
E L S E V I E R Fuzzy Sets and Systems 96 (1998) 37-51

FUZZY
sets and systems

Completeness and consistency conditions for learning fuzzy rules 1
A n t o n i o G o n z a l e z *, R a u l P e r e z

Departamento de Ciencias de la Computaci6n e Inteligencia Artificial, E. ZS. de Ingenieria Informgttica,
Universidad de Granada, 18071-Granada, Spain

Received December 1995; revised August 1996

Abstract

The completeness and consistency conditions were introduced in order to achieve acceptable concept recognition rules.
In real problems, we can handle noise-affected examples and it is not always possible to maintain both conditions. Moreover,
when we use fuzzy information there is a partial matching between examples and rules, therefore the consistency condition
becomes a matter of degree. In this paper, a learning algorithm based on soft consistency and completeness conditions
is proposed. This learning algorithm combines in a single process rule and feature selection and it is tested on different
databases. @ 1998 Elsevier Science B.V. All rights reserved.

Keywords." Machine learning; Classification problems; Fuzzy logic; Fuzzy rules; Genetic algorithms

1. Introduction

Inductive learning has been successfully applied to
concept classification problems. Usually, the knowl-
edge is represented through rules meaning the rela-
tionships between the different problem variables. In
this paper, we are interested in studying conditions
that allow us to propose learning algorithms capable
of learning concept classification rules. Moreover,
we are interested in algorithms capable o f handling
fuzzy information [18] and capable o f obtaining fuzzy
rules. Several learning algorithms working in fuzzy
environments have been proposed in the literature
[3, 4, 9, 12, 15-17].

Two conditions that must be satisfied for a learn-
ing algorithm to obtain acceptable concept recogni-

*Corresponding author. Tel.: + 34.58.243199; fax: +34.58.
243317; e-mail: a.gonzalez@decsai.ugr.es.

This work has been supported by the CICYT under Project
T1C95-0453.

tion rules were introduced in [11]. These conditions
are the completeness and the consistency conditions.
The completeness condition states that every example
of some class must satisfy some rule from this class.
The consistency condition states that if an example
satisfies a description of some class, then it cannot be
a member of a training set o f any other class.

Both conditions provide the logical foundation o f
algorithms for concept learning from examples, but in
real cases both conditions are difficult to satisfy. In
our case, we find two problems, first, on real problems
we can handle noise-affected examples and therefore
it is not always possible to keep the completeness and
consistency conditions. Moreover, when we use fuzzy
rules we have a second problem since the examples
have a partial matching with the rules, and therefore
the consistency condition becomes a matter of degree.
Thus, we are interested in obtaining soft consistency
and completeness conditions.

The basic idea of the proposed learning algorithm
consists in, on the one hand, determining the best

0165-0114/98/$19.00 @ 1998 Elsevier Science B.V. All rights reserved
PH S01 65-0114(96)00280-1

38 A. Gonzalez, R. Perez/Fuzzy Sets and Systems 96 (1998) 3~51

Very-Low Low Medium High Vc~-High

0 25 50 75 100

Fig. 1. The fuzzy domain of X1 and)(2.

rules to represent a set of examples E (rule selec-
tion), on the other, obtaining for each rule the rel-
evant variables in order to describe each particular
concept (feature selection). Thus, the algorithm starts
with all possible antecedent variables and a fixed con-
sequent variable (representing the concept). We want
to know which are the rules capable of identifying
each value of the consequent variable, and for each
rule, the relevant antecedent variables to describe the
concept.

The rule selection is carried out by choosing among
those rules that satisfy the soft consistency condition
and cover the maximum number of positive examples.
Thus, we fix a value of the consequent variable and
next we select the rule that covers the maximum num-
ber of positive examples. Since it is possible that this
value may be described for several different rules, we
eliminate the examples covered by the previous rule
and we repeat the process until the soft completeness
condition is verified. These steps are carried out for
each value of the consequent variable, and in the end,
we have a set of rules that represent the original set
of examples, E. In each step, we shall use a genetic
algorithm [6] as a search method for the best rule.

The feature selection is based on the use of a
particular model of rule that allow us to eliminate
non-relevant variables. The rule model, that we use
in this work, consists in the left-hand side (the an-
tecedent part) of a conjunction of one or more vari-
ables whereas the right-hand side (the consequent
part) indicates the value of the classification variable
to be assigned to the examples that are matched by
the left-hand side of the rule. Each member of the
conjunction in the antecedent can have an internal dis-
junction, i.e., we accept that the value assigned to an
antecedent variable in the rules can be a subset of its

domain. For example, a rule might take the following
expression:

If (Xl = Very-High) and

(X2 = Very-Low or Low or Medium) then

(Y = approximately equal to 0)

(1)

where the domain of variables Xl and)(2 has been
represented in Fig. 1.

In order to learn the structure of a rule this model
is fundamental in the proposed learning algorithm,
since at the beginning it will start with atl the possi-
ble antecedent variables and then it will decide which
are the relevant variables for the fixed consequent.
In this process, the algorithm uses the aforemen-
tioned model of rule to eliminate the non-relevant
variables. When the best rule for a class contains a
variable having a value made up of all possible val-
ues of its domain, then the algorithm has discovered
that this variable is not relevant to this consequence
and it can be eliminated from the rule. This model
of rule has been used in the literature by several
authors (see [2, 8, 11] for example). In the fuzzy
learning literature, there are not many previous pa-
pers suggesting solutions to this difficult problem.
The greater part of these papers achieve rules in
which all the variables necessarily appear, and the
algorithms are not able to eliminate non-relevant
variables. Therefore, these algorithms need a prior
reduction in the possible variable set. In [10], this
task is carried out by an expert that proposes a
pre-selection of "possible interesting" features. An
exception is [15] in which an algorithm capable
of determining the structure of the fuzzy rules is
proposed.

A. Gonzalez, R. Perez/Fuzzy Sets and Systems 96 (1998) 37-51 39

One of the main advantages of the proposed leam-
ing algorithm is that combines in a single process the
rule selection and the feature selection.

Moreover, the aforementioned model of rule is im-
portant since it allows us to change, in some cases,
the granularity of the domain by combining different
elements. For example, the rule shown in (1) assigns
the value {Very-Low, Low, Medium} to the variable
X2. This value may be interpreted as a new label "less
than or equal to medium". The proposed model of rule
therefore allows us to include some structured descrip-
tors [11] in an easy way.

This work deals with the problem of defining com-
pleteness and consistency conditions for learning
fuzzy rules. The next section is devoted to introduce
a soft consistency condition. The completeness con-
dition and the learning algorithm are introduced in
Section 3. We have implemented a system called
SLAVE with the aforementioned features and in
Section 4 we carry out different experimental
tests in order to study its predictive performance.
Finally, in the last section we propose a modification
of the algorithm that attempts to simplify the practical
choice of the parameters in SLAVE.

2. The k-consistency condition

The consistency condition states that if an example
satisfies a description of some class, then it cannot be
a member of a training set of any other class. We pro-
pose a weaker definition based on the non-fulfillment
of this condition in several cases.

Let us suppose E is a set of examples containing
every example

X1)(2 X3 ... X, c(Ye)
el e2 e3 en

n antecedent variables X1,X2 X, and a consequent
variable Y.

The referential set for each antecedent variable X/is
Ui and the referential set for the consequent variable
is V. The domains for the rules will be D i for the an-
tecedent variables and F for the consequent variable.
In this paper, we accept that the sets Di Vi C { 1 n}
and F are finite sets, and that some of them may be

fuzzy domains, i.e., set made up by fuzzy sets in the
respective referential sets.

Let e be a crisp example

e = (e l , e 2 en,c(e)),

where ei C Ui are the values of the antecedent variables
and c(e) is the class associated to e. Let A be the

rule set

A = P(D1) x P(D2) x . . . x P(Dn) x F,

where P(X) denotes the set of subsets of X.
Let R be a crisp rule with an antecedent part ant(R)

and a consequent part con(R). We can say that the
example e adapts to the rule R iff

(i) (el e ,) C ant(R),
(ii) c(e) C_ con(R).
For example, the example (10, red, 1) adapts to the

rule " I f X is less than 20 and Y is any colour, then Z
is an integer".

By using the adaptation between example and rule,
we can classify the examples as negative or positive to
a rule. An example is positive if it adapts to the rule,
and an example is negative if (i) is a true condition
then (ii) is a false condition.

Let E be an example set. By using the concept
stated, we can define the following subsets of E:

E+(R) = { e E E l e is a positive example to R}

E- (R) = { e E E l e is a negative example to R}

and the cardinality of these subsets shall be denoted by

n~(R) = IE-(R)I,

n; (R) = IE (R)I.

Let H C_ A be a set of rules, then the following
equivalence is obviously verified

H satisfies the consistency condition

n~(R) = 0, VREH.

Therefore, the consistency condition implies that
the rules selected by the learning algorithm must not
have negative examples. In order to weaken this strong
condition, the first idea consists in allowing it to have
some negative examples, but not many. How many
examples can we admit? We can fix a hard threshold,

40 A. Gonzalez, R. PerezlFuzzy Sets and Systems 96 (1998) 37-51

i.e., H could satisfy a new consistency condition if
and only if, for some ~, n{ (R)~< e VR E H. However,
this definition does not take into account the number
of positive examples. Perhaps we might be interested
in admitting two negative examples for a rule with 20
positive examples, but we do not admit it if the rule
only has two positive examples. Therefore we propose
the following weak definition of consistency. /

Definition 2.1. Let R E A be a rule and k c [0, 1] be
a fixed parameter. We say that the rule R, such that
n + (R) > 0, satisfies the k-consistency condition if and
only if
• k = 0 t h e n n { (R) = 0 .
• kE(0 , 1] then n~(R) < kn+(R).

The classical consistency condition is included in
this definition as a 0-consistency condition and, in
general, the parameter k allows us to weaken this
condition. Parameter k may be interpreted as a noise
threshold since a rule satisfies the k-consistency con-
dition when a noise level less than the 100*k per-
cent of the positive examples, appears in the example
set. Parameter k will be called the consistency para-
meter. This definition uses the same noise threshold
for all rules. The k-consistency condition allows us
to weaken the hard consistency condition gradually
through the growth of the parameter k, as the follow-
ing proposition shows.

Proposition 2.1. Let R E A be a rule and kt <<. k2 then

R satisfies the kl-consistency condition

R satisfies the k2-consistency condition.

By using this proposition, and if we denote by
A k C A, the set of rules that satisfies the k-consistency
condition is then

A k~ C_ A kz,

Vkl, k2 c [0, 1] such that k~ ~< k2.
Therefore, if we increase the value of parameter k,

we also increase the size of the search space for the
best rules (see Fig. 2). This process might be neces-
sary, since in some cases it is not possible to find good
rules in such a small space.

Once we have achieved a weak definition of con-
sistency for crisp examples and rules, we extend this

Fig. 2. The k-consistency spaces.

definition to fuzzy examples and rules. In order to
obtain this extension, we have to define the set of neg-
ative and positive examples of a rule. The basic con-
cept in these definitions is the concept of compatibility
between two fuzzy sets.

Definition 2.2. Let a and b be two fuzzy sets in a
common referential set U, and • a t-norm, we define
the compatibility between a and b as the following
function:

~r(a, b) = s u p { r e (x) * ub(x)} .
xCU

In this paper, we need to widen this definition to
calculate the compatibility between two sets of fuzzy
sets, and we propose the following definition.

Definition 2.3. Let Doml and Dora2 be two domains
made up by fuzzy sets in a common referential set U,
and C1 C_DOml and C2 C Dom2 each be a set of fuzzy
sets. We define the compatibility between both sets as

~r(C1,C2) = sup sup a(a,b).
acCI bEC2

We use the same symbol tr for both definitions since
the last definition is an extension of the former, and
both coincide for unitary sets.

From these concepts, we define the adaptation
between an example and the antecedent and conse-
quent of a rule, respectively, through the extension to
the cartesian product of a normalization of the said
compatibility.

Let e be an example composed of different features

e = (el,e2 en, c(e)),

A. Gonzalez, R. Perez/Fuzzy Sets and Systems 96 (1998) 37-51 41

where ei is now a fuzzy set in the referential set Ui,
and c(e) is the class assigned to the example e.

Usually, the features of the examples are crisp
more than fuzzy, but without difficulty we can extend
the kind of examples that the learning algorithm can
use. In general, to allow fuzzy examples is useful
in order to include some possible imprecision in the
data. For example, fuzzy inputs can appear when we
have imprecise rules in which we have no complete
confidence and we can decide to include them as new
examples to be considered. Moreover, fuzzy inputs
can appear when we have missing values and we de-
cide to replace them by its complete domain (a set of
fuzzy sets) representing that any value is possible.

Let RB(A) be a rule with antecedent part
A = (A1 ,An) Ai C Di and consequent part B E F.
For each component of the antecedent obviously the
following quotient is a measure of possibility

Poss(Ailei) _ a(ei,Ai)
a(ei,Di)'

and its dual is a measure of necessity

G(ei,Ai)
Nec(Ai[ei) = 1 a(ei ,Di) '

where the negation is considered in this work as the
complementary of the set Ai, that is,

= {aCDi la ~ Ai}.

Thus, we can define the adaptation between an ex-
ample and the antecedent of a rule combining through
a t-norm the different measures of possibility or
necessity of each Ai given the evidence supported by
the example. Since we have two possible measures,
we obtain two adaptation concepts.
• Upper adaptation between example and antecedent

of Rs(A):

U(e,A)

= Poss(A1 [el) * Poss(A2[e2) * . ' . * Poss(An [en).

• Lower adaptation between example and antecedent
of RB(A):

L(e,A)

= Nec(A~]el) * Uec(A2le2) * . . . * Nec(A, len).

In the same way, we define the adaptation between
the example and the consequent of the rule as
• Upper adaptation between example and consequent

of RB(A):

~r(c(e),B)
U(e,B) --

a(c(e) ,F)

• Lower adaptation between example and consequent
of R~(A):

a(c(e),B)
L(e,B) = 1

a(c(e),F)"

Obviously, the following inequalities are verified:

L(e,A)<~ U(e,A) VeEE,

and

L(e,B)<~ U(e,B) Ve6E.

These inequalities show that we have two possible
adaptation concepts, the first one is a stricter definition
based on a measure of necessity and the second one is
a wider definition based on a measure of possibility.

From these concepts we can define the positive and
negative example set given a rule.

Definition 2.4. The lower and upper set of positive
examples for the rule RB(A) are the following fuzzy
subsets of E,

E](R~(A)) = {(e,L(e,A) * Z(e ,B)) le EE},

E+(RB(A)) = {(e, U(e,A) • U(e ,B)) IeEE} ,

where A = (Ai An), and * is a t-norm.

Definition 2.5. The lower and upper set of negative
examples for the rule RB(A) are the following fuzzy
subsets of E,

EE(RB(A)) = {(e,L(e,A) * L(e,B))]eEE),

E~,(RB(A)) = {(e, U(e,A) * U(e,B)) I eEE) ,

where A = (A1 A,), and • is a t-norm.

Obviously,

E~(Rs(A)) C_ Ely(Re(A)),

E E (R~(A)) c_ EU (RB(A)).

42 A. Gonzalez, R. Perez/Fuzzy Sets and Systems 96 (1998) 37-51

Usually, the domain of the consequent variable in
concept classification problems, consists in nominal
descriptors, i.e., the domain is formed by indepen-
dent symbols or names, and therefore no structure
is assumed to relate the values in the domain. In
this case, the said definition may be simplified, since
L(e,B) = U(e,B) = 1 if c(e) = B and 0 otherwise,
and, for example, the upper set of positive examples
becomes

E+(RB(A)) = {(e, U(e ,A)) [eEE and c(e) = B}.

Once we have definitions for positive and nega-
tive examples of a rule, we can use a counter to
determine the number of positive and negative exam-
ples for a rule, which are the concepts needed in the
k-consistency condition. Thus, let us denote]A[=
~u~UpA(u), as the cardinality of a fuzzy subset. By
using this, we obtain the following definitions:
• Number of positive examples on Rs(A)

- lower value n + (RB (A)) = [E + (RB (A))[,
- upper value n + (RB (A)) =]E + (R8 (A))].
Obviously,

n-~ (RB(A)) <~ n+ (Rs(A)).

• Number of negative examples on R~(A)
- lower value n[(Rs(A)) =]E~(RB(A))[,
- upper value n~(R~(A)) =]E{(Rs(A))[.
Obviously,

n[(RB(A)) <~ n~(RB(A)).

Now, Definition 2.1 can be also applied to fuzzy
rules. However, since we have two concepts for pos-
itive and negative examples of a rule, we also have
two different consistency definitions for fuzzy rules:
a lower consistency condition (using n + and n~-) and
an upper consistency condition (using n + and n~).
We denote by AkL and A~, the set of rules that satisfies
the lower and upper k-consistency conditions, respec-
tively. These definitions are the basis for the learning
algorithm that we propose in the next section.

3. Learning algorithm and completeness condition

As we said in the introduction we are interested in
determining the best rules to represent the set of exam-
pies E. The complete space of antecedents for a fixed

to fix a concept

J
to select the best

rule using examples

to eliminate the examples

covered by the rule

to determine ff more rules

for this concept are needed

_ _ l oo

to take a new concept using

the initial set of examples

Fig. 3. The rule selection.

consequent is the set A. But now, we shall choose
among those rules that satisfy the k-consistency con-
dition, with k E [0, 1] being a fixed parameter. There-
fore, the search space is AkC_ A. Thus, first we fix
a value of the consequent variable and next we se-
lect the rule of A k that covers the maximum num-
ber of positive examples. We eliminate the examples
covered by the previous rule and we repeat the process
until we have examples of this class. These steps are
carried out for each value of the consequent variable,
and finally, we obtain a set of rules that represents the
original set of examples E.

The basic step in the algorithm that we propose con-
sists in obtaining rules covering the maximum number
of examples in the training set E, i.e., for each value
B E F, the main problem is

max{n+(RB(A)) IRB(A) E Ak}, (2)

where in the definition of n + and n - , we can use the
lower or upper definitions from the previous section,
and D = P(D1) × P(D2) × ' . - × P(Dn).

In order to solve the problem of obtaining the rules
covering the maximum number of examples, we need
to clarify the concept of the set of examples covered by
a fuzzy rule. We know that an example is covered by
a rule to a certain degree, therefore, in a sense, a rule
covers all the examples, but we are interested in the
examples covered with the higher degree. Therefore,
we propose the following definition.

A. Gonzalez, R. Perez/Fuzzy Sets and Systems 96 (1998) 37-51 43

Definition 3.1. Let R be a rule and E a set of exam-
ples. The subset of E representing the examples 2-
covered by R is the 2-cut of E+(R).)~ will be called
the covering parameter.

We said earlier that the algorithm must repeat the
process of searching for the best rule and eliminating
the examples covered by it while there are examples
of the present class. Really, this condition is equiva-
lent to the completeness condition given in the previ-
ous section and it is very difficult to satisfy when we
work with noisy or fuzzy examples. Thus, we propose
a weaker condition that we call weak completeness
condition for a class. The latter attempts to determine
when the number of examples covered for a set of
rules on a fixed class is sufficient to represent such a
class.

In order to propose the definition, let us suppose

T = {RI , R 2 , . . . ,Rs, Rs+l }

an ordered set of rules for a class C, being R1 the
first rule and Rs+l the last rule. Let E be the initial
set of examples, and let C¢~(Ri) be the set of examples
2-covered by the rule Ri. If we denote by

i

E i = E - U C2(Rj) ,

j= l

we can say that the learning algorithm must obtain
• the rule Rl using E,
• the rule R2 using E l,
• the rule R3 using E 2,
and in general the rule Ri is obtained using E i-1 .

class, but it is not included in the set of rules of this
class, that is, the output of the learning algorithm is

{R1,R2 Rs}.
In order to give a detailed description of the learning

algorithm, first we have to solve the associated opti-
mization problem (2) by means of a procedure called
G E N E T I C , which basically uses a genetic algorithm
to solve the best rule search problem.

3.1. The 9enetic algorithm

Genetic algorithms (GAs) are theoretically and em-
pirically proven to provide robust search capabilities
in complex spaces, offering an interesting approach to
problems requiring efficient and effective search [6].

In order to use a GA to solve problem (2), we
need to define the main components of our prob-
lem in the common formulation of genetic algorithms.
The final genetic algorithm adapted to solve (2) has
been called GENETIC. First, we need a representation
of the potential problem solution, i.e., the antecedent
of the rules. In [7] we propose the following binary
coding:

If the database contains n possible antecedent vari-
ables and each one of them has a fuzzy domain Di
associated with mi components

Xi ~ Di = {A i l , . . . ,A im i } ,

then we use the following method of coding any el-
ements of P(D1) × P(D2) x .-. x P(D,) , a vector
of m~ + m2 + . . . + mn zero-one components, such
that,

Definition 3.2. We say that the set of rules T =
{R1,R2 R~, Rs+l} of the class C verifies the weak
completeness condition if and only if

Rs+l ~ A k

or

R,+I EA ~ and C~.(R,+I) = (~.

Obviously, this definition is associated to an algo-
rithm that generates an ordered set of rules, and the
order corresponds to an optimality criterion, that is, Ri
is a better rule (in some sense) that Ri+l.

The last rule Rs+l is really only used to conclude
that the number of rules is enough to represent the

component(ml + . . . + mr-I + s)

1, if the sth element of the domain Dr is a
= value of the Xr variable,

0, otherwise.

Example 1. Let us suppose we have three variables
XI,X2 and X3, such that the fuzzy domain associated
with each one is

D1 = {AI1,A12,A13},

D2 = {A21,A22,A23,A24,A25 },

D3 = {A31,A32}.

44 A. Gonzalez, R. Perez / Fuzzy Sets and Systems 96 (1998) 37-51

In this case, the vector 1010010111 represents the fol-
lowing antecedent

X 1 is {All,A13} and)(2 is {A23,A25}

and

X3 is {A31,A32}.

Since)(3 takes all the elements in the domain D3,
the said antecedent is equivalent to

X, is {A,,,AI3} and)(2 is {Az3,A25}.

Another important component of the genetic al-
gorithm is the method for creating the initial solu-
tion population. In GENETIC we use a procedure for
obtaining antecedents with a high possibility to guide
the search toward good solutions. The procedure con-
sists in taking a subset of examples at random among
those with the current consequent and that they have
not been eliminated yet. For each one of these exam-
ples, we select the most specific antecedent having the
highest adaptation with the example.

For example, let us suppose three variables X1,X2
and X3 with the associated fuzzy domain described
in Fig. 1, the same for all the variables. Thus, if we
choose the example (26, 54, 100), the procedure will
generate the antecedent corresponding to binary code
00100 00100 00001.

The GENETIC procedure uses the following fit-
ness function that measures the power of the rule
(positive examples) whenever the rule satisfies the k-
consistency condition.

fitness(Re(A)) : { 0 +(RS(A)) otherwise,ifR~(A) E A k,

where the number of positive examples and the defi-
nition of A k have been achieved with the same adap-
tation function. Thus, in fact, we have two different
fitness functions, one based on the lower consistency
condition and the other one based on the upper con-
sistency condition. From now on, we assume that the
choice of the consistency type is an additional para-
meter of the genetic algorithm and we do not indicate
the specific type selected.

The GENETIC procedure uses a set of genetic
operators: the ranking linear selection, the mutation
operator, the two point crossover operator and a self-
crossover operator. This last operator is a modification

of the crossover operator that uses only one element in
the population and it allows us to explore new space
zones. Moreover, we have considered an elitist model.

Finally, the genetic algorithm ends, and gives as
output the best rule founded in the last population, if
at least one of the following sentences is true:
• the number of iterations is greater than a fixed limit.
• the fitness function of the best rule of the population

does not increase its value during at least a fixed
number of iterations and previously rules with this
consequent already have being obtained.

• there are no rules with this value of the consequent
yet, but the fitness function does not increase the
value during a fixed number of iterations and the
current best rule A-covers at least one example, with
A being the covering parameter.
The input of the GENETIC procedure is a set of

examples E and a value of the consequent variable
B EF, and the output is a single rule Re(A)C A k rep-
resenting the k-consistent rule with consequent B with
the largest number of positive examples, and corre-
sponding to the best rule of the last population of the
genetic algorithm.

3.2. The learnin9 algorithm

Now, by using the consistency and completeness
conditions, the GENETIC optimization procedure
and the previous general description, we can state the
following learning algorithm:

Learning Algorithm
1. Let R ULES be the set of rules, at the beginning

RULES is empty, and let E be the training set
of examples.

2. Repeat for each B E F
2.1 Assign the set E to EXAMPLES.
2.2 Run the GENETIC procedure, with the in-

put, EXAMPLES and B. Let R be the rule
obtained as the output of this procedure.

2.3 While the set of rules of class B does not
satisfy the weak completeness condition,
add R to RULES, eliminate the examples
2-covered by R from EXAMPLES and go
to step 2.2. Otherwise, take another value of
the consequent variable and go on to step 2.

3. Give the set RULES as the output of the algo-
rithm.

A. Gonzalez, R. Perez / Fuzzy

This learning algorithm has as input a set o f exam-
ples, a set o f parameters and a basic structure (the con-
sequent variable and a set of all possible antecedent
variables), and generates as output a set o f rules that
satisfies the k-consistency and the weak completeness
condition.

It would be worthwhile studying some properties
of this algorithm, which would demonstrate its overall
behaviour.

3.3. Properties

Firstly, we attempt to discover whether the algo-
rithm can generate contradictory rules, i.e., rules which
have the same antecedent but different consequents.
The answer is negative.

L e m m a 3.1. Let RULES be the set of rules 9ener-
ated by the learnin9 algorithm and Re, (A), Re, (A) E
RULES, with B~ ~ B2 then

n (RB,(A))>~n+(R82(A)).

Proof. The positive and negative example sets were
defined using a lower or an upper measure, therefore
this result must be proved for each measure.
• By using the upper case:

U(e,/~t) = supb 6 9, a(c(e), b) >1 a(c(e), B2)
a(c(e),F) a(c(e),F)

= U(e, B2).

Therefore,

nu(Rs~(A)) = Z U (e , A) * U(e,/~l)
eEE

>~ Z U (e , A) * U(e, B2) = n[/(Re,(A)).
eEE

• By using the lower case: In a similar way it is very
easy to show that U(e,/~2)>~ U(e,B~), therefore
L(e, Bi) : 1 - U(e, B1)>~ 1 - U(e,/12) = L(e, B2)
and then n~(Rs,(A)) = ~-~eEEL(e,A) *L(e, Bt)

}--~ec_E L(e, A) * L(e, B2) = n~(Re, (A)).

P r o p o s i t i o n 3.1. I f RB,(A) E RULES then Re,_(A)
RULES VB2 EF such that Bt 7 ~ B2.

Sets and Systems 96 (1998) 37--51 45

Proof . Let us suppose that both Rs,(A),R~2(A) E
RULES. In this case both rules must verify the
k-consistency condition, i.e.,

n-(R~,(A)) < kn+(R~,(A)),

n- (RB:(A)) < kn+(Re2(A)).

By using these expressions and the previous lemma

n+(RB2(A))<~ n (Re,(A)) < kn+(R~,(A)),

n+(Re, (A)) <, n-(R~:(A)) < kn~(Rs:(A)).

Therefore,

n+ (Re:(A)) < kn+ (Re~ (A)) < k2n+ (Rs:(A)),

and this expression implies that

k 2 > l

since n+(R&(A)) > 0, and this is a contradictory result
with the range of the parameter k E [0, 1].

This first result shows that the algorithm cannot pro-
duce contradictory rules, since both cannot verify the
k-consistency condition simultaneously. The second
result, which we are going to prove, shows the basic
algorithm's behaviour.

Propos i t ion 3.2. Let Re(At), Rs(A2) E A k such that
At C_A2 then

fitness(Re(A i)) <~ fitness(Rs(A2)).

Proof. Let A 1 : (A t t A in) and A 2 = (A 21 A2,,).
Since Ai C A2 then AIj C_Azj Vj = l n. For each
example e we have

Poss(A1/]ej) <~ Poss(Azj[ej),

and

Nec(A lj[ej) <~ Nec(A 2j[ej).

Therefore,

U(E, Al)<~ U(e, A2),

and

L(E, AI)<~L(e, A2).

Thus, the result is obvious.

~ Yes
No

This result shows that if a rule RB(A2) is more gen-
eral than another rule Rs(AI), i.e., A1 C_A2, then the
first rule has more positive and negative examples.
The algorithm always chooses the rule with more pos-
itive examples, therefore if the more general rule con-
tinues verifying the k-consistency condition then the
algorithm prefers this more general description. Fi-
nally, we can say that the learning algorithm chooses
the most general description for a rule that satisfies
the k-consistency condition.

4. Experimental studies

We have implemented SLAVE (Structural Learn-
ing Algorithms in Vague Environments) a graphical
environment for testing and experimenting with the
proposed learning algorithm. SLAVE is a C written
program working in an OpenWindows environment.
The algorithm uses several parameters in the learning
process. Here we want to study the predictive perfor-
mance of SLAVE for different consistency type and
parameters. One of the greatest difficulties associated
with SLAVE will be the choice of these parameters.
In this section, we shall propose a modified fitness
function that make this selection easy.

4.1. The domains

We have tested the learning algorithm on six
databases: five correspond to artificial domains and
one to a natural domain. Two from the artificial do-
mains, ART1 and ART2, have been generated from
a decision tree and the other three were proposed by
Quinlan in [13] and they are called MONK1, MONK2
and MONK3, respectively. These domains corre-
spond to single-class learning problems. The sixth is
the well known database Iris Plants Database, IRIS,
created by Fisher [5] that correspond a multi-class
learning problem. In the following subsections we
explain each domain.

4.1.1. ART1 and ART2 databases
These artificial domains have been designed to

reveal the predictive performance of SLAVE when
noise increases in the different database sets. For
these databases, we use six-feature world in which
four (XI,Xz,X3,X5) have been considered as continu-

46 A. Gonzalez, R. Perez/Fuzzy Sets and Systems 96 (1998) 37-51

Fig. 4. A decision tree.

ous ones and two-feature (X4,X6) are nominals. The
ART1 database has 200 examples (144 of the 0-class
and 56 of the 1-class) and it was generated from the
decision tree of Fig. 4.

The ART2 database contains 200 examples (140 of
the 0-class and 60 of the 1-class), and it was generated
from the same decision tree but adding a 10% of noise.

In order to use SLAVE, the continuous features
have been considered as fuzzy ones and the associated
domain corresponds to those shown in Fig. 1.

4.1.2. MONK's databases
The MONK's problems are a collection of three

binary classification problems over a six-attribute
discrete domain. Each training/test data is of the
form

(value 1) (value2) (value3) (value4) (value5) (value6)

--+ (class).

where (value n) represents the value of attribute
#n, and (class) is either 0 or 1, depending on the class
this example belongs to. The attributes may take the
following values:

attribute # 1 : { 1,2, 3 }
attribute #2: {1,2,3}
attribute #3: { 1,2}
attribute #4: {1,2,3}
attribute #5: {1,2,3,4}
attribute #6: { 1,2}
Thus, the six attributes span a space of 432 = 3 ×
x 2 x 3 x 4 x 2 e x a m p l e s .

A. Gonzalez, R. Perez/Fuzzy Sets and Systems 96 (1998) 37-51 47

Petal l.e~gth Petal Width

Very Low Low MldiUm High Very_High Very_Low LOw Medium High V liry_High

1 2.5 4 5.5 7 0 0.75 1.5 2.25 3
13111

Sepal ~ Sepal Width

Very_Low Low Medium H~G. Very_High Very_Low Low Medium H;gh Very High

4 5 6 7 S 2 2.6 3,2 3.8 1.5
Grn c:rn

Fig. 5. Domains for the iris problem.

The "true" concepts underlying each MONK's
problem are given by:
• MONKI: (attribute #1 = attribute #2) or (attribute

#5 = 1)
• MONK2: (attribute #n = 1) for EXACTLY TWO

choices o fn (in 1,2 ,6)
• MONK3: (attribute #5 = 3 and attribute #4 -- 1)

or (attribute #5 ¢ 4 and attribute #2 ¢ 3). MONK3
has 5% additional noise (misclassifications) in the
training set.
In these three databases, all the possible combina-

tions are considered in its test set, that is, the test set
contains 432 examples.

4.1.3. Iris databases
This is perhaps the best known database to be found

in the pattern recognition literature. Fisher's paper is
a classic in the field and is referenced frequently to
this day. The data set contains 3 classes of 50 in-
stances each, where each class refers to a type of iris
plant.

For classifying each plant four continuous attributes
are used. The domain of each continuous variable of
this database has been produced without any specific
information on the problem, and we used a simple
method that generates a fixed number of uniformly
distributed linguistic labels. These domains for each
variable are shown in Fig. 5.

4.2. Learning algorithms

We tried to investigate the predictive accuracy
of SLAVE in the aforementioned databases. So,
we carried out different trials considering different
consistency types (lower and upper) and different
consistency parameters. The common parameters
used in all the trials were:

Covering parameter 2 0.8
Size population 20
Maximum iteration number 500
t-norm minimum

In order to compare the behaviour of the learning
algorithm we also used the well-known learning al-
gorithms, CART [1], C4.5 [13] and backpropagation
(BP) neural networks [14]. One of the main reasons
to select these algorithms is that they can use contin-
uous valued attributes and we do not need to use a
discretization technique for them.

4.3. Inference model

In order to study SLAVE's predictive performance,
we included an inference model on fuzzy rules in this
system. Since all the examples considered here are
crisp and they have a crisp consequent. We used the
inference method which takes the consequent corre-

48 A. Gonzalez, R. Perez/Fuzzy Sets and Systems 96 (1998) 37-51

sponding to the rule with maximum adaptation with
the example, i.e., let RULES be a set of rules

R U L E S = {Ri [i = 1 nr},

with

antecedent(Ri) = (Ail, Ai2 Ain),

consequent(Ri) = Bi,

and the example

e = (el,e2 ,en).

Let H(Rile) = minj{maxa~A~j{la~(ej)}} be an adap-
tation measure between each rule and the example.
Then, the inference process involves selecting the con-
sequent Bs such that

max{II(Ri]e)} = H(Rs]e).

However, there is a decision problem in several
cases. The controversial situation appears for example
when we have Bsj and B~, 2 such that

m a x { n (R i l e) } = lI(Rs, le) = II(R,~ le)

and

Bs, ¢ Bs2.

We say that in this case we have a conflict in the rule
set, and we need to decide what is the best consequent.

Initially, the set of rules is ordered according to the
number of examples that each rule eliminated in the
learning process. When a conflict appears, SLAVE
predictive process selects the consequent of the rule
with lower order between the rules of conflict.

Example 2. Let R U L E S be a set of rules learned with
S L A VE and e an example that we want to classify.
Let us suppose that for classifying the e example a
conflict between three rules in R U L E S , RI, R2 and
R3 is produced, where each rule eliminated d~, d2 and
d3 examples in the training set, respectively. Let us
suppose that dl < d2 < d3, then S L A V E for solving
the conflict selects the consequent of R~ rule.

The draw cases are solved by maintaining the order
in which SLAVE obtained the rules.

This criterion for solving conflicts is based on a
probabilistic prediction. SLAVE selects the conse-
quent of the one rule that has the most probability of
success using its knowledge about the training set.
Thus, when the initial set of rules has been ordered
by the previous criterion, SLAVE checks the adapta-
tion between the example and each rule and gives the
consequent corresponding to the first best value.

4.4. Results

We have taken three different partitions from each
training and test set in the different database sets except
in the MONK's problem that we have only used the
partitions proposed in [13]. For ART1, ART2 and IRIS
the examples were randomly divided into a training
set (75%) and a test set (25%). The following tables
show the accuracy rates for each database on differ-
ent consistency parameters and the lower and upper
consistency conditions, respectively. The accuracy of
Table 1 corresponds to the average accuracy of the
different partitions for each test set.

In order to compare the results obtained in the dif-
ferent learning databases Table 2 shows the average
accuracy for BP 2 , CART and C4.5 in the different
partitions of each example set.

SLAVE improves the accuracy of the reference
algorithms (BP, CART and C4.5) for all databases
except for the monk's problem where BP (in MONK1
and MONK2) and C4.5 (in MONK3) obtain the best
results, being in both cases SLAVE the second better
result. The monk's problem is composed by nomi-
nal variables, where the fuzzyness of SLAVE seems
to be less useful (more appropriate for discretizing
continuous antecedent variables), even in this case
SLAVE obtains a better result than other more classic
learning approaches.

We can see in the tables that on ART1 and MONK1
databases the lower case obtains the higher accuracy
and these are the less noisy databases considered,
while the upper case obtains its better result for
databases with a higher noise level (the best for IRIS
and ART2 and the second better result for MONK2
and MONK3). After this analysis, we can conclude

2 The experimental tests have been made using the shareware
Aspirin/MIGRAINES system copyright of Russell Leighton and
the MITRE corporation.

A. Gonzalez, R. Perez/Fuzzy Sets and Systems 96 (1998) 37-51 49

Table l

k ART1 ART2 IRIS MONK1 MONK2 MONK3

Lower case
0 100 94.42 88 .80 97.22 48.85 78.12
0.01 100 93.33 89.51 77.78 60.47 78.12
0.1 99.23 90.45 90.7 91.67 60.47 90.62

Upper case
0.1 97.24 93 .33 79 .98 91.67 65.12 93.75
0.2 98.68 94 .12 93 .74 75.00 48.85 96.88
0.3 98.68 94.61 94.45 83.33 48.85 96.88

Table 2

Learning Algorithm ARTI ART2 IRIS MONK1 M O N K 2 MONK3

CART 99.23 89.32 92.96 83.27 60.30 92.32
C4.5 99.23 93.85 91.13 75.70 65.00 97.20
BP 99.23 87.89 91.56 100 100 93.75

that the upper case has better behaviour for databases
with high noise level. The lower case obtain a better
result in databases with low level o f noise.

From the tables, we can see that the accuracy o f
SLAVE is strongly associated to the value o f the
consistency parameter, and the best value for this
parameter is different for each database.

With these results, we can conclude that SLAVE is
capable of learning with reasonable rate accuracy, but
the final result is highly dependent on the consistency
parameter chosen, and it is not easy to know a priori
what this parameter is. The following section suggests
an alternative that makes selection of the consistency
parameter easier and that even improves the rates of
accuracy.

5. A modified fitness function: The two parameter
model

The change between feasible and non-feasible
solutions in the fitness function in the G E N E T I C
procedure is radical. With the genetic algorithms this
situation can be avoided so that the process evolves
from a near but non-feasible solution to the best one.
In order to solve this problem and to avoid the risky
choice of only one consistency parameter we pro-
pose a new fitness function that smoothes the change

between k-consistency and non k-consistency rules.
This new fitness function uses two parameters, a
maximum and a minimum consistency parameter. In
this case, the learning algorithm uses the following
fitness function:

fitness(RB(A))

n+(RB(A))

ken+(R9(A)) - n - (RB(A))

k2 - kl

if Re(A)~ A k' ,

if RB(A) E A k2
and
Re(A) f~ A k',

otherwise

with k2 > k~.
In this fitness function we assign the complete

power of the rule (n+(Re(A))) to kl-consistency
rules, zero to non-k2-consistency rules, and the rest
of the rules (z] k' N A k-') receive a continuous linear
decreasing function between both values.

5.1. Results

Table 3 shows some results using the two parameter
model.

The results with the learning algorithm using this
new fitness function are most regular, that is, the

50 A. Gonzalez, R. PerezlFuzzy Sets and Systems 96 (1998) 37-51

Table 3

kl -k2 ART 1 ART2 IRIS MONK 1 MONK2 MONK3

The kl-k2 model: Lower case
0.0/0.2 100 93.33 92.66 88.89 55.81 90.60
0.0/0.4 100 94.61 92.66 100 65.12 96.88
0.1/0.4 98.32 93.86 85.53 83.33 53.49 96.88
0.1/0.5 97.30 86.67 85.53 77.78 48.84 96.88

The kl-k2 model: Upper case
0.0/0.2 93.60 94.12 81.67 100 48.84 93.75
0.0/0.4 97.92 94.61 94.72 91.67 62.79 96.88
0.1/0.4 98.68 94.61 95.43 80.56 60.47 96.88
0.1/0.5 98.68 93.33 93.03 77.78 65.12 96.88

accuracy has not a strong variation moving in close
consistency values. Moreover, in some cases we
even achieve greater accuracy, for example, MONK1
obtains the maximum possible accuracy. SLAVE
keeps its better results for ART1, ART2 and IRIS.

In general, a good result is obtained in the interval
0.0/0.4 in the lower case, and in the interval 0.1/0.4
in the upper case. Here, it seems that the solution
involves selecting an interval that includes a theoreti-
cal true consistency value.

In any case, SLAVE has shown to be an useful tool
to learn fuzzy rules for classification problems.

6. Concluding remarks

In this paper we described a learning algorithm
capable of identifying the fuzzy rules that describe a
particular system. This algorithm
• is based on theoretical extensions of classical

learning conditions (consistency and complete-
ness) having good general properties

• can handle fuzzy information (examples or rules);
• combines in a single process rule and feature selec-

tion;
• is a useful tool for solving multi-class learning

problems;
• allows change of the granularity of the elements of

the domains in some cases;
• generates a small number of fuzzy rules that are

very easy to understand by an expert;
• obtains a level of accuracy that improves those val-

ues obtained using well-known learning algorithms.

However, the research must continue, at least, in
two important aspects: On the one hand, to enrich the
language of the rules that SLAVE can use, and on
the other hand, to provide SLAVE with the capacity
to automatically determine some important parame-
ters of the learning algorithm such as the consistency
threshold or the consistency type.

References

[1] L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone,
Classification and Regression Trees (Monterey, Wadsworth,
CA, 1984).

[2] K. De Jong, W.M. Spears and D.F. Gordon, Using genetic
algorithms for concept learning, Machine Learning 13 (1993)
161-188.

[3] R. De Mori and L. Saitta, Automatic learning of fuzzy
naming relations over finite languages, Inform. Sci. 21 (1980)
93-139.

[4] M. Delgado and A. Gonz~ilez, An inductive learning
procedure to identify fuzzy systems, Internat. J. Fuzzy Sets
and Systems 55 (1993) 121-132.

[5] R.A. Fisher, The use of multiple measurements in taxonomic
problems, Ann. Eugenics 7, Part II (1936) 179-188;
also in: Contributions to Mathematical Statistics (Wiley,
New York, 1950).

[6] D.E. Goldberg, Genetic Algorithms in Search, Optimization
and Machine Learning (Addison-Wesley, New York, 1989).

[7] A. Gonz~ilez, R. P~rez and J.L. Verdegay, Learning the
structure of a fuzzy rule: a genetic approach, Proc. 1st Eur.
Congr. on Fuzzy and Intelligent Technologies, Vol. 2 (1993)
814-819.

[8] A, Gonz~ilez, A learning methodology in uncertain and
imprecise environments, Internat. J. Intelligent Systems 19
(1995) 357-371.

[9] H. lshibuchi, K. Nozaki, N. Yamamoto and H. Tanaka,
Construction of fuzzy classification systems with rectangular

A. Gonzalez, R. PerezlFuzzy Sets and Systems 96 (1998) 37-51 51

fuzzy rules using genetic algorithms, Fuzzy Sets and Systems
65 (1994) 237-253.

[10] L. Lesmo, L. Saitta and P. Torasso, Fuzzy production
rules: a learning methodology, in: P.P. Wang, Ed., Advances
in Fuzz)' Sets Theory and Applications (Plenum Press,
New York, 1983) 181-198.

[11] R.S. Michalski, A theory and methodology of inductive
reasoning, in: R.S. Michalski, J. Carbonell and
T. Mitchell, Eds., Machine Learning: An Artificial
Intelligence Approach, Vol. 1 (Morgan Kaufmann, San
Mateo, CA).

[12] X.T. Peng and P. Wang, On generating linguistic rules for
fuzzy rules, in: B. Bouchon, L. Saitta, R.R. Yager, Eds.,
Uncertainty and Intelligent Systems, Lectures Notes in
Computer Science, Vol. 313 (1988) 185-192.

[13] J.R. Quinlan, C4.5 Programs for Machine Learning (Morgan
Kaufmann, Los Altos, 1993).

[14] D.E. Rumelhart, G.E. Hinton and R.J. Williams, Learn-
ing interior representation by error propagation, in:
D.E. Rumelhart and J.L. McClelland, Eds., Parallel
Distributed Processing, Vol. 1, Ch. 8 (MIT Press, Cambridge,
MA, 1986).

[15] M. Sugeno and K. Tanaka, Successive identification of a
fuzzy model and its applications to prediction of a complex
system, Fuzzy Sets and Systems 42 (1991) 315-334.

[16] R.M. Tong, Synthesis of fuzzy models for industrial
processes, Internat. J. Gen. Systems 4 (1978) 143-162.

[17] L.X. Wang and J.M. Mendel, Generating fuzzy rules
by learning from examples, IEEE Trans. Systems Man
Cybernet. 22 (1992) 1414-1427.

[18] L.A. Zadeh, The concept of a linguistic variable and its
applications to approximate reasoning, Part I, Inform. Sci. 8
(1975) 199-249; Part II, Inform. Sci. 8, 301-357; Part III,
Inform. Sci. 9, 43-80.

