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Estimation of Classifier Performance

KEINOSUKE FUKUNAGA, FELLOW, IEEE, AND RAYMOND R. HAYES, MEMBER, IEEE

Abstract—An expression for expected classifier performance is de-
rived and applied to a series of test procedures. For the holdout method,
the roles of the independent design and test sets are identified. For the
resubstitution and leave-one-out methods, the relationship between de-
pendent design and test sets is investigated. The effect of outlier design
samples is studied as a special case of the leave-one-out methed. Also,
the statistical properties of the bootstrap resampling technique are
analyzed. The theoretical conclusions were experimentally verified
using artificial data under various design conditions.

Index Terms—Bootstrap, classifier performance, holdout méthod,
leave-one-out method, quadratic classifier, resubstitution method.

I. INTRODUCTION

STIMATION of the expected performance of a clas-

sifier is an important, yet difficult problem in pattern
recognition. In practice, the true distributions are never
known and only a finite number of training samples are
available. The designer must decide whether. this sample
size is adequate or not, and also decide how many sam-
ples should be used to design the classifier and how many
should be used to test it.

A number of testing procedures have been proposed and
are widely used. In the holdout method, a number of the
original samples are withheld from the design process.
This provides an independent test set, but drastically re-
duces the size of the design set. In the resubstitution
method, the classifier is tested on the original design sam-
ples. This maintains the size of the design set, but ignores
the independence issue generating a dangerously optimis-
tic performance estimate [1]. The leave-one-out method
[2] is designed to alleviate these difficulties. It avoids
drastically dividing the available sample set into design
and test, while maintaining an independence between
them. Thus, the procedure utilizes all available samples
more efficiently, and produces a conservative error esti-
mate. By using these last two methods simultaneously,
we can obtain upper and lower bounds of the true perfor-
mance of the classifier.

More recently, Efron [3] proposed a resampling pro-
cedure, called the bootstrap method, in which artificial
samples are generated from the existing samples, and the
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optimistic bias between the resubstitution error and the
classifier error when tested on independent samples is es-
timated from them.

The analysis of these techniques has been a popular pat-
tern recognition research topic. In [4], Novak presents a
method of computing the error of a specific classifier,
given the parameters of the test distribution. Raudys and
Pikelis [5] give an excellent review of work done in ap-
proximating the expected performance in the parametric
case and provide explicit expressions for several empiri-
cally designed classifiers. However, this work does not
address the interaction between the design and test sets or
consider testing procedures other than the holdout method.
Toussaint [6] catalogs these and other testing methods and
gives an overview of some of the early associated work.
More recent work is surveyed in Hand [7].

Pattern recognition research has considered various
questions concerning the relationship between the limited
size of the training set, the number of features, and the
estimation of performance criteria. While a number of
these works present approximate expressions for the prob-
ability of misclassification and guidelines for selecting the
size of the design sample set [5], [8]-[11], none of them
present general expressions relating these relationships for
a family of classifiers. In addition, only a few [1], [2],
[6], [11] address the interaction between the design and
test sets.

In [12], Fukunaga and Hayes investigated the effect of
sample size on a family of functions, and found a man-
ageable expression for the errors of classifiers, including
the quadratic and Fisher linear classifiers. Using the
expression, they computed the degradation of classifier
performance due to a finite design set.

The objective of this paper is to apply the error expres-

_sion of [12] to the various methods of error estimation

mentioned above, and to offer a unified and comprehen-
sive approach to the analysis of classifier performance. In
Section II, after the error expression is introduced, it is
applied to three cases: 1) a given classifier and a finite test
set, 2) given test distributions and a finite design set, and
3) finite and independent design and test sets. For all
cases, the expected values and variances of the classifier
errors are presented. Although the study of Case 1 does
not produce any new results, it is important to confirm
that the proposed approach produces the known results,
and also to show how these results are modified when the
design set becomes finite, as in Cases 2 and 3. In Section
III, the error expression of [12] is used to compute the
bias between the leave-one-out and resubstitution errors
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for quadratic classifiers. Note that in this case the design
and test sample sets are no longer independent. Again,
the expected value and variance of the bias are presented.
Also, because of its similarity to the analysis of the leave-
one-out method, the effect of outliers in design samples
on the clasmﬁcatmn error is discussed. Finally, in Section
1V, the theoretical analysis of the bootstrap method is pre-
sented for quadratlc classifiers. The explicit error expres-
sion can be obtained for the optimistic bias of the boot-
strap resubstitution error. The expected value of the bias
with respect to the bootstrap procedure is shown to be
very close to the bias between the conventional leave-one-
out and resubstitution errors. The variance of the boot-
strap bias also can be computed in a closed form.

Throughout all sections, the theoretical conclusions are
experimentally verified. The results of these analyses al-
low us to delve into the theoretical differences between
the methods and account for a series of frequency ob-
served expenmental trends.

II. CLASSIFICATION ERRORS FOR FINITE SAMPLES

In this section, we will discuss the effects of finite test
and design samples on classification performance. John
[11] provides a similar discussion for the linear classifier.
Previous extensions to this work are presented in. Raudys
and Pikelis [5].

A. Error Expression
For the two-class problem, a classifier can be expressed
by
w]

R(X)=0 (1)

where h(X) is the discriminant function of an n-dimen-
sional vector X, and w; indicates the class i(i = 1, 2).
The probabilities of errors for this classifier from w; and
w, are

€ —

S pi(X) dX = S u(h(X)) p(X) dX
h(X)>0 s

1 S Sw [i N Wa(w)]ewhmp (X) dw dX

- 27 Jjw

1 1 e /ohX) '
=5+ > SSLO P pi(X) dw dX (2)
and
= X)dx
€2 Sh(XK()Pz( )
1 1 T giwh(X)
)L S )

where p; (X) is the density function of class i tested by
the classifier, u(h(X)) = 1 when (X ) > 0 and O oth-
erwise, and § indicates the entire n-dimensional space.
The second line of (2) is obtained using the fact that the
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Fourier transform of the step function, u(h (X)), is [1 /jw
+ 76 (w)].
The total probability of error is

E=P‘€1+P2€2

1 1 T g Jeh(X)
=3 + . LS_«, 7o p(X)dodX  (4)
where P; is the a priori probability of w; and
p(X) = Pip\(X) — P,py(X). (5)

B. Effect of Test Samples

When a finite number of samples are tested by a given
classifier, p; (X) of (5) may be replaced by

Ni

pi(X) = i Z 3(X — X{)

11_

(6)

Where 6(y) = 1 when y = 0 and 0 otherwise, and X{",
. Xz(v,) are N; test samples drawn from p; (X )

Throughout the paper, boldface indicates randomness.
Thus, the estimate of the error probablhty is

1 1 S‘X*“’ el [ p 2
€ ==+ — 5(X — x(V
T2 ). e | A0 )
Pz 6(X X?) | dw dX
Nz] 1
1 P P
=2+ ‘Z WU 7
Ny j=1 .
where
L e
al) = —
aj 2 Ve e dw. (8)

The expected value of ") with respect to X\ (w.r.t.
the test samples) is

o SS e.lwh(X)
= E{a; X)dwdX
b= o Pi(X) do
61—5 fori =1
=9, (9)
5—62 fori = 2.

The second line of (9) can be obtained from (2) and 3),
respectively. The second-order moments are also com-

puted as
o iun(X) 2
e
S - dw:l }
— Jw 5

Elaf”) - B[

- 5|3 (h(X))]z}

E{ePaf’) -

(10) -

(11)

I

I
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where sgn (4) equals +1 forh > 0 and —1 for A < 0.

Equation (11) is obtained because aj(-i ) and « ,(cl) are inde-

pendent due to the independence between X{" and X g
From (7) and (9)-(11),

. 1 _ —
E{t} = 5 + Py — Pa,
1 1 1
=5+P1<€1—5>"P2<5_62>=6
(12)
p? P?
Var,{@:} = ]—V—I-Var, {a}”} + ﬁzVar,{a}z)}
1 2
_H [_1_ 1 }
Y R
+£§[1_ 1 }
Nl \2©
6](1 e E]) 262(1 - 62)
= p? + P . 13
S RS (13)

That is, £ is an unbiased estimate, and its variance has the
well-known form derived from the binomial distribution

[13].
C. Effect of Design Samples

It is more difficult to discuss the effect of using a finite

number of design samples. Although we would like to
keep the formula as general as possible, in this section a
specific family of discriminant functions is investigated to
help determine which approximations should be used.

Assume that the discriminant function is a function of
two expected vectors, M; and M,, and covariance mat-
rices, £y and I,. Typical examples are the quadratic clas-
sifier and Fisher’s linear classifier:

RO = 5 (X = M) BT - )
- % (X — M) T7'(X - M)

(14)

h(X)= (M, - M))'T7'X
| E— =
+ 5(M{E“M1 - M;T7'M,)  (15)
where & = [Z; + X,]/2. When only a finite number of
design samples are available and M; and L; are estimated

from them,

AR(X) = h(X) — h(X) = él 0®  (16)
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where h(X) = h(X, My, M,, £, £,), h(X) = h(X, M;,
M,, T,, ;) and 0% is the kth order term of the Taylor
series expansion in terms of the variations of M; and 5.
If the design samples are drawn from Gaussian distribu-
tions, and M; and ¥, are unbiased estimates (e.g., the sam-
ple mean and sample covariance), it is known [12] that

E;{0V} =0, E;{0®} ~ 1/,

E; {0} =0, E;{0¥} ~ 1/:?. (17)
where E; indicates the expectation with respect to the de-
sign samples, and 9T is the number of design samples
(while N indicates the number of test samples). There-
fore, from (16) and (17),

E;{ARr(X)} ~ 1/, E,{ARY(X)} ~ 1/,

E{AR(X)} ~ 1/90°, E,{ARY(X)} ~ 1/90% - - - .
(18)

Assuming that 91 is reasonably large, we can eliminate
E{Ah"(X)} for m larger than 2. :

Thus, the error of a random classifier for given test dis-
tributions is expressed by (4)

1 1 T g Jeh (0
‘%:E—*——Z—ﬂ'—SSS—oo o ﬁ(X)dde

(19)

The expected value € with respect to the design samples
is ; '

_ 1 1 e B, { edeh)
AR Bl
“P(X)dwdX = e + Ace (20)
where
_ 1 oo Jw 2
Az =~ SSLO E, {Ah(X) + 5 Ah (X)}
- e O5(X) do dX. (21)

The approximation from (20) to (21) was made by using

ej(_»iz(X) = @Joh(X) 4 juAR(X)

. £\2
= el [1 + joAR(X) + (—];Q AhZ(X)}.

When k(X)) is the Bayes classifier, e must be a minimum.
Appendix 1 gives the proof that & of (19) is indeed larger
than e of (4). ,

When two Gaussian distributions are classified by the
quadratic or linear classifier whose parameters are esti-
mated from a finite sample set, Ag of (21) can be com-
puted. Explicit solutions for the case with M; = 0, M, =
M and £, = X, = ] are given in [12].

The variance of &€ may be computed from (19) and (20)
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as

) ! +0 ntoo E, ejwlit(X)eJWZi'(Y)
Vard{ﬁ}:isSsS S { g }
x WSy J—o0 J—oo JW1jwy

1

- P(X) p(Y) dwdew, ch'zy— <‘ - —2->2 |

n

4_71r2 L uw S: E,{AR(X) AR(Y)}

~ 0

© J X I D5 (X p(Y) dwydes, dX dY

= Ssx LyEd{Ah(X) AR(Y)} 8(h(X))

- 8(h(Y)) p(X) p(Y) dX dY

I

Sh(X)=0 Sh(y)zo E, {Ah(X) Ah(Y)}

- p(X)p(Y)dXxdy (22)

where the derivation from the first line to the second line
is given in Appendix 2. Equation (22) indicates that the
integration is carried out along the classification boundary
where h(X) = 0. When h(X) is the Bayes classifier,
P (X) of (5) must be zero at the boundary. Thus, (22) be-
comes 0. Since we neglected the higher order terms of
Ah(X), Var, {£} is not zero, but proportional to 1 /972
When £ (X') is not the Bayes classifier, p(X) # 0ath(X)
= 0. Thus, we may observe a variance dominated by a
term proportional to 1/9% due to the fact that E;, { Ak (X)
AR(Y)} ~ 1/9L.

In order to confirm the above theoretical conclusion, an
experiment has been run for the quadratic classifier be-
tween two Gaussian distributions which share the same
covariance matrix / and differ in the means to give a Bayes
error of 10 percent. The dimensionality n was varied from
4 to 64 in powers of 2 and the ratio of the sample size and
the dimensionality k (= 9T /n) was varied from 3 to 50.
I (= nk) samples were generated from each class ac-
cording to the given mean and covariance, and Mi and
% were estimated from the generated data using the sam-
ple mean and sample covariance. The quadratic classifier
was designed by (14). Testing was done by Novak’s pro-
gram which numerically computes the error of any dis-
criminant function with a quadratic form tested on sepa-
rately specified Gaussian distributions [4]. This procedure
was repeated 10 times. The second and third lines of Ta-
ble I show the average and standard deviation of these
experiments. The first line shows the theoretically com-
puted errors from (20) and (21) [12]. Also, Fig. 1 shows
the relationship between 1/k (= n/91 ) and the standard
deviation. From these results, we may confirm that the
standard deviation is very small and roughly proportional
to 1/91. Thus, the variance is proportional to 1/9T2.

An intuitive reason why the standard deviation due to a
finite number of design samples is proportional to 1 /97
may be observed as follows. When the Bayes classifier is
implemented, A ¢ is always positive and thus generates a
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TABLE 1
QUADRATIC CLASSIFIER DEGRADATION FOR I-1 ( % )

n

4 8 16 32 64
1450  16.89  21.15 30.67  48.94
3 16.68 2041 2204 2673  31.31
351 235 2.89 1.95 1.33
12.70 1414 16.91 2240  33.36
5 14.03 1640 17.34  20.81  25.54
211 1.86  0.91 0.57 0.74
11.35  12.07 13.45 16.20  21.68
10 11.52  12.40 13.66 1573  19.34
081 061 070  0.54 0.85
10.90 11.38 1230 14.13  17.79
15 1086 11.84 1232 14.15 16.58
k 044 061 042 053 0.42
10.67 1103  11.73  13.10 15.84
20 10.77  11.05  11.90 1393  15.13
021 023 051 022 032
1045 10.69 1115 12,07  13.89
30 1054 1071 1114  13.07  13.65
019 021 020 019 0.22
1034 1052  10.86 1155  12.92
40 1037 1057 10.87 11.50 12,75
024 013 013 0.3 0.18
10.27 1041  10.69 11.24  12.34
50 10.25 10.44 10.68 11.25 12.21
013 010 0.3 0.09 0.07
standard
deviation x 102 L4
8 xn=28
o n=64
7 -
= x x
rd
5 /
e
ns >
P
3l -
/ x
2} 2
.
x
1| e
e 17k = i
o 1 1 i 1 1 1 1 ] i 1

0 1 2 3 4 5 6 7 8 9 10x107

Fig. 1. Quadratic classifier degradation for I-I (standard deviation versus
n/N).

positive bias. As (21) suggests, the bias is proportional to
1 /9. Since A ¢ varies between 0 and some positive value
with an expected value a /9% (where a is a positive num-
ber), we can expect that the standard deviation is also pro-
portional to 1/9T.

In addition, it should be noted that design samples af-
fect the variance of the error in a different way from test
samples. When a classifier is fixed, the variations of the
two test distributions are independent. Thus, Var, {§} =
P} Var {&} + P} Var {£,} as is seen in (13). On the
other hand, when the test distributions are fixed and the
classifier varies, & and &, are strongly correlated with a
correlation coefficient close to —1. That is, when £, in-
creases, &, decreases and vice versa. Thus, when P, =
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P,, Vard{s} = (0.5 E;{A&}} + (0 5)? Ed{Asz} +
2(0.5)? Ed{AsIAaz} = (0.5 [E;{A&}} +
E;{(—Ag)’} + 2E;{Ae(—Ag)}] = 0. The covari-

ance of £; and &, cancels the individual variances of &, .

and &,.

D. Effect of Independent Design and Test Samples

When both design and test samples sizes are finite, the
error is expressed as

M
1, P P,
a2 0 _ Z o
E=2 TN, ; N, i<t (23)
where
L1 [ e
a}'>=—g ¢ e (24)
2w J-o  jw

That is, the randomness comes from & due to the finite
design samples as well as from the test samples X{").

The expected value and variance of &€ can be computed
as follows:

e=E{¢} =EE,{¢} =1+ Pa, — Pya, (25)
where
1 +°°E Jwh(X)
&=~—S§ Mp,(x)dwdx
27 Jsd-o jo
€ 3 fori =1
-1 (26)
3~ €, fori :2'

Substituting (26) into (25),
€ =P1E] +P2€2.

This average error is the same as the error of (20). That
is, the performance degradation due to finite design and
test samples is identical to the degradation due to finite
design samples alone. Finite test samples do not contrib-

ute.
The variance of € can be obtained from (23) as

L\II Var {a{"}
1 (1) &
(- ) ot
+ P2]:]\1[ Var{ (2)}

1 .
(1) o taer

2

Var {¢} =

~ 2P,P, Cov {6V} (28)

(27)
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where
o 1 [+ pieh(0) 2
var {a} = £ | L |
ar{a] o I dwi|}
1\2
(s-
_1 o1y
4 \"7 2
=&(1 — &) (29)
Cov {aVaf’} :LS S g+m§+m
Ol d7% Js, Js, ) J—co
E; { e0h ) g jenh(¥) ) ‘
o n(X) pi(Y)
M dwldwz dXdY* &i&l. (30)

The second line of (29) can be derived from the first line
as is seen in (10). From (30), a portion of (28) can be
expressed as

P Cov {a{"&;” } + P Cov {aa(¥ }

~ 2P,P, Cov {6{Va}

1 S S S+mS+mEd{ef”‘f'(X)ef”2i"Y’}
41‘. Sy —oo jwljwz

2
-p'(X)p”(Y) de,dw, dX dY — <e - %)

= Var, {&} (31)

where Var; {£} is the same one as (22). On the other
hand, (30) can be approximated as

1 +oo o +oo
m SS, SS_,. S—oo S——oo

FE {AR(X) AR(Y)} e
- ™ (X)) py(Y) dowydw, dX dY

Cov {&}")ﬁf) } =

= Sh(x)zogh(y)=0Ed{Ah(X) Ah(Y)}

pi(X) pi(Y) dX dy
1
~ X (32)
Equation (32) is proportional to 1/9T because
E;{AR(X) AR(Y)} is proportional to 1 /9.

Substituting (29)-(32) into (28), and ignoring the terms
proportional to 1 /N;9

a(l—&) | 6l — &)
—_——— P ==
N1 ? N2

+ Vard {é}

Var {¢} = P}

(33)
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As we discussed in Section II-C, Var, {£} is propor--

tional to 1/91% when the Bayes classifier is used for
Gaussian distributions. Therefore, Var {£} of (33) is
dominated by the first two terms which are due to the fi-
nite test set. A comparison of (33) and (13) shows that
the effect of the finite design set appears in €, and €, of
(33) instead of €, and €, of (13). That is, the bias due to
the finite design set increases the variance proportionally.
However, since €, — ¢, ~ 1/91, this effect can be ig-
nored. It should be noted that Var, {£} could be propor-
tional to 1 /9T if the classifier is not the Bayes.

Thus, we can draw the following conclusions from 27N
and (33). When both design and test sets are finite,

1) the bias of the classification error comes entirely
from the finite design set, and

2) the variance comes predominantly from the finite test
set.

III. DePENDENT DESIGN AND TEST SETS

In the previous section, we assumed that the design and
test sets were finite and independent. When only one set
of samples is available, independence can be achieved by
using either the holdout method or the leave-one-out
method. In the holdout method, the available sample set
is divided into two groups; one group is used for design-
ing the classifier and the other for testing the classifier.
The ratio of design sample size to test sample size must
be determined by the desired degradation and variance of

" the estimated error, as derived in Section II-D. On the
other hand, in the leave-one-out method, each sample is
tested by the classifier which was designed using the re-
maining samples [2]. With N available samples, the test
sample size is 1, the design sample sizeisN — 1 (= N),
and the procedure is repeated N times. v

Theoretically, due to the independence of the design
and test sets, the analyses of the holdout and leave-one-
out methods are the same. For the leave-one-out method,
the empirical distribution of (6) becomes a single impulse
anchored at the test sample. However, since the proce-
dure is repeated N times, the summation across all N sam-
ples is still performed. Thus, for the holdout method, the
first line of (7) has the summation inside the integration
with respect to X and, for the leave-one-out method, the
summation is outside of the integration. Using linearity,
they both reduce to the second line of (7). The discrimi-
nant function is random, so (19) is used together with (7)
to generate (23). Since independence is maintained within
the summation (which now indexes both the discriminant
function and the test sample), the arguments of Section
II-D follow. Of course, for a fixed total available data set,
the holdout method reduces the size of both the design
(90 ) and test (N ) sets, degrading its performance relative
to the leave-one-out method.

It has been shown that the above procedures tend to
give a larger error than the true one. The true error is the
error of the classifier designed using the true distribu-
tions, tested with the true distributions. On the other hand,
an error smaller than the true one can be obtained by the
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resubstitution method, in which all available samples are
used to design the classifier and the same sample set is
used to test the classifier. Since the resubstitution and
leave-one-out methods can be carried out simultaneously
without additional computation time [13], it is a common
practice to compute both estimates to obtain upper and
lower bounds of the true error.

When the resubstitution method is used, the design and
test sample sets are no longer independent. In this section,
we would like to address the dependency of the design
and test sample sets. The expected value and variance of
the resubstitution error and the statistical properties of the
bias between the resubstitution and leave-one-out errors
depend on the classifiers to be used. Therefore, in this
section, we limit our discussions to parametric classifiers
such as the quadratic and linear classifiers. Extending this
discussion to other types of classifiers could be handled
in a similar way. (In related but much less general dis-
cussions, Foley [1] and Raudys [14] address the resubsti-
tution method for linear and Euclidean distance classi-
fiers.)

A. Modifications of M and £

Let us assume that the expected vector M and covari-
ance matrix X of a distribution are estimated from the
available sample set, Xy, - - - , Xy_, by the sample mean
and sample covariance as

M= El X; (34)
1 N—-1 r
e EI (X; — M)‘(X,- -M)'. (35)

When an additional sample Y is used, the above estimates
are modified as

MR=}%[(N—1)M+ Y]=M+1%(Y—M) (36)‘

or
. N-1 X
Y= My ==— (Y~ M) (37)
and
1 Nt T
e [E (X; = M) (X; — M)
~ ~ T
+ (Y — M) (Y; — M) }
—t-- L ssliromyr-m) (38
B N -1 N :

The deviations of these estimates from the true parame-
ters, M and L, are

1
AMR=AM+X[(Y—M—AM)

(39)

I

1
AM + — (Y -
~ (¥ = M)
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1
AYp = AX - —— (L + AX
A v (5 +Ax)

+]%I(Y—M—AM)(Y—M—AM)T

1 1
AX NE + N(
A M and AX assumed to be proportional to 1/N and ap-
proximations were made by ignoring 1/N? and higher-
order terms.
With this approximation, a function of My and £,
f (Mg, £z), can be expanded around f(M, L) as

n

Y — M) (Y- M), (40)

L. afT of
f(MR, ER) = f(M, E) + EM AMR + trﬁ AZR.

(41)

In the general Taylor series expansion, components of the
second-order terms are also proportional to 1/N. Using
(39) and (40),

2
AMRAME = AMAMT + ¥ (Y- M)AM"  (42)
AXRALY = ATAXT
2 T T
—N[E ~ (Y- M) (Y- M) ]AL
(43)
1
AMRALY = AMAXT — NAMET
1 T
+NAM(Y— M) (Y — M)
1
+ 5 (Y = M)AET”. (44)

In the above expression, each 1/N term contains a ran-
dom variable which is assumed to be proportional to 1 /N,
maklng the entire term proportional to 1/N?. Thus, (41)
is consistent with the approximations made by ignoring
1/N? and higher-order terms.
Substituting (39) and (40) into (41),
of

af AM + tr —AE}

F0 20) = | 701, %) + L o

+—[afr(y M)

+tr—{(Y M) (Y- M)~

2|

afT

aM(Y—M)

‘~f(M2)+1[

+tra—{(Y M) (Y - M)" E}J.

(45)
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Note that the difference between the two random variables
f(Mpg, £) and f(M, £) is not random, as long as Y is
fixed and the first-order approximation is valid.

Example: Let us examine the case where fis given by

FM,E) =J(Y = M) £7(Y - M) +3in | T|.
(46)
Then,
af 4
o= "E (Y- M) (47)
af 1 1 T~ -1 l -1
= = _-z; (Y-M)Y-M)'L +22 . (48)
Therefore,
P B) = 01, £) =~ [a%(Y) +n]  (49)
where
d(Y) = (Y - M)z (Y - M). (50)

B. Quadratic Classifiers

In this section, the quadratic classifier of (14) is dis-
cussed. Using (46), (14) can be rewritten as

h(X) = f(My, E1) = f(My, © (51)

When a sample X from w, is tested in the resubstitution
method,

ilR(X) =f(M1R: ﬁIR) —f(sz ):2)

= £, £) = 3 (4100 + ] = 70, £5)

= h (X) - —11\7 [d¥(X) + n]  forX € w,.
(52)
Likewise, when X comes from w,,
he(X) = hy(X) + 2—1\’2 [d5(X) + n] forXew,
(53)

where hg(X) and h (X ) are the discriminant functions
for the resubstitution and leave-one-out methods N is the
sample size for w; and d?(X) = (X — M)HT E, (x -
M;).

Now, the resubstitution error can be computed by (23)
and (24) with & of (24) replaced by hy of either (52) or
(53) depending on i = 1 or 2. The result is

M to o ohex(

1 P, 1 S‘ e JORR(X;)
fp=-+— 2 — —d
T2 TN S 2 Ve o

+ o0 'ilX(z)
Py L S el
Nz} 127l' —o0 jw

lR

[ Z |3<‘>+ 2 Z B(”J (54)
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where

gy —

J 27

In order to obtain the second line of (54), an approxima-

tion of e/**/N = 1 + Jjwa /N is used. Also, note that, in

the leave-one-out method, the design and test samples are

independent and, therefore, the discussion of Section II-D

can be applied without modification. However, in the

leave-one-out method, the number of design samples (91;)
is always the same as the number of test samples (N;).

Now, the statistical properties of the bias, &, = § —

&g, can be studied. The expected value of &, is

oo g4c 3 (i) L
1 S di(X] )+ne oK) g

N 5 (55)

E{g}t =—p8 +=—= 5
{3b} N, By N, B> (56)
where
= 1 SHO di(X) +n ke (%)
Bi =5 SS » S Eafe } pi(X) dw dX.
(57)
And, the variance of §, is
.. P11 R 1
Var {Sb} = ]V%' ':171 Var {Bj(l)} + <1 - 17])
+ Cov {ﬁ}”ﬁi”}}
Pil1 5 (2) 1
R \ + —
+N§ [NzVar{ﬁj } 1 N,
- cov (BB} |
2P,P, A (1)@
+ NN, Cov {BVB7}. (58)

The explicit expression for 8; of (57) can be obtained
by using the same technique used to compute € in [12], if
two distributions are Gaussian with M; = 0, M, = M and
L, = L, = I and the quadratic classifier of (14) is used.
ForN, =N, =N :

. s . 1 .
Ej{e/ ™} = ef“’h(X)[l + ]—\}a} = e/ (59)

eI, (X) = V27 ¢ ~M™M/8 7y 41
! MM “\ 2°M™M
N, (joM, I) (60)

ejwh(X)Pz(X) =

' 61

© N((1 + jw)M, 1) (61)
- Where a is a constant given in [12]. N, (d, k) and N, (D,
K') are Gaussian density functions of w and X with the
expected value d and variance k for N,,, and the expected

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. i, NO. 10, OCTOBER 1989

vector D and covariance matrix K for Ny. Thus, the in-

tegration of (57) merely involves computing the moments

of the Gaussian distributions of (60) and (61), resulting

in

2 1 -M™™M/8 [ 2 T
e n+(l+MM/2)n

Y, [ ( "M /2)

b i
+ [(M™M)* /16 — MTM/2 — 1]]. (62)

The first lines of Table II show the values of E{#,} com-
puted from (56) and (62) with MM = 2.56% and P, = P,
= 0.5 for various k (= N/n) and n. The theoretical val-
ues are compared with the experimental ones in the sec-
ond lines. The experiments were conducted by generating
N samples, estimating M; and L;, designing the quadratic
classifier of (14), estimating the resubstitution and leave-
one-out errors and computing the bias between them. The
experiment was repeated 10 times and the average and
standard deviation of the estimated biases are listed in the
second and third lines. As Table II shows, the first and
second lines are close, confirming the validity of our dis-
cussion.

An important fact is that, from (56) and (62), E{#§,} is
roughly proportional to n2/N for large n. A simpler ex-
planation for this fact can be obtained by observing (57)
more closely. Assuming (59) and carrying through the in-
tegration of (57) with respect to w,

— S di(X) +n

8= |, T 0(h(30) pu () dx

- df(X) +n
- Sh(X)=0 ———p;i(X) dX. (63)

2
It is well known that d?(X) is yx 2-distributed with an ex-
pected value of n and standard deviation of \/Z_n, if Xis
Gaussianly distributed. Particularly when 7 is large,
d?(X) on the classification boundary should be n times
some number not far from 1. That is, df(X ) is close to
n?. Thus, B; should be proportional to n2.

The analysis of the variance (58) is more complex. Al-
though the order of magnitude may not be immediately
clear from (58), our experimental results, presented in
Fig. 2 and the third line of Table II, show that the stan-
dard deviation is roughly proportional to 1 /N. The intu-
itive explanation should be the same as that presented in
Section II-C.

C. Effect of Outliers

It is widely believed in the pattern recognition field that
classifier performance can be improved by removing out-
liers, points far from a class’s inferred mean which seem
to distort the distribution. The approach used in Section
III-A to analyze the difference between the resubstitution

“and leave-one-out parameters can be extended to handle

the effect of a single point of the design set on classifier

performance.
As in (34)-(38), assume that N — 1 samples have been
used to estimate a distribution’s parameters (M, £) and
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TABLE II
BiAs BETWEEN LEAVE-ONE-OUT AND RESUBSTITUTION FOR I-I ( %)

n

4 8 16 32 64
3 9.00 13.79 23.03 41.34 77.87
13.33 1542 19.69 22.86 30.29
7.03 5.22 4.12 4.26 3.40
5  5.40 8.27 13.82 24.80 46.72
7.50 9.25 10.75  17.75  24.47
4.56 3.24 2.28 2.69 .1.53
10 2.70 4.14 6.91 12.40 23.36
2.25 4.63 6.34 9.58 16.01
1.84 2.02 1.59 1.61 1.24
15 >1.80 2.76 4.61 8.27  15.57
1.33 3.13 4.42 7.44 11.92
k 0.90 1.29 0.87 0.47 1.18
20 1.356 2.07 3.45 6.20 11.68
1.38 2.09 3.14 5.05 9.56
1.05 1.00 0.64 0.53 0.45
30 - 0.90 1.38 2.30 4.13 7.79
0.63 1.58 2.39 3.94 6.41
0.45 0.52 0.41 0.35 0.33
40 0.67 1.03 1.73 3.10 5.84
0.44 1.08 1.556 2.96 5.21
0.30 0.39 0.30 0.30 0.36
50 0.54 0.83 1.38 2.48 4.67 -
-+ 030 0.75 1.38 2.29 4.27
0.23 0.23 0.37 0.25 0.25

standard
5 | deviation x 10 2

1Nx107?
1 I . ] ! 1
0 3 4 5
Fig. 2. Bias between leave-one-out and resubstitution errors for I-I (stan-
dard deviation versus 1/N for n = 8).

that these estimates will now be modified by including a
new point Y. These new estimates (My, fly) are defined by
(36) and (38). The approximations in (39)-(44) are still
valid, so (45) can also be used. For the quadratic classi-
fier, (47) and (48) can be substituted into (45) to yield

A

f(My’ ﬁy) _f(M’ i)

1 T 1
=ﬁ[—2(Y—M) (X — M)

+(Y-M) T (Y -M)-n
~{r-m)z'(x-m)Y
+ (X - M) TT(X - M)]

= Te(x =), (64)
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The corresponding change in the discriminant function for
Y € w; can be found by inserting (64) into (51)

hy(X) = f(My, £1)) — f(M, £5)

= f(M, £)) + ]%rgl(X, Y) = f(M,, £5)

A 1
= h(X) +E\_Ig‘(X’ Y) forYew,. (65)

Likewise, when Y comes from w,,

. 5 1

h,(X) = h(X) _K’gZ(X’ Y) forYew, (66)
where g; indicates that M; and L; are used instead of M
and X in (64).

When this modified classifier is used on an independent
set of test samples, the result is, using (19),

1 1 +oo jwhy(X)
8 = +—S§ 5(X) dw dX
S

2 2x —o  Jw

11 g S*“ ef‘”“")[ jw }
= -+ — 1+—g(X Y

2 2w Jsd-o  jw - Ngl(  ¥)

- 5(X) do dX

1 (™ ol
et | | emo Lo or v por do ax
N

— 00

L
(67)

where + and i = 1 are used for Y € w; and — and i = 2
are for Y € w,. The approximation in the last line involves
expressing e/*®) in terms of ¢/“*® and ignoring terms
smaller than 1/N. Unlike the case of the resubstitution
error, (67) keeps p(X) in its integrand. This makes the
integral in (67) particularly easy to handle. If the qua-
dratic classifier is the Bayes classifier, the integration with
respect to w results in

I
o
H+

1
e /X N & (X, Y) p(X) dw dX

Ag, = -j—*Ss 8(h(X))—1A—,g,- (X, ¥) 5(X) dX = 0. (68)

That is, as long as p(X) = 0 at h(X) = 0, the effect of
an individual sample is negligible. Even if the quadratic
classifier is not optimal, A¢, is dominated by a 1 /N term.
Thus, as one would expect, as the number of samples be-
comes larger, the effect of an individual sample dimin-
ishes. '

These results were confirmed in three sets of experi-
ments. The first was the mean difference case used earlier.
In the second experiment, the twa classes share a mean,
but have different covariances (I for w;, 41 for w,). The
third experiment used Standard Data from [13] where the
classes differ widely in both the mean and the covariance.
Eight-dimensional data was used in each case.

The experiments were run in the following manner. N
samples were generated for each class. Then, an addi-
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TABLE III
Bias BETWEEN ERROR WITHOUT OUTLIER AND ERROR INCLUDING OUTLIER
FOR VARIOUS OUTLIER DISTANCES FROM THE CLASS 1 MEAN

(@) For I-I (e* = 10 percent)
(b) For I-41I (e* = 9 percent)
(c) For STANDARD DATA (¢* = 1.9 percent)

BIAS BETWEEN ERROR WITHOUT OUTLIER
ERROR WITHOUT AND ERROR INCLUDING OUTLIER (%)
N OUTLIER (%) a=nfp | @=n d? =21 d? = 3n
24 20.18 0.519 0.689 0.769 0.762
40 15.61 0.124 0.211 0.279 0.274
80 12.04 0.029 0.035 0.027 0.018
120 11.71 0.008 0.012 0.011 0.003
160 11.04 0.006 0.010 0.014 0.013
240 10.74 0.004 0.006 0.010 0.001
320 10.53 0.004 0.006 ' 0.009 0.011
400 10.34 -.001 -.001 -.003 -.001
(a)
BIAS BETWEEN ERROR WITHOUT OUTLIER
ERROR WITHOUT AND ERROR INCLUDING OUTLIER (%)
N OUTLIER (%) d? =n/2 d=n =2 | & =30
24 23.53 0.792 1.213 1.451 - 1.356
40 16.19 0.222 0.423 0.619 0.658
80 11.79 0.025 0.060 0.091 0.083
120 10.83 0.015 0.032 0.047 0.045
160 10.32 -.003 0.005 0.014 0.013
240 9.92 0.003 0.012 0.025 0.034
320 9.52 0.003 0.006 0.012 0.015
400 9.41 0.000 0.000 0.001 -.001
(b)
) BIAS BETWEEN ERROR WITHOUT OUTLIER
ERROR WITHOUT AND ERROR INCLUDING OUTLIER (%)
N OUTLIER (%) d® =n/2 d? =1 a® =2n 4’ = 3n
24 5.58 0.374 0.555 0.664 0.673
40 3.70 0.054 0.088 0.110 0.103
80 2.54 0.005 0.007 0.008 0.003
120 2.35 0.005 0.007 0.007 0.005
160 2.25 -.001 0.000 0.001 ' 0.001
240 2.14 0.001 0.002 0.003 0.004
320 2.08 0.000 0.000 0.001 0.001
400 2.05 0.000 0.000 0.000 0.000
c)

tional sample Y was generated from class 1 and scaled to
a specific normalized distance from the mean. Classifiers
were designed with and without ¥ and were tested on the
true distributions using Novak’s program computing the
performance of a classifier with a given test distribution
[4]. This procedure was repeated 10 times for each par-

ticular value of N. The entire process was run a number

of times with varying distances. Experimental results are
presented in Table III. Notice that even when the squared
distance is much larger than its expected value n, the out-
lier’s effect is still negligible.

IV. BOOTSTRAP METHODS

As an alternative to the holdout and leave-one-out error

. estimates, Efron [3] has suggested using a bootstrap tech-
nique to estimate the optimistic bias of the resubstitution
error and, in turn, to estimate the expected error rate for
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a given decision rule. In the bootstrap procedure, one as-
sumes that the existing sample set represents the true dis-
tributions. That is, these density functions consist of im-
pulses located at the existing sample points
Ni .
1 .
=—28X-Xx") i=1,2
N;j=1 ( )

pif(X) (69)

- where * indicates something related to the bootstrap op-

eration. Note that in this section, X; ) is considered a given
fixed vector and is not random as it was in the previous
sections.

When samples are drawn from p/* (X ) randomly, we se-
lect only the existing sample points with random frequen-
cies. Thus, the N; samples drawn from p (X ) form a den-
sity function

pH(X) = Z} 008(x — Xy  i=1,2. (70)
S

Within each class, the 01(’ »’s are identically distributed un-

der the condition I;_ M 0(’) 1. Their statistical proper-

ties are known [3]:

gy 1
g 1 1
i (i) —_

E{g}('i)gl(")} =0, fori=+l (73)

The error estimate with independent design and test
samples in the bootstrap procedure (which, for lack of a
better term, we will call the holdout error), £}, is obtained
by generating samples designing a classifier based on

pF(X) and testmg #(X). On the other hand the resub-
Stlt].lth!’l error £ is computed by testing p* (X ). The bias
between them can be expressed by

8F = 8p — &}

) ioshr® Ny
1 SS* e /R (X) 1
= — — P 2 = — 9D
27 Jsd-o  jw o\,

- 8(X - x{V)
‘N2

- P2

j=1

1
(172 - 9}”) o(Xx — X}”)J dw dX

Ni N
=P1j§1 7( ) _szgl,y(z) (74)
where
' AQ) [+ ok (x{)
M 21 S £ _ " dw (75)
iy — Jw

and AG{) = 6 — (1/N,).
When a quadratlc classifier is used, *(X) in (75) be-
comes

I (X) = FOE, £F) - fO5, £) (76)
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+) is defined in (46). The bootstrap parame-

where f( -,
ters, M} and £ are
Ni
MF = Zl 0Ox®H (77)
j=
Ni
BF =2 60(xf0 — m) (X - M)’ (78)
Note that M, = (l/N ) E X(' ) is used to compute

£ M is available in the bootstrap operation and the use
of M; instead of M} simplifies the discussion signifi-
cantly. Their expectations are

Ni

= _Zl E{§{P}x
j=

1 <
_Llsxo g,
Nj=1" !

E {M}}

(79)

Ni
E (21} = L E{0)} (0 — ) (xf° - i)

N —14 A
= — L =k
N; ' !

where E , indicates the expectation with respect to the §’s.
f (M,*, £7) can be expanded around f(M,, £,) by the
Taylor series as

(80)

af
5) = %, fA —
f(MF, E2F) = f(M;, £) + MAM +trBE,AE
(81)
where AM; = M} — M, and AL, = £} — £, Since
h(X) = f(My, £)) - f(M,, £,),
AR(X) = h*(X) — h(X)
af" af’
= _——A A M
oM, M, — 6M2A 2
of of
+tr <82] ~ 3% AZ) (82)

The partial derivatives of (82) can be obtained by (47) and
438).

A. Bootstrap Expectation

Using the approximation of (21), (75) can be approxi-
mated as

.2

(Jw) AR?
2

The third term contains third-order moments with the

combination of A@{") and Ah® and can be ignored. Thus,

our analysis will focus on the first and second terms. With
this in mind, substituting (77), (78) and (82) into (83)

© g jeh(X{)

0 ~ _AO}”
Yio= 2

[1 + jwAR(X)
Jjo

+ (X}”)} do. (83)

1097
produces
(i) proo  juh(xiDy
,.Y(l) = —Aoj S ej ( J dw
! 2T J-o  jw
1 (" o af” & i
-5 Lo eIh )[a—Ml 2 A0PA XL
a
M’; ) AOP MO X (P
2 k=1
Ni af
i (1) y(1) T (1) Y
+ % A6A0D (X - M) 3, (K& — M)
N2
. af
- 2 AOOAIP (X — aty) " 3
k=1 4 8k ( k 622

(xP - Mz)} do. (84)

Using the partial derivatives of (47) and (48) and the ex-
pectations in (71)~(73), E, {v{"} becomes

i+1 too 340 y(i)
E {y?} = (G S' dixj) + n
N2 27 J-on 2
- R Gy (85)
where
di(X) = (X - M) £71(X - M), (86)
In the derivation of (85), we utilized the relationship that
Ni
1 .
N.kg (X(') M) E 1(X(1) M)
k=
M .
—w B 5 (x0 - ) (x{0 - o)
N—-1 ._ia
= 'N tr £718
N, -1
=N n=En

Thus, the expectation of the bootstrap blas for a quadratlc

classifier given a sample set § = {X'", , X0 x®,

, Xﬁ,z)} becomes
E{er[S}) =

N

P‘ Z B+ 55 i Z pF>  (87)

where
o L[ A 4
J 27" —co 2

Note that (55) and (88) are very similar. The differences
are d? of (86) versus d? of (50) and % versus hL h is the
discriminant function demgned with M; and £;, the sam-
ple mean and sample covariance of the sample set S. The
test samples X[’ are the members of the same set .
Therefore, h is the same as the resubstitution discriminant

e iR g (88)
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TABLE IV
BOOTSTRAP RESULTS

(a) For I-I (¢* = 10 PERCENT)

CONVENTIONAL BOOTSTRAP
LEAVE-ONE-OUT & RESUBSTITUTION .
* * *

N| E{er} E{ef} E{e,—er} Es{er+E+{ey ls}}bs}?m{eb [S}EsVar«{ey [S}
24 3.54 17.08 13.54 12.77 9.23 0.18
0.11 4.89 3.14 417 1.38 0.04
40 5.75 13.38 ] 7.63 11.68 5.92 0.08
0.07 6.04 3.88 4.44 1.90 R 0.02
80 7.13 11.19 4.08 10.87 3.55 0.04
0.04 2.47 1.29 2.50 0.56 0.01
120 9.04 11.79 2.75 11.45 2.41 0.03
0.06 2.97 1.01 2.79 0.43 0.01
160 9.13 11.28 2.16 11.17 2.05 0.02
0.03 2.35 1.09 1.94 0.44 0.00
240 8.27 9.35 1.08 9.46 1.19 0.01
0.02 1.61 0.51 1.81 0.15 0.00
320 9.78 10.67 0.89 10.78 1.00 0.01
0.01 0.80 0.37 0.91 0.11 0.00
400 9.18 9.78 0.60 9.98 0.77 0.01
0.01 0.91 0.28 0.84 0.16 0.00

function Ay of the previous sections, while A, is the leave-
one-out discriminant function. As is shown in (52) and
(53), the difference between A; and hR is proportlonal to
1/N. Thus, the difference between e/“"- and ¢/ is pro-
portional to 1/N. Also, as (50) suggests, it can be shown
that the difference between d? and d? is proportional to
1 /N Thus, ignoring terms with 1 /N &, of (54) and E,,
{2/ ]| S} of (87) (note that S is now a random set) become
equal and have the same statistical properties. Practically,
this means that estimating the expected error rate using
the leave-one-out and bootstrap methods should yield the
~ same results.

These conclusions have been confirmed experimen-
tally. For several values of &V;, 8-dimensional sample vec-
tors were generated from the Gaussian distributions used
in Section III. The generated samples were bootstrapped
and used to design a quadratic classifier. This classifier
was then tested on the original sample set (£;) and the
bootstrap sample set (£;). Each sample set (S) was
bootstrapped 100 times and the results were averaged to
simulate the bootstrap expectation (E,{&; |S}.) The
whole procedure was repeated 10 times to estimate the
expectation with respect to the training sample set (Eg
E. {8} |S}.) Results are presented in Table IV. In col-
umns 3-7, the first line of each entry is the mean of 10
trials and the second line is the standard deviation. In col-
umn 2, the first line is still the mean, but the variance is
presented in the second line.

When W, is particularly small, our approximations might
not be valid and the leave-one-out and bootstrap methods

may produce different results. Although the bootstrap bias
estimate does seem to have a slightly smaller standard de-
viation (column 4 versus column 6 of Table IV), both our
results and those presented in Jain, Dubes, and Chen [15]
show that the leave-one-out and bootstrap methods are
equivalent (column 3 versus column 5 of Table IV).

B. Bootstrap Variance

The variance with respect to the bootstrap can be eval- -
uated in a fashion similar to (58)

NN

Var, {# |S} = P} Z Var*{~y,“>} + § kg
j*k

- Covy { vV “)}

N1 M

+P2 Z Var, {v®} + 2 2
j=1k=1
j*k

- Cove {777}

N M
—-2P1P22 Z Cov, { vV v}

(89)
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(b) For I-4I (e*

TABLE 1V (Continued.)

= 9 PERCENT)

(c) FOR STANDARD DATA (e*= 1.9 PERCENT)

CONVENTIONAL BOOTSTRAP
LEAVE-ONE-OUT & RESUBSTITUTION
* ¥ ¥
N E{ER} E{EL} . E{F.L—ER} Es{ﬁR‘i‘E%{Eb IS} sE*{Gb lS ESVar:{eb |S}
24 3.54 18.33 14.79 15.08 11.54 0.21
0.12 4.79 3.86 4.35 1.26 0.03
40 4.88 13.75 8.88 12.10 7.22 0.12
0.06 3.23 2.97 2.27 0.92 0.03
80 7.19 11.19 4.00 10.82 3.63 0.04
0.08 2.72 1.56 3.12 0.54 0.01
120 8.25 10.75 2.50 10.86 2.61 0.03
0.03 2.14 1.23 2.04 0.37 0.01
160 7.59 9.88 2.28 9.58 1.98 0.02
0.01 1.58 0.88 1.23 0.33 0.00
240 8.38 9.75 1.38 9.80 1.42 0.02
0.03 1.94 0.49 1.83 0.22 0.00
320 9.11 10.09 0.98 10.14 1.03 0.01
0.71 0.83 0.40 0.77 0.15 0.00
v 400 9.09 9.99 0.90 9.99 0.90 0.01
0.01 0.95 0.24 0.89 0.13 0.00
(b)
CONVENTIONAL BOOTSTRAP
LEAVE-ONE-OUT & RESUBSTITUTION
* * *
N E{ER} E{e } E{e,—cr} [Es{er+E« {ep IS}}}EsEt{Eb IS}!EsVa,rx {ev IS}
24 0.63 5.00 4.38 4.14 3.52 0.10
0.01 3.43 3.02 1.69 0.84 0.02
40 1.88 3.63 1.75 3.74 ) 1.88 0.03
0.02 1.99 1.21 1.95 0.87 0.02
80 1.44 2.31 0.88 2.26 0.82 0.01
0.01 1.10 0.94 1.08 0.24 0.00
120 1.75 2.71 . 0.96 2.31 0.56 0.01
0.01 1.04 0.48 1.05 0.19 0.00
160 1.94 2.34 0.41 2.35 0.42 0.01
0.00 0.90 0.36 0.80 0.17 0.00
240 2.21 2.50 0.29 2.50 0.29 0.00
0.00 0.71 0.26 0.80 0.13 0.00
320 2.00 2.17 0.17 2.18 0.18 0.00
0.00 0.48 0.14 0.53 0.07 0.00
400 2.01 2.24 0.23 2.21 0.19 0.00
0.00 0.45 0.18 0.38 0.07 0.00

(©

Because the samples from each class were bootstrapped Thus, the variance of 'y
independently, Cov*{'y(”'yk } =0.

Using a property of the inverse Fourier transform,

+ oo
S e
— 0

v

(i) — _

QS

Jeoh* (X))

27

dw

Jjw

1 i i i
—7 sen (h*(X{V))A0(0.

(90)

Var, { 7"} = E*{v}”z}

= %E{AO}”Z}

1

1

1

N?

- Ex{v"}

- B {7}
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where E5 {v{"} is proportional to 1/N; from (85) and
therefore can be ignored. Cov,{y{’y Y may be ap-
proximated by using the first term only of (84). Again,
using (90),

Cov, {v"7:"}

= E{7{"7i"} - E{vf"} E{ v}

1 J sen (R(X1)) sgn (h(X{")) E{A0{ A6}
— E{v{"} E{~{"}

1 o o
= e (h(X")) sgn (h(X;))

where E{A()(‘)AG(')} = —1/N; forj # k by (72), and
E.{v{"} E, {v} is proportional to 1/N} by (85)
and therefore can be ignored.

Thus, substltutmg (91) and (92) into (89) and using
Cov, {vPv} =0,

III

(92)

Var, { &} ‘ 5}
_1ls &{1 3 sen (A(Xf)
4i=1N; j=1 N;
Ni 7 (i)
sgn (h(X3:))
k§1 Ni
12 P
=Zi§1ﬁ[1 — (1 — 2&) (1 — 2ﬁRi)]
2
aRi(l - éRi)
= ,; P; N . (93)

Note that £ sgn (h(X“)))/N = (—1)" [(# of correctly
classified w; samples by h =g, 0)/N; — (# of misclassi-
fied w; samples by R=200)/N]1=(-1D'[(1 — &) —
£r] = (—1)' (1 — 28g). Since h is the resubstitution
discriminant function for the original sample set, the re-
sulting error is the resubstitution error.

Note that (93) is the variance expression of the resub-
stitution error estimate. This is seen in Table IV (second
line of column 2 versus first line of column 7) and theo-
retically substantiates a claim of Efron [3]. Also, note
that, since (93) only involves bootstrap operations, this
value can be estimated using just one set of samples.
When S becomes a random set, Var,{&; | S} varies
with ﬁRi(l - éRi) = éRi'

V. CONCLUSIONS

The object of this paper was to apply the error expres-
sion derived in [12] to various classifier test procedures
in order to theoretically analyze their estimates of the ex-
pected classifier performance. It was shown that the de-
sign samples alone account for the degradation in a clas-
sifier’s performance, while the test samples dominate the
variance of the error estimate. These results have been
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known. But, this paper offers a new theoretical approach
to understanding how design and test sample sizes affect
the performance of classifiers. A general expression
showing the relationship between the resubstitution and
leave-one-out estimates of functions of Gaussian param-
eters was derived. As an example, the statistical proper-
ties of the difference between the resubstitution and leave-
one-out error estimates for the quadratic classifier were
investigated. The difference was found to be inversely
proportional to the number of design samples and roughly
proportional to n?. In a related discussion, the effect of
outlier design samples was found to be negligible, other
than their effective reduction of the number of design
samples in the training set. Finally, Efron’s bootstrap es-
timate of the optimistic bias of the resubstitution error was
analyzed. The resulting error estimate was shown to be
statistically equivalent to the leave-one-out error estimate
under reasonable design conditions.

Although not exhaustive, this study should provide a
better understanding of the role of dependent and inde-
pendent design and test samples in classifier design and
evaluation. Hopefully, the tools and methodology can be
applied to other statistical testing procedures and may help
propose new ones.

APPENDIX 1
PROOF OF € = ¢

The first step is to prove that the first-order variation of
(19) is zero regardless of Ah(X). From (21), the first-
order variation of (19) is

1 +o0 .
E‘: SS S—oo Ah(X) el<ﬂh(X)p~(x) dw dX

S AR(X)5(R(X)) p(X) dX

S AR(X) p(X) dX
h(X)=0
=0. ' (A1)

The last equality comes from the fact that p(X) = 0 at
h(X) = 0if h(X) is the Bayes classifier of P,p,(X) and
Py py(X).

The second step involves showing that the second-order
variation of (19) is positive regardless of Ah(X). Again
from (21)

1 e
E;Ssmz

' =%S8Ah2( )d( )”(X)dX

AR(X) ™™ p(X) dw dX

(A2)

In the region very close to h(X) = 0, d6(h)/dh > 0 and

p(X) > 0forh < 0, while dé(h)/dh < Oandp(X) <
0 for & > 0. Since Ahz(X) > 0 regardless of Ah(X),
(A2) is always positive.
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APPENDIX 2
DERIVATION OF VAR {£}

Keeping up to the second-order terms of Ak,
e Joh(X) g jnh(Y)

- ejwlh(X)ejwzh(Y)ejwlAh(X)eJ'WZAh(Y)‘

n

e/ X) itk 4 Gy ALy (X) + joaAGy(Y)
~ i AR(X) AB(Y)] (A3)

where

AG(X) = Ah(X) +- ]7"’ AR (X). (A4)

Thus, the first line of (22) can be expanded to

Var, {¢}
1 +oo ejunh(X)
= Er_ S\S S_oo '_jwl"‘ ﬁ(X) d(:)l dX
1 +oe g jwrh(Y)
* 5’7; XS S j(,.)z ﬁ(Y) dw?_ dy
y v —o0
1 e
+ 5 SS S_m E {AG(X)} ™" Op(X) deoy dX
1 +o ejmzh(Y)
e L g e p(Y) dw, dY
y — 0o .

1 to ejwlh(X)
+ o L L» ———jwl p(X) dw, dX

+ oo
;—S S E;{AGy(Y)} ™M p(Y) des, dY
T JSyJ—o

LT mtan anny

— 00

- el Jh M) 5(X) B(Y) dw,dw, dX dY

(-2

The first line of (A5) is (e — %) from (4), and the second

and third lines are each (e — 3)Ag from (21). Further- -

more, the summation of the first, second, third, and fifth
lines is (e — 3)* + 2(e — })Ag — (¢ — 1)® = Ag?
wheree = ¢ + Ae. Since Ag is proportional to
E;{AR(X) + (jo/2) AR*(X)} (~1/91) from (21),
Ag? is proportional to 1 /92 and can be neglected. Thus,
only the fourth line remains uncancelled which is the sec-
ond line of (22).
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