These are illustrated in Fig. 7(a) and (b) and the
equations given in Table XXX. Using these equations the best
values for crossover and mutation were calculated and the
overall results are displayed in Table XI.

(a)

(b)

Fig. 7. (a) Fitted response curve: F3-crossover. (b) Fitted response curve:
F3-mutation.

TABLE XI
F3-OVERALL RESULTS FOR CROSSOVER AND MUTATION

TABLE XII
F2-POOLED ANOVA ANALYSIS

C. Exploratory Analysis of Test Function F2

1) Results of the Pooled Analysis: Table XII shows ANOVA
analysis of the pooled data-set for F2.

Crossover and mutation were highly statistically significant
as was the interaction between crossover and mutation with
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(a)

(b)

(c)

Fig. 8. (a) Fitted response curve: F2. (b) Fitted response curve: F2-crossover.
(c) Fitted response curve: F2-mutation.

a -value of 0.00155. Since the interaction parameter demon-
strated strong statistical significance, no further increments in
sample size were necessary.

Examination of the sum of squares partitioned into orthog-
onal polynomial contrast terms as shown in Table XXVII sug-
gested a linear trend for crossover and a cubic trend for muta-
tion with the predominant effect for the latter arising from the
quadratic term. Partitioning of the sum of squares of the inter-
action parameter showed only a statistically significant effect
( -value less than 0.01) for the linear:linear term (that is, the

TABLE XIII
F2-OVERALL RESULTS FOR CROSSOVER AND MUTATION

TABLE XIV
F6-POOLED ANOVA ANALYSIS

linear component of crossover multiplied by the linear compo-
nent of mutation).

As the interaction parameter was found to be significant, in
contrast to the results for F1 and F3, polynomial regression
was used to obtain the overall three-dimensional (3-D) equa-
tion for the response curve and this is given in Table XXX.
Fig. 8(a) illustrates this overall 3-D response curve and Fig. 8(b)
and (c) illustrates two-dimensional (2-D) slices corresponding
to crossover and mutation, respectively.

Fig. 8(b) illustrates consistent positive slopes for the
crossover curves indicating a worsening of performance as the
crossover rate increased. Additionally, it should be noted that
the top curve and the second curve from the top correspond to
mutation values of 24% and 18%, respectively. As the other
curves fall inside these extremes, this illustrates how this cross
section actually curves into the page. In Fig. 8(c), we see the
curved trend of each mutation curve. In this graph, the top
curve corresponds to a crossover rate of 70% and the bottom
curve corresponds to a crossover rate of 0%. This suggests that
mutation performs best when the crossover rate is 0%.

Using the equation where the rate of crossover was 0% the
best value for mutation was calculated. The overall results of
the analysis are shown in Table XIII.

D. Exploratory Analysis of Test Function F6

1) Results of the Pooled Analysis: Table XIV shows
ANOVA analysis of the pooled data-set for F6.

Paralleling the results for F2, both crossover and mutation
were highly statistically significant together with the interaction.
As before, strong statistical significance for the interaction pa-
rameter meant that no further increments in sample size were
necessary.

Inspection of the sum of squares partitioned into orthogonal
polynomial contrast terms as shown in Table XXVIII demon-
strated up to quadratic behavior for crossover with the linear
component being predominant, while for mutation up to cubic
behavior with the quadratic effect being predominant. Interac-
tion was more complex than for F2 with significant interac-
tion terms: linear:linear, quadratic:linear, linear:quadratic, and
linear:cubic.
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(a)

(b)

(c)

(d)

Fig. 9. (a) Fitted response curve: F6. (b) Fitted response curve: F6-crossover.
(c) Fitted response curve: F6-mutation. (c) Fitted response curves for crossover
0% and 10%: F6-mutation.

Again, using polynomial regression the overall 3-D equation
for the response curve was obtained and is given in Table XXX.

TABLE XV
F6-OVERALL RESULTS FOR CROSSOVER AND MUTATION

Fig. 9(a) illustrates the overall 3-D response curve and Fig. 9(b)
and (c) illustrates 2-D slices corresponding to crossover and mu-
tation, respectively.

In Fig. 9(c), we see the curved trend of each mutation
curve. However, Fig. 9(d), which displays mutation curves
for crossover rates of 0% and 10%, respectively, illustrates
that performance was predicted to improve very slightly with
the latter crossover rate. This was also seen when examining
mutation rates for crossover rates of 5% and 15%. However,
to assess in a practical fashion if these differences would be
apparent in a data-set focusing upon this range, we generated
five 500 replicate data-sets keeping the mutation range the
same but narrowing the range of crossover from 0% to 15%
inclusive with an interval of 1%.

As shown in Table XXIX ANOVA analysis illustrated that the
differences in performance due to crossover over this range were
marginal with a -value of 0.0208 despite the power being high
at 91.63%. Moreover, the partitioned sum of squares illustrated
that the effect of crossover was solely linear with a -value of
0.0003. Regression analysis confirmed that the coefficient for
the linear term was positive indicating a worsening of perfor-
mance as the crossover rate increased.

Thus, using the equation where the rate of crossover was 0%
the best value for mutation was calculated. The overall results
of the analysis are shown in Table XV.

VII. DISCUSSION

GAs have been studied in computer science and used in
real-world applications to find solutions to difficult problems.
However, there is no generally accepted methodology to assess
which parameters significantly affect performance, whether
these parameters interact and how performance varies with
respect to changes in parameters. This study describes a sta-
tistical methodology for the exploratory study of genetic and
other adaptive algorithms addressing these issues.

Generically, once the algorithm and the problem domain have
been specified, the steps in the analysis are the following.

1) Identify sources of variation and modify the algorithm to
generate blocked runs.

2) Use a workup procedure to minimize the appearance of
censored observations and to finalize starting ranges for
parameters.

3) Generate an initial data-set consisting of an arbitrary
number of replicates. Typically, we have found 100 repli-
cates to be a useful starting point.
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TABLE XVI
F1-POWER WITH 100 REPLICATES

4) Calculate power post hoc based upon a chosen effect
size. If at least 80% power is not achieved increase the
sample size.

5) Conduct (pooled) ANOVA analysis and determine which
parameters are statistically significant.

6) For parameters which are statistically significant, parti-
tion the sum of squares into polynomial contrast terms.
Determine which polynomial terms are statistically sig-
nificant.

7) Use polynomial regression to obtain the coefficients for
the overall response curve (if the interaction parameter is
statistically significant) or to obtain the coefficients for
the response curve for each parameter separately (if the
interaction parameter is not statistically significant).

8) Differentiate and solve the response curve for each pa-
rameter to obtain best values and calculate confidence
intervals.

Before discussing the specific results of our study it should
be prefaced that the present research aimed to provide a sta-
tistical methodology by demonstrating its practical use in well
known test functions. In this regard, the number of parameters
and the suite of problems is restricted. Further research using a
statistical approach with an expanded set of parameters, in both
continuous and discrete problem domains, will be necessary to
expand upon these initial findings.

The analysis of F1 illustrates the way in which our method-
ology was used to make informed decisions when exploring
the relationship between crossover and mutation on a spec-
ified problem. Initially, workup procedures yielded starting
ranges for crossover and mutation. ANOVA analysis of an
initial data-set of 100 replicates demonstrated a statistically
significant effect upon performance of both crossover and
mutation with nonsignificance for the interaction parameter.

TABLE XVII
F1-POWER WITH 500 REPLICATES

TABLE XVIII
F1-POWER OF THE POOLED ANALYSIS

Attempting to gauge the shape of the response curve plots was
compromised by the small sample size. As seen, the width of
the simultaneous 99% confidence intervals made it unclear as
to whether the trend for crossover was linear or included higher
order components.
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TABLE XIX
F3-POWER OF THE POOLED ANALYSIS

TABLE XX
F2-POWER OF THE POOLED ANALYSIS

In contrast, the sum of squares partitioned into terms corre-
sponding to orthogonal polynomial contrasts demonstrated pre-
dominantly linear and quadratic trends for crossover and muta-
tion, respectively. Although this dispelled the ambiguity asso-
ciated with the data obtained from visual inspection, the subse-
quent power calculations clearly showed a lack of power for the
interaction parameter. Therefore, increases in sample size were
required. This was carried out until the appropriate power for

TABLE XXI
F6-POWER OF THE POOLED ANALYSIS

TABLE XXII
F6-POWER OF THE POOLED ANALYSIS FOR CROSSOVER 0% TO 15%

TABLE XXIII
F1-PARTITIONED SUM OF SQUARES WITH 100 REPLICATES

the interaction parameter was achieved. At this point, polyno-
mial regression was used to obtain fitted response curves and
best values with 99% confidence intervals were calculated.
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TABLE XXIV
F1-PARTITIONED SUM OF SQUARES WITH 500 REPLICATES

TABLE XXV
F1-PARTITIONED SUM OF SQUARES OF POOLED ANALYSIS

TABLE XXVI
F3-PARTITIONED SUM OF SQUARES OF POOLED ANALYSIS

Looking at the results from the suite of test functions together,
crossover appears to have a predominantly linear effect upon

TABLE XXVII
F2-PARTITIONED SUM OF SQUARES OF POOLED ANALYSIS

performance. For F1 and F3 the positive gradient suggests
selecting a rate as high as possible, while for F2 and F6 the
negative gradient suggests its possible exclusion. As noted
earlier, Schaffer et al. [8] documented a relative insensitivity
to crossover for these same functions and our research adds
to evidence supporting the effectiveness of naive evolution
for certain problems. Indeed, as suggested earlier, naive evo-
lution may be a powerful search algorithm in its own right
as subtly commented by Eshelman [9]. Given that our study
has controlled for the effect of seed, we may be obtaining a
clearer perspective of the actual behavior of crossover than
has been seen previously. Whatever the case, the observation
in our work that crossover appears predominantly linear and
that the direction of its slope is problem specific is certainly of
practical interest. It may be possible to correlate this behavior
with particular classes of problems making it easier to decide
how to make the best use of the crossover parameter. We are
currently investigating this idea further.

In contrast, mutation appears to have a consistent and pre-
dominantly quadratic effect upon performance. Why the effect
should be more complex than that of crossover is another
question of interest as it may lead to further insights into GA
dynamics. The best values of mutation range from 5.11% to
20.92% (corresponding to a bit-flipping mutation rate of up to
approximately 10%). These mutation rates add to a growing
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TABLE XXVIII
F6-PARTITIONED SUM OF SQUARES OF POOLED ANALYSIS

body of evidence advocating the use of higher mutation rates
than have traditionally been used [1]. As with crossover, further
statistical work of this kind will assist in the use of the mutation
parameter in various problem domains.

The use of statistics also enabled the issue of interaction to be
addressed and we found that whether interaction is significant
is also problem specific. As to why it is important for some
problem domains and not others remains to be answered and
may lead to a greater understanding of the interplay between
the baseline parameters of crossover and mutation. Again, we
are carrying out further research in this area.

In conclusion, this paper has demonstrated a statistical
methodology that allows the investigator to undertake ex-
ploratory analysis of genetic and other adaptive algorithms.
Given the many unique advantages offered by statistical anal-
ysis, such as the ability to block for seed, calculation of power
and sample size, and rigorous study of response curves, further
use of statistics in this exploratory way will assist in the use of
GAs as powerful search tools.

TABLE XXIX
F6-PARTITIONED SUM OF SQUARES OF POOLED ANALYSIS FOR CROSSOVER

TABLE XXX
EQUATIONS OF FITTED RESPONSE CURVES

APPENDIX A
POWER TABLES

See Tables XVI–XXII.

APPENDIX B
PARTITIONED SUM OF SQUARES

See Tables XXIII–XXIX.

APPENDIX C
FITTED RESPONSE CURVES

See Table XXX.
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