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1. Introduction

ABSTRACT

Customer churn is often a rare event in service industries, but of great interest and great value. Until
recently, however, class imbalance has not received much attention in the context of data mining [Weiss,
G. M. (2004). Mining with rarity: A unifying framework. SIGKDD Explorations, 6 (1), 7-19]. In this study,
we investigate how we can better handle class imbalance in churn prediction. Using more appropriate
evaluation metrics (AUC, lift), we investigated the increase in performance of sampling (both random
and advanced under-sampling) and two specific modelling techniques (gradient boosting and weighted
random forests) compared to some standard modelling techniques.
AUC and lift prove to be good evaluation metrics. AUC does not depend on a threshold, and is therefore a
better overall evaluation metric compared to accuracy. Lift is very much related to accuracy, but has the
advantage of being well used in marketing practice [Ling, C., & Li, C. (1998). Data mining for direct mar-
keting problems and solutions. In Proceedings of the fourth international conference on knowledge discovery
and data mining (KDD-98). New York, NY: AAAI Press].
Results show that under-sampling can lead to improved prediction accuracy, especially when evaluated
with AUC. Unlike Ling and Li [Ling, C., & Li, C. (1998). Data mining for direct marketing problems and solu-
tions. In Proceedings of the fourth international conference on knowledge discovery and data mining (KDD-
98). New York, NY: AAAI Press], we find that there is no need to under-sample so that there are as many
churners in your training set as non churners. Results show no increase in predictive performance when
using the advanced sampling technique CUBE in this study. This is in line with findings of Japkowicz [Jap-
kowicz, N. (2000). The class imbalance problem: significance and strategies. In Proceedings of the 2000
international conference on artificial intelligence (IC-AI'2000): Special track on inductive learning, Las Vegas,
Nevada], who noted that using sophisticated sampling techniques did not give any clear advantage.
Weighted random forests, as a cost-sensitive learner, performs significantly better compared to random
forests, and is therefore advised. It should, however always be compared to logistic regression. Boosting is
a very robust classifier, but never outperforms any other technique.

© 2008 Elsevier Ltd. All rights reserved.

ature and the needs of the leading edge industry practitioners, Gup-
ta et al. (2006) state that understanding how to model rare events

Customer retention is one of the most important issues for com- is one the issues that represent opportunities for future research:

panies. Customer churn prevention, as part of a Customer Relation-
ship Management (CRM) approach, is high on the agenda. Big
companies implement churn prediction models to be able to detect
possible churners before they effectively leave the company. When
predicting churn, more and more data mining techniques are

applied.

Fortunately for the companies involved, churn is often a rare
object (e.g. Neslin, Gupta, Kamakura, Lu, & Mason, 2006), but of
great interest and great value. Based on the current academic liter-
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“The models developed in marketing are typically applied to situa-
tions where the events of interest occur with some frequency (e.g.,
customer churn, customer purchases). These models can break
down when applied to setting where the behaviour of interest is
rare. For example, when modelling the correlates of customer
acquisition in a low-acquisition rate setting, the performance of
the familiar logit model is often unacceptable. There may be oppor-
tunity to gain valuable insights from the statistics literature on the
modelling of rare events.” (Gupta et al., 2006, 149).

Until recently, however, class imbalance has not received much
attention in the context of data mining (Weiss, 2004). Now, as
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lem of imbalanced data is taking centre stage. Weiss (2004)
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defined six data mining problems related to rarity, and lists ten
methods to address them. In this study, we investigate how we
can better handle class imbalance in churn prediction, applying
four of those ten methods.

First, we use more appropriate evaluation metrics. ROC analysis
is used, as AUC does not place more emphasis on one class over the
other, so it is not biased against the minority class. We explain the
relationship of the ROC curve with the cumulative gains and the lift
curve, both often used in churn prediction practice. Lift is the pre-
ferred evaluation matrix, used by CRM managers in the field (Ling
& Li, 1998). By using weighted random forests, we apply a second
method, namely that of cost-sensitive learning. Sampling is a third
possible method to deal with class imbalance. We both apply a
basic sampling method (under-sampling) and an advanced one
(CUBE, an efficient balanced sampling method). Last method used
is boosting, as we estimate a stochastic gradient boosting learner.

A lot of comparative studies have been carried out. The question
can be raised: why yet another comparative study? This study dif-
fers from previous studies in that our datasets for churn modelling
are substantially different from those traditionally used for com-
parative studies. While often comparative studies are carried out
on the UCI repository (Salzberg, 1997), with easy classification
tasks, and high accuracy, in this study churn prediction is the issue.
For six different companies churn prediction models are created:
the data is real, and big, the models developed are relevant, classi-
fication is harder.

2. Handling class imbalance: four possible solutions

Weiss (2004) draws up six categories of problems that arise
when mining imbalanced classes.

1. Improper evaluation metrics: often, not the best metrics are used
to guide the data mining algorithms and to evaluate the results
of data mining.

2. Lack of data: absolute rarity: the number of examples associated
with the rare class is small in an absolute sense, which makes it
difficult to detect regularities within the rare class.

3. Relative lack of data: relative rarity: objects are not rare in abso-
lute sense, but are rare relative to other objects, which makes it
hard for greedy search heuristics, and more global methods are,
in general, not tractable.

4. Data fragmentation: Many data mining algorithms, like decision
trees, employ a divide-and-conquer approach, where the origi-
nal problem is decomposed into smaller and smaller problems,
which results in the instance space being partitioned into smal-
ler and smaller pieces. This is a problem because regularities
can then only be found within each individual partition, which
will contain less data.

5. Inappropriate inductive bias: Generalizing from specific exam-
ples, or induction, requires an extra-evidentiary bias. Without
such a bias “inductive leaps” are not possible and learning can-
not occur. The bias of a data mining system is therefore critical
to its performance. Many learners utilize a general bias in order
to foster generalization and avoid overfitting. This bias can
adversely impact the ability to learn rare cases and rare classes.

6. Noise: Noisy data will affect the way any data mining system
behaves, but interesting is that noise has a greater impact on
rare cases than on common cases.

Weiss (2004) also describes ten methods for dealing with those
problems associated with rarity. Table 1 (Weiss, 2004) summarizes
the mapping of problems with rarity to the methods for addressing
these problems. Note that for each problem multiple solutions are
available. In these cases, the best (most direct, most useful) solu-

tions are listed first and those solutions that only indirectly address
the underlying problem are italicized.

In this study, we focus on problems 1, 3 and 6. As this study
evolves around churn prediction - using six real-life churn data
sets — those problems are the most relevant. Churn data sets are
generally rather big, what makes that absolute rarity is not an is-
sue. Logistic regression does not know the data fragmentation
problem, whereas ensemble methods should not be bothered by
it as much as single decision trees are. Besides, data fragmentation
is more of a concern when there is absolute rarity. The use of a
more appropriate inductive bias is something for further research.

We apply in this study more appropriate evaluations metrics, a
cost-sensitive learner, two sampling techniques and boosting. They
are sketched hereunder.

2.1. More appropriate evaluation metrics

2.1.1. Classification accuracy

It is often hard or nearly impossible to construct a perfect clas-
sification model that would correctly classify all examples from the
test set. Therefore, we have to choose a suboptimal classification
model that best suits our needs and works best on our problem
domain.

In our case, we could use a classifier that makes a binary predic-
tion (i.e. the customer will either stay with the company or not) or
a classifier that gives a probabilistic class prediction to which class
an example belongs. The first is called binary classifier and the lat-
ter is called probabilistic classifier. One can easily turn a probabilis-
tic classifier into a binary one using a certain threshold
(traditionally so that the Yrate in the test set is equal to the churn
rate in the original training set - see further).

2.1.2. Binary classifiers

When dealing with a binary classification problem we can al-
ways label one class as a positive (in our case a churner) and the
other one as a negative class (a non churner). The test set consists
of P positive and N negative examples. A classifier assigns a class to
each of them, but some of the assignments are wrong. To assess the
classification results we count the number of true positive (TP),
true negative (TN), false positive (FP) (actually negative, but classi-
fied as positive) and false negative (FN) (actually positive, but
classified as negative) examples.

It holds
TP+FN=P
and
TN+ FP =N

The classifier assigned TP + FP examples to the positive class and
TN + FN examples to the negative class. Let us define a few well-
known and widely used measures:

specificity = % = 1 — specificity = % = FPrate

sensitivity = % = TPrate = recall

TP + FP
P+N
TP
TP + FP
TP + TN
PN
= misclassification error

Yrate =

precision =

accuracy =
(MER) =1 — accuracy

Precision, recall and accuracy (or MER) are often used to measure
the classification quality of binary classifiers. The FPrate measures
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Table 1

A mapping of data mining problems associated with rarity to methods addressing these problems

Data mining problem

Method to address the problem

1. Improper evaluation metrics

o for evaluating final result
e to guide data mining

2. Absolute rarity

3. Relative rarity “needles in a haystack”

4., Data fragmentation “rare classes/cases split apart”
5. Inappropriate bias

6. Noise

1. More appropriate evaluation metrics
8. Cost-sensitive learning
9. Over-sampling

Remainder identical to cell below

Learn only the rare class
Segmenting the data
Sampling (over- and under)
Non-greedy search techniques
2 Two-phase rule induction
Accounting for rare items
Cost-sensitive learning
Knowledge/human interaction
3 Rare cases into separate classes
More appropriate evaluation metrics
More appropriate inductive bias
Boosting

_

—

—
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-

Non-greedy search techniques
Two-phase rule induction

o Learn only the rare class

10.3 Rare cases into separate classes
Sampling

_
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N

w ©®

More appropriate inductive bias
Appropriate evaluation metrics
Cost-sensitive learning

—

Advanced sampling
More appropriate inductive bias

weo w
Y

the fraction of non churners that are misclassified as churners. The
TPrate or recall measures the fraction of churners correctly classi-
fied. Precision measures that fraction of examples classified as chur-
ner that are truly churner.

Lift tells how much better a classifier predicts compared to a
random selection. It compares the precision to the overall churn
rate in the test set

Precision _ Sensitivity

LMt =5/ N~ Vrate

2.1.3. Probabilistic classifiers

Probabilistic classifiers assign a score or a probability to each
example. A probabilistic classifier is a function f:X — [0, 1] that
maps each example x to a real number f{x). Normally, a threshold
t is selected for which the examples where f(x) > t are considered
churner and the others are considered non churner.

This implies that each pair of a probabilistic classifier and
threshold ¢t defines a binary classifier. Measures defined in the sec-
tion above can therefore also be used for probabilistic classifiers,
but they are always a function of the threshold t.

Note that TP(t) and FP(t) are always monotonic descending
functions. For a finite example set they are stepwise, not continu-
ous. By varying t we get a family of binary classifiers.

Note that some classifiers return a score between 0 and 1 in-
stead of probability. For the sake of simplicity we shall call them
also probabilistic classifiers, since an uncalibrated score function
can be converted to a probability function.

2.1.4. ROC, cumulative gains and lift curve

When we want to assess the accuracy of a classifier indepen-
dent of any threshold, ROC analysis can be used. A ROC graph is de-
fined by a parametric definition

x =1 — specificity(t), y = sensitivity(t)

Each binary classifier (for a given test set of examples) is repre-
sented by a point (1-specificity, sensitivity) on the graph. By varying
the threshold of the probabilistic classifier, we get a set of binary
classifiers, represented with a set of points on the graph. An exam-
ple is shown in Fig. 1. The ROC curve is independent of the P:N ratio
and is therefore suitable for comparing classifiers when this ratio
may vary. Note that the precision-recall curve can also be com-
puted, but Davis and Goadrich (2006) showed the curve is equiva-
lent to the ROC curve (an example in Fig. 4).

Area under ROC curve is often used as a measure of quality of a
probabilistic classifier. It is close to the perception of classification
quality that most people have. AUC is computed with the following
formula:

'TP FP 1 (N
AUC = /0 i =os /0 TPdFP
A random classifier (e.g. classifying by tossing up a coin) has an area
under curve 0.5, while a perfect classifier has 1. Classifiers used in
practice should therefore be somewhere in between, preferably
close to 1.

What does AUC really express? For each negative example
count the number of positive examples with a higher assigned
score than the negative example, sum it up and divide everything
with P N. This is exactly the same procedure as used to compute
the probability that a random positive example has a higher
assigned score than random negative example.

AUC = P(Scorekandom churner > ScoreRandom non churner)

The cumulative gains chart, and the (cumulative) lift chart derived
from it, are well known in the data mining community specialized
in marketing and sales applications (Berry & Linoff, 1999). Apart
from their primarily presentational purpose lift charts have not
been studied extensively.

The cumulative gains chart (Fig. 2) is also defined by a paramet-
ric definition
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x = Yrate(t), y = sensitivity(t)

Each binary classifier (for a given test set of examples) is repre-
sented by a point (Yrate, sensitivity) on the graph. By varying the
threshold of the probabilistic classifier, we get a set of binary clas-
sifiers, represented with a set of points on the graph. It gives a
graphical interpretation of what percentage of customers one has
to target to reach a certain percentage of all churners. A purely ran-
dom sample is presented by a diagonal through (0, 0) and (1, 1), as
10% of the customers will account for 10% of the churners, etc.
The cumulative lift chart (Fig. 3) gives the ratio of the classifier,
compared to random sampling, and is thus defined parametrically

by
sensitivit
X = Yrate(t), _ Sensitivity
Yrate

The lift curve differs significantly from the earlier mentioned AUC in
that the lift curve depends on the churn rate. The AUC has the
advantage of being independent of the churn rate.

2.2. Cost-sensitive learning

In many data mining tasks, including churn prediction, it is the
rare cases that are of primary interest. Metrics that do not take this

into account generally do not perform well in these situations. One
solution is to use cost-sensitive learning methods (Weiss, 2004).
These methods can exploit the fact that the value of correctly iden-
tifying the positive (rare) class outweighs the value of correctly
identifying the common class. For two-class problems this is done
by associating a greater cost with false negatives than with false
positives.

Assigning a greater cost to false negatives than to false positives
will improve performance with respect to the positive (rare) class.
If this misclassification cost ratio is 3:1, then a region that has ten
negative examples and four positive examples will nonetheless be
labeled with the positive class. Thus non-uniform costs can bias
the classifier to perform well on the positive class - where in this
case the bias is desirable.

2.2.1. Weighted random forests

Since the random forests (RF, see methodology) classifier tends
to be biased towards the majority class, one can place a heavier
penalty on misclassifying the minority class (Chen, Liaw, & Brei-
man, 2004). A weight is assigned to each class, with the minority
class given larger weight (i.e., higher misclassification cost). The
class weights are incorporated into the RF algorithm in two places.
In the tree induction procedure, class weights are used to weight
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the Gini criterion for finding splits. In the terminal nodes of each
tree, class weights are again taken into consideration. The class pre-
diction of each terminal node is determined by “weighted majority
vote”; i.e., the weighted vote of a class is the weight for that class
times the number of cases for that class at the terminal node. The
final class prediction for RF is then determined by aggregating the
weighted vote from each individual tree, where the weights are
average weights in the terminal nodes. Class weights are an essen-
tial tuning parameter to achieve desired performance. The out-of-
bag estimate of the accuracy from RF can be used to select weights.

2.3. Sampling

One of the most common techniques for dealing with rarity is
sampling. The basic idea is to eliminate or minimize rarity by alter-
ing the distribution of training examples.

2.3.1. Basic sampling methods

The basic sampling methods include under-sampling and over-
sampling. Under-sampling eliminates majority-class examples
while over-sampling, in its simplest form, duplicates minority-
class examples. Both of these sampling techniques decrease the

overall level of class imbalance, thereby making the rare class less
rare. These sampling methods do, however, have several draw-
backs (Weiss, 2004). Under-sampling discards potentially useful
majority-class examples and thus can degrade classifier perfor-
mance. Because over-sampling introduces additional training
cases, it can increase the time necessary to build a classifier. Worse
yet, because over-sampling often involves making exact copies of
examples, it may lead to overfitting (Chawla, Bowyer, Hall, &
Kegelmeyer, 2002; Drummond & Holte, 2003). As an extreme case,
classification rules may be introduced to cover a single, replicated,
example. More importantly, over-sampling introduces no new data
- so it does not address the fundamental “lack of data” issue. This
explains why some studies have shown simple over-sampling to be
ineffective at improving recognition of the minority class (Ling & Li,
1998; Drummond & Holte, 2003) and why under-sampling seems
to have an edge over over-sampling (Chen et al., 2004). For those
reasons, in this study we will use under-sampling.

2.3.2. Advanced sampling methods

Advanced sampling methods may use intelligence when remov-
ing/adding examples or combine under-sampling and over-sam-
pling techniques. As we choose for under-sampling as our basic
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sampling method, we apply CUBE (Deville & Tillé, 2004) as an ad-
vanced under-sampling method. The CUBE method is a general
method that allows the selection of approximately balanced sam-
ples, in that the Horvitz-Thompson estimates for the auxiliary
variables are equal, or nearly equal, to their population totals. This
method is appropriate for a large set of qualitative or quantitative
balancing variables, it allows unequal inclusion probabilities, and it
permits us to understand how accurately a sample can be bal-
anced. Moreover, the sampling design respects any fixed, equal
or unequal, inclusion probabilities. The method can be viewed as
a generalisation of the splitting procedure (Deville & Tillé, 1998)
which allows easy construction of new unequal probability sam-
pling methods.

While there is already a very fast implementation of the cube
method (Chauvet & Tillé, 2006), it is not yet available, and hence,
the original version was used.

2.4. Boosting

Boosting is a technique for improving the accuracy of a predic-
tive function by applying the function repeatedly in a series and
combining the output of each function with weighting so that
the total error of the prediction is minimized. In many cases, the
predictive accuracy of such a series greatly exceeds the accuracy
of the base function used alone. The first popular boosting algo-
rithm was AdaBoost, short for adaptive boosting, by Freund and
Schapire (1997). It is a meta-algorithm, and can be used in con-
junction with many other learning algorithms to improve their
performance. AdaBoost is adaptive in the sense that subsequent
classifiers built are tweaked in favour of those instances misclassi-
fied by previous classifiers.

Gradient boosting (Friedman, 2002) constructs additive regres-
sion models by sequentially fitting a simple parameterized func-
tion (base learner) to current “pseudo”-residuals by least squares
at each iteration. The pseudo-residuals are the gradient of the loss
function being minimized, with respect to the model values at each
training data point evaluated at the current step. It is shown that
both the approximation accuracy and execution speed of gradient
boosting can be substantially improved by incorporating random-
ization into the procedure. Specifically, at each iteration a sub sam-
ple of the training data is drawn at random (without replacement)
from the full training data set. This randomly selected sub sample
is then used in place of the full sample to fit the base learner and
compute the model update for the current iteration. This random-
ized approach also increases robustness against overcapacity of the
base learner. Using the connection between boosting and optimi-
zation, Friedman (2001) proposes the Gradient Boosting Machine.

While Weiss (2004) suggests using a basic form of boosting (e.g.
AdaBoost), Friedman made those two improvements just men-
tioned to the boosting algorithm (2002 and 2001). We thus use
his gradient boosting machine algorithm in this paper, with the fol-
lowing options: loss function Bernoulli, 10.000 as number of itera-
tions, and shrinkage = 0.005.

3. Data and methodology
3.1. Data

In this study, we make use of six real-life proprietary European
churn modelling data sets. All data sets were constructed for com-
pany-driven applications, and hence represent a sizeable test bed
for comparing the alternative methods mentioned above on pre-
dictive accuracy. All cases are customer churn classification cases.

In Table 2, we present a case description. The first five cases in-
volve a contractual setting, the supermarket case is non contrac-

tual. Of those five contractual cases, two are situated in the
financial services sector. In both cases (at different financial insti-
tutions), churn is defined as partial defection on one specific prod-
uct (Bank2), or on at least one product category (Bank1) (Lariviére
& Van den Poel, 2004). The three other contractual cases are sub-
scription services (Burez & Van den Poel, 2007, in press). In all
three cases, churn is defined as a tacitly renewal of a subscription.
As this is often done on contract level, this definition corresponds
to total churn. In the supermarket case, partial defection is mod-
elled (Buckinx & Van den Poel, 2005).

In Table 3, we specify some descriptive statistics about the data-
sets used, namely (i) the data set, (ii) the number of observations,
(iii) the number of churners, (iv) the percentage of churners, and
(v) the number of predictive features in the data set.

Note that for this study, only those predictive features were
used that resulted from a (forwards) stepwise variable selection
procedure.

3.2. Methodology

3.2.1. Cross validation

The usual method to compare classification algorithms is to
perform k-fold cross validation experiments to estimate the accu-
racy of the algorithms and use t-tests to confirm if the results are
significantly different (Dietterich, 1998). In cross validation, the
data D are divided into k non-overlapping sets, Dy,...,Dy. At each
iteration i (from 1 to k), the classifier is trained with D\D; and
tested on D;. While the approach has as advantage that each test
is independent from the others, it suffers from that the training
sets overlap. It has been shown that comparing algorithms using
t-tests on cross validation experiments results in an increased
type-I error: the results are incorrectly deemed significantly differ-
ent more often than expected given the level of confidence used in
the test (Dietterich, 1998).

To cope with this problem, we followed the procedure recom-
mended by Dietterich (1998) and Alpaydin (1999) and used five
iterations of two-fold cross validation (5 x 2 cv). In each iteration,
the data were randomly divided in halves. One half was input to
the algorithms, and the other half was used to test the final solu-
tion; and the other way around. The accuracy results presented
in the next section are the average AUC, classification error and lift
values of the ten tests.

Table 2

Case description of data sets used

Dataset Churn

Bankl Partial defection: whether customers churn on at least one product
in a three month period

Bank2 Partial defection of current account holders on a twelve month
period

Mobile Defection of residential postpaid customers on a monthly basis

Newspaper Renewal of newspaper subscribers (12 month subscriptions)

PayTV Renewal of payTV subscribers (12 month subscriptions)

Supermarket Partial defection of customers of a supermarket chain on a four
month period

Table 3

Descriptive statistics of the data sets used

Dataset Number of Number of Churn Number of
observations churners rate predictive features

Bankl 117.808 7.419 6.30 74

Bank2 102.279 6.122 5.99 38

Mobile 100.205 2.983 2.98 73

Newspaper 122.189 7.703 6.30 33

PayTV 143.198 18.720 13.07 81

Supermarket 32371 8.140 25.15 21
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For the under-sampling, we further sampled randomly from the
non churners of the ten training sets, so that the churn rate in the
training set had the desired percentage. Those desired churn rates
range from the actual churn rate up to 95%, following Weiss and
Provost (2003).

The final results should always be tested on unseen data. The
accuracy results that we present are obtained by testing the final
solutions on the half of the data that has not been considered at
all by the algorithms.

3.2.2.5x2 CVF test

Having an outer 5 x 2 cross validation loop allows us to parti-
tion the data to do proper comparisons on unseen testing data
and also use the combined F test proposed by Alpaydin (1999),
which is an improvement over the 5 x 2 cv Paired F test as pro-
posed by Dietterich (1998). The combined F test ameliorates the
problems of the cross validated t-test (when doing k-fold cv) and
has high power.

Let plw denote the difference in the accuracy of two classifiers in
fold j of the ith iteration of 5 x 2 cv, p,= (p!" + p!*)/2 denote the
mean, and s? = (p{") — p)*> + (p*) — p)° the variance, then

Y@
253,82

is approximately F distributed with ten and five degrees of freedom.
We rejected the null hypothesis that the two algorithms have the
same error rate with o = 0.10 significance level if f>3.297. All the
algorithms used the same training and testing data in the two folds
of the five cross validation experiments.

f

3.2.3. Comparing correlated AUCs

To test statistical significant differences between average AUC
over 5 x 2 cv, there is - to our knowledge - no statistic yet. We
therefore used the method proposed by DelLong, DelLong, and
Clarke-Pearson (1988) to compare the AUC of two correlated algo-
rithms, on each of the 5 x 2 sets. Correlated in this context means
that different algorithms are applied on the same test set. If, on at
least 7 of the 10 runs, the difference in AUC was significant, we
considered the 2 average AUCs significantly different.

3.3. Techniques

As mentioned before, we use weighted random forests and sto-
chastic gradient boosting as a means to handle imbalanced churn
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data. To compare different sampling techniques however, we used
the normal version of random forests, and logistic regression,
which is still the standard technique used in practice (Neslin
et al., 2006).

3.3.1. Random forests

Random forests blends elements of random subspaces and bag-
ging in a way that is specific to using decision trees as base classi-
fier. At each node in the tree, a subset of the available features is
randomly selected and the best split available within those fea-
tures is selected for that node. Also, bagging is used to create the
training set of data items for each individual tree. The number of
features randomly chosen (from n total) at each node is a parame-
ter of this approach. Following Breiman (2001), we considered ver-
sions of random forests created with random subsets of size
[logx(n) + 1], rounded to the above integer. Random forests have
been used for customer retention modeling by Lariviére and Van
den Poel (2005).

3.3.2. Logistic regression

Logistic regression modelling is very appealing for four reasons:
(1) logit modelling is well-known, conceptually simple and fre-
quently used in marketing (Bucklin & Gupta, 1992), especially at
the level of the individual consumer (Neslin et al., 2006); (2) the
ease of interpretation of logit is an important advantage over other
methods (e.g. neural networks); (3) logit modeling has been shown
to provide good and robust results in general comparison studies,
for both churn prediction (Neslin et al., 2006) and credit scoring
(Baesens et al., 2003) and (4) more specifically in database market-
ing, it has been shown by several authors (Levin & Zahavi, 1998)
that logit modeling may even outperform more sophisticated
methods.

4. Results
4.1. Under-sampling and CUBE

We start with investigating the effect of under-sampling on pre-
dictive performance. We do this separately for logistic regression
(LR) and random forests (RF). A last part of these results will com-
pare both techniques together with two other techniques.

In Table 4 (for LR) and Table 5 (for RF), the averages over 5 x 2
cv of both AUC, classification error and lift are reported for the dif-
ferent samples and the different cases. Under the name of the case,

Table 4

Under-sampling and logistic regression

Logistic regression Original 5 10 20 30 40 50 60 70 80 90 95

Bankl 6.30 AUC 0.6959 0.6966 0.6971 0.6974 0.6974 0.6965 0.6949 0.6934 0.6893 0.6802 0.6604
Error 0.1032 0.1033 0.1033 0.1032 0.1033 0.1036 0.1039 0.1042 0.1048 0.1057 0.1091
Lift 2.8689 2.8659 2.8626 2.8692 2.8591 2.8215 2.7884 2.7513 2.6830 2.5693 2.2362

Bank2 5.99 AUC 0.8277 0.8289 0.8309 0.8315 0.8317 0.8318 0.8315 0.8303 0.8287 0.8246 0.8155
Error 0.0829 0.0828 0.0830 0.0829 0.0830 0.0834 0.0838 0.0843 0.0854 0.0869 0.0907
Lift 5.1477 5.1488 5.1346 5.1369 5.1217 5.0749 5.0184 4.9416 4.7917 4.5870 4.0838

Mobile 2.98 AUC 0.6785 0.6790 0.6790 0.6776 0.6767 0.6749 0.6722 0.6675 0.6627 0.6524 0.6315 0.6097
Error 0.0518 0.0518 0.0519 0.0519 0.0521 0.0523 0.0526 0.0530 0.0536 0.0543 0.0568 0.0758
Lift 4.4099 4.4176 4.3601 4.3329 4.2282 4.0941 3.9632 3.7207 3.3921 2.9927 2.0839 1.4725

Newspaper 6.30 AUC 0.6763 0.6765 0.6771 0.6773 0.6772 0.6769 0.6768 0.6755 0.6736 0.6695 0.6613
Error 0.1028 0.1029 0.1033 0.1036 0.1039 0.1044 0.1052 0.1062 0.1078 0.1091 0.1109
Lift 2.9351 2.9147 2.8662 2.8252 2.7900 2.7343 2.6318 2.5090 2.3035 2.1585 1.9520

PayTV 13.07 AUC 0.7714 0.7730 0.77451 0.7752 0.7758 0.7758 0.7753 0.7737 0.7680 0.7594
Error 0.1383 0.1382 0.1383 0.1384 0.1386 0.1389 0.1392 0.1401 0.1419 0.1448
Lift 3.6026 3.6074 3.6045 3.5990 3.5958 3.5862 3.5759 3.5503 3.4994 34124

Supermarket 25.15 AUC 0.8175 0.8174 0.8174 0.8173 0.8171 0.8168 0.8161 0.8144 0.8091
Error 0.2097 0.2096 0.2094 0.2098 0.2099 0.2105 0.2109 0.2120 0.2153
Lift 2.3183 23194 2.3205 23179 2.3168 23119 2.3087 2.3003 22739
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Table 5

Under-sampling and random forests

Random forests Original 5 10 20 30 40 50 60 70 80 90 95

Bankl 6.30 AUC 0.7619 0.7646 0.7662 0.7654 0.7629 0.7587 0.7527 0.7453 0.7321 0.7050 0.6817
Error 0.0819 0.0821 0.0820 0.0827 0.0835 0.0848 0.0859 0.0884 0.0910 0.0998 0.1071
Lift 5.6033 5.5905 5.5864 5.4967 5.4031 5.2524 5.1088 4.8228 4.5473 3.7964 3.2139

Bank2 5.99 AUC 0.8706 0.8717 0.8715 0.8703 0.8678 0.8655 0.8619 0.8558 0.8481 0.8331 0.8122
Error 0.0647 0.0654 0.0671 0.0689 0.0707 0.0721 0.0741 0.0766 0.0796 0.0848 0.0928
Lift 7.6918 7.5898 7.3555 7.1025 6.8489 6.6620 6.3953 6.0529 5.6830 5.1285 45178

Mobile 2.98 AUC 0.6446 0.6507 0.6567 0.6596 0.6619 0.6626 0.6584 0.6503 0.6372 0.6156 0.5860 0.5590
Error 0.0536 0.0535 0.0531 0.0530 0.0531 0.0531 0.0537 0.0539 0.0543 0.0553 0.0575 0.0652
Lift 3.8006 3.8567 4.0039 4.0341 3.9820 3.8810 3.6690 3.4842 3.2468 2.9556 2.3981 1.8833

Newspaper 6.30 AUC 0.7118 0.7168 0.7238 0.7257 0.7256 0.7243 0.7202 0.7107 0.6946 0.6747 0.6529
Error 0.0980 0.0978 0.0975 0.0982 0.0986 0.0992 0.1004 0.1021 0.1053 0.1098 0.1182
Lift 3.5755 3.6170 3.6535 3.5733 3.5156 3.4419 3.3165 3.1392 2.8180 2.5328 2.1374

PayTV 13.07 AUC 0.7581 0.7609 0.7628 0.7626 0.7613 0.7585 0.7513 0.7386 0.7094 0.6744
Error 0.1448 0.1449 0.1452 0.1468 0.1487 0.1520 0.1566 0.1639 0.1767 0.1958
Lift 3.4167 3.4153 3.4059 3.3592 3.3053 3.2106 3.0799 2.8800 2.5386 2.1031

Supermarket 25.15 AUC 0.8172 0.8176 0.8179 0.8171 0.8157 0.8131 0.8076 0.7963 0.7775
Error 0.2081 0.2079 0.2076 0.2102 0.2114 0.2153 0.2208 0.2304 0.2444
Lift 2.3288 2.3296 2.3340 23127 2.3032 2.2710 2.2272 2.1515 2.0425

the churn rate (in the test set) is given. Column headings indicate
the percentage of churners present in the training set: ‘10’ means
that 10% of the new formed training set are churners. The non
churners out of the original training set were under-sampled so
that this percentage was reached. The models trained on the differ-
ent training sets are then applied on the test set. Resulting evalua-
tion metrics are calculated on the outcome of the application of the
model on the test set. The original model indicates the model on
the full training set, so without under-sampling.

As we started from the original training sets (with their original
churn rate), a few blocks in Tables 4 and 5 are empty. For e.g. the
PayTV case, the original churn rate is 13,07%. The first under-sam-
pled training set has by definition a higher churn rate, in this case
20%. Columns 5 and 10 are thus left blank.

The highest AUC is printed in bold, the lowest error rate is
underlined, and the highest lift is in italic. For every case, and for
both AUC and the error, we calculated the test statistics. That is,
we looked at the highest AUC or lowest error, and checked whether
the other models were significantly worse. All models, of which we
cannot say they are significantly worse, and thus which are as-
sumed as good statistically as the best model, are highlighted in
grey.

We illustrate this with the Bank2 case. For LR, the best AUC is
obtained when the training set has 50% churners, and 50% non
churners (AUC = 0.8318). The original training set, and all under-
sampling up to a 60/40 proportion do not differ significantly what
concerns AUC. For RF, the best AUC is obtained for proportion 10/
90 (AUC = 0.8717). Original training set up to a 40/60 proportion
do not differ significantly. This same information is plotted in
Fig. 5. The bigger dots on the graphs are the significantly better
models. The same is done for error in Fig. 6.

Overall, for logistic regression (Table 4) we see that, what con-
cerns AUC, under-sampling gives us better results, but in only in
two cases, this improvement is significant compared to the AUC
achieved without under-sampling. When we look at error, none
of the over-sampling models is significantly better then the origi-
nal model.

When looking at random forests in Table 5, we see that again,
what concerns AUC, for all of the cases, the highest AUC is obtained
with under-sampling. In half of the cases, this is significantly better
then the original model. When looking at error, only for one of the
cases under-sampling is significantly better.

The under-sampling on the training set was done randomly. In
this second step of the results, we compare the results of a training
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Fig. 5. AUC versus degree of under-sampling (case Bank2).
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Fig. 6. Error versus degree of under-sampling (case Bank2).

set with 50% churners, but composed in two different ways. The
column with heading ‘50’ is the same as in Tables 4 and 5: out of
the non churners of the original set, a few are randomly selected
so that the training set includes 50% churners and 50% non churn-
ers. A second training set was composed with again all churners,
and a few non churners to get the 50/50 proportion, but this time
this selection of non churners was not done randomly, but based
on the CUBE algorithm. Results in Table 6 show that, while CUBE
improves AUC slightly, this improvement is never significant. The
error stays almost the same.

A last step is to compare logistic regression (LR) and random
forests (RF) to two modelling techniques proposed by Weiss
(2004). He hinted at using a cost-sensitive learner and boosting
algorithms. As cost-sensitive learner, we employ weighted random
forests (WRF) by Breiman (2001). As boosting algorithm, we ap-
plied the gradient boosting machine (GBM) by Friedman (2001).
Results are given in Table 7. When just looking at LR and RF, we
can see that in half of the cases (Bank1, Bank2 and Newspaper)
RF outperforms LR by a margin. In that case, wRF even improves
that performance (significantly in two of the three cases). In two

Table 6
CUBE versus random under-sampling

Logistic regression Random forest

CUBE 50 CUBE 50
Bankl AUC 0.6974 0.6965 AUC 0.7603 0.7587
Error 0.1033 0.1036 Error 0.0846 0.0848
Lift 2.8572 2.8215 Lift 5.2876 5.2524
Bank2 AUC 0.8319 0.8318 AUC 0.8653 0.8655
Error 0.0834 0.0834 Error 0.0725 0.0721
Lift 5.0706 5.0749 Lift 6.6107 6.6620
Mobile AUC 0.6746 0.6722 AUC 0.6610 0.6584
Error 0.0526 0.0526 Error 0.0533 0.0537
Lift 3.9204 3.9632 Lift 3.8008 3.6690
Newspaper AUC 0.6774 0.6769 AUC 0.7242 0.7243
Error 0.1042 0.1044 Error 0.0992 0.0992
Lift 2.7533 2.7343 Lift 3.4625 3.4419
PayTV AUC 0.7757 0.7758 AUC 0.7619 0.7613
Error 0.1386 0.1386 Error 0.1488 0.1487
Lift 3.5952 3.5958 Lift 3.3027 3.3053
Supermarket AUC 0.8172 0.8173 AUC 0.8173 0.8171
Error 0.2099 0.2098 Error 0.2100 0.2102
Lift 2.3165 2.3179 Lift 2.3142 2.3127

Table 7
Predictive performance of a cost-sensitive learner and a boosting algorithm
LR RF WRF GBM
Bankl AUC 0.6959 0.7619 0.7622 0.7284
Error 0.1032 0.0819 0.0821 0.0943
Lift 2.8689 5.6033 5.5533 4.0526
Bank2 AUC 0.8277 0.8706 0.8735 0.8534
Error 0.0829 0.0647 0.0639 0.0746
Lift 5.1477 7.6918 1.1315 6.2941
Mobile AUC 0.6785 0.6446 0.6433 0.6727
Error 0.0518 0.0536 0.0542 0.0523
Lift 4.4099 3.8006 3.7875 4.1589
Newspaper AUC 0.6763 0.7118 0.7189 0.7035
Error 0.1028 0.0980 0.0981 0.1014
Lift 2.9351 3.5155 3.5404 3.1718
PayTV AUC 0.7714 0.7581 0.7614 0.7559
Error 0.1383 0.1448 0.1439 0.1501
Lift 3.6026 3.4167 3.4391 3.2582
Supermarket AUC 0.8175 0.8172 0.8181 0.0201
Error 0.2097 0.2081 0.2076 0.2086
Lift 2.3183 2.3288 2.3334 2.3262

cases (Mobile and PayTV) LR outperforms RF, quite surprisingly.
While boosting is very consistent in its performance, it never out-
performs any other technique. This is a somewhat unexpected out-
come, as Bernoulli is the loss function used for boosting.

In three case (weighted) RF clearly wins, other times LR wins by
a huge margin. Running both, and taking the best of both seems the
most secure option. Combining both the ideas of LR and RF might
be another option, resulting in a powerful classifier (e.g. Prinzie &
Van den Poel, 2008).

5. Conclusions

Churn is often a rare object, but of great interest and great value
(Gupta et al., 2006). Until recently, however, class imbalance has
not received much attention in the context of data mining (Weiss,
2004). In this study, we investigate how we can better handle class
imbalance in churn prediction, applying 4 of 10 methods, proposed
by Weiss (2004). To investigate the impact of those methods, we
use six real-life customer churn prediction data sets. This is a major
strength of this study, as other (mostly data mining) studies often
use old and irrelevant or artificial data.
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Both sampling (random and advanced under-sampling), boost-
ing (gradient boosting machine) and a cost-sensitive learner
(weighted random forests) are implemented. Using more appropri-
ate evaluation metrics (AUC, lift), we investigated the increase in
performance over standard techniques (logistic regression, random
forests) and without sampling.

AUC and lift are good evaluation metrics. AUC does not depend
on a threshold, and is therefore a better overall evaluation metric
compared to error/accuracy. Lift is very much related to accuracy,
but has the advantage of being well used in marketing practice
(Ling & Li, 1998).

Results show that under-sampling can lead to improved predic-
tion accuracy, especially when evaluated with AUC. Unlike Ling
and Li (1998), we find that there is no need to under-sample so that
there are as many churners in your training set as non churners.
We can however confirm the findings of Weiss and Provost
(2003) that there is no general answer as to which class distribu-
tion will perform best, and that the answer is surely method and
case dependent.

The advanced sampling technique CUBE does not increase pre-
dictive performance. This is in line with findings of Japkowicz
(2000), who noted that using the sophisticated sampling
techniques did not give any clear advantage in the domain
considered. Another advanced sampling technique (e.g. SMOTE
for over-sampling) might perform better. Weighted random for-
ests, as a cost-sensitive learner, performs significantly better com-
pared to random forests, and is therefore advised. It should,
however always be compared to logistic regression. Boosting is a
very robust classifier, but never outperforms any other technique.

6. Limitations and directions for further research

Next to the four methods used in this study, Weiss (2004) also
puts forward to try non-greedy search techniques (e.g. genetic
algorithms), to use a more appropriate inductive bias (using hybrid
methods), to learn only the rare case, etc. (see Table). All of those
methods might be worth trying.

It would be interesting to compare the modelling techniques
used in this study to some state of the art techniques, like support
vector machines (Viaene et al., 2001; Coussement & Van den Poel,
2008), Bayesian methods (Baesens, Viaene, Van den Poel, Vanthie-
nen, & Dedene, 2002), neural networks and so on.

For comparing AUCs over two or more algorithms on a data set,
doing k fold cv or 5 x 2 cv, a test statistic should be developed to
test significant differences as, to our knowledge, such statistic does
not exist today.

For both RF and GBM, one has to set parameters. For both we
did some form of optimization, but this was not done rigorously.
Predictive performance might be slightly influenced by this param-
eterisation. E.g., the RF parameter representing the number of vari-
ables to be randomly at each node is not tuned in this study.
Prinzie and Van den Poel (2008) showed that this can influence re-
sults. The same goes for the advanced sampling technique CUBE,
where one has to assign a number of variables on which the CUBE
algorithm will base its balanced sampling. Both the number of
variables and the selection (which variables will you use) can influ-
ence the results.

7. Transferability of the approach

The fact that the 5 x 2 cross-validation test requires 10 models
to be built and validated might be responsible for the fact that only
few applications involve in such rigorous testing. However, for a
variety of reasons, the widespread use of the one-shot train-and-
test validation for predictive modelling is not without merit (Verst-

raeten & Van den Poel, 2006). Indeed, in practice, model builders
require a more straightforward insight into the absolute perfor-
mance of their models, while they would not necessarily proceed
in testing whether significant differences occur between different
model architectures. A company that realizes that its customers
are leaving will want to apply a churn prediction model in a timely
manner in order to address the customers at risk. Hence, this com-
pany might continue to lose a lot of customers during a very exten-
sive validation procedure, so time efficiency translates seamlessly
into cost efficiency, and the company might choose to adopt a
more straightforward validation procedure. Additionally, also in
scientific readings, the use of the one-shot train-and-test valida-
tion is still popular. For example, many recent well-appreciated
predictive modeling studies in Marketing Science report the use
of a single split (see, e.g. Montgomery, Li, Srinivasan, & Liechty,
2004; Park & Fader, 2004; Swait & Andrews, 2003) for model vali-
dation. However, since it has been proven that the results of such a
validation procedure are highly dependent on the particular split of
the data used (Malthouse, 2001), stratified sampling should be
considered. In the case of binary classification, predicted outcome
stratified sampling (Verstraeten & Van den Poel, 2006) is a possibil-
ity. DeLong et al. can be used to compare probabilistic classifiers,
whereas McNemar’s test (Everitt, 1977) has been shown to be a
good statistical test for comparing binary classifiers, give a one
shot train and test split (Dietterich, 1998).
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