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Abstract—An agent-based evolutionary approach is proposed
to extract interpretable rule-based knowledge. In the multiagent
system, each fuzzy set agent autonomously determines its own
fuzzy sets information, such as the number and distribution of
the fuzzy sets. It can further consider the interpretability of fuzzy
systems with the aid of hierarchical chromosome formulation and
interpretability-based regulation method. Based on the obtained
fuzzy sets, the Pittsburgh-style approach is applied to extract
fuzzy rules that take both the accuracy and interpretability of
fuzzy systems into consideration. In addition, the fuzzy set agents
can cooperate with each other to exchange their fuzzy sets in-
formation and generate offspring agents. The parent agents and
their offspring compete with each other through the arbitrator
agent based on the criteria associated with the accuracy and inter-
pretability to allow them to remain competitive enough to move
into the next population. The performance with emphasis upon
both the accuracy and interpretability based on the agent-based
evolutionary approach is studied through some benchmark prob-
lems reported in the literature. Simulation results show that
the proposed approach can achieve a good tradeoff between the
accuracy and interpretability of fuzzy systems.

Index Terms—Hierarchical chromosome formulation, inter-
pretability and accuracy, multiagent system, multiobjective
decision making.

I. INTRODUCTION

THE fundamental concept of fuzzy reasoning was first in-
troduced by Zadeh [1] in 1973, and the past few years have

witnessed a rapid growth in a number of applications of fuzzy
systems. One of the most important motivations for building up
a fuzzy model is to let users gain a deep insight into an unknown
system through the easily understandable fuzzy rules. Another
main attraction undoubtedly lies in the characteristics that fuzzy
systems possess: They are capable of handling complex, non-
linear, and sometimes mathematically intangible dynamic sys-
tems. However, when the fuzzy rules are extracted by the tradi-
tional learning methods, there is often a lack of interpretability
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in the resulting fuzzy rules. This is essentially due to two main
factors: 1) The number of rules and fuzzy sets are usually larger
than necessary, and 2) the topology of fuzzy sets is inappro-
priate. So there is always a tradeoff between the interpretability
and accuracy of fuzzy systems constructed from training data.
Recently, increasing attention has been paid to improve the in-
terpretability of fuzzy systems [2]–[15], and [16] presents an
up-to-date state of the current research.

In this work, our main purpose is to propose an approach
to study the interpretability of fuzzy systems and the tradeoff
between the accuracy and interpretability of fuzzy systems au-
tonomously generated from the learning data. So this is a multi-
objective optimization problem by its very nature. And the mul-
tiobjective evolutionary algorithm is very suitable to solve this
problem. In the multiobjective evolutionary algorithm, a main
advantage is that many solutions, each of which represents an
individual fuzzy system, can be obtained in a single run, and the
accuracy and interpretability issues can be incorporated into the
multiple objectives to evaluate the solutions. Thus, the improve-
ment of interpretability and the tradeoff between the accuracy
and interpretability can be easily studied. On the other hand,
the neural-network-based method is very effective to generate
fuzzy systems from the sampling data, such as the methods in
[17]–[19]. However, there is only one fuzzy system that can be
obtained by the neural-network-based method. Additionally, in
order to generate interpretable fuzzy rules, not only the accu-
racy, but also, the interpretability conditions should be consid-
ered. This means that in a neural-network-based approach, extra
regularization terms that guarantee the interpretability should
be added alongside the accuracy index. One difficulty in this
approach is how to properly select the regularization term and
determine its relative importance in the whole cost function.

In this paper, we propose an agent-based evolutionary ap-
proach to construct fuzzy systems from training data with em-
phasis on both the accuracy and interpretability. We want to ex-
plore a more compact fuzzy system considering not only the
number of rules but also the number of fuzzy sets. In addition,
we also hope to get more appropriate distributions of fuzzy sets
with no interference from human beings. It is a very difficult
task compared with the methods stated in [20]–[22]. In [22],
the author used some important endpoints to distribute mem-
bership functions. The number of fuzzy sets is fixed and there
are some limitations about the distribution of these fuzzy sets.
In [20] and [21], the fuzzy sets are prepartitioned without con-
sidering more appropriate distributions. More important, it is
almost impossible to have a good understanding about an un-
known complex system, not to mention giving the linguistic
values for each fuzzy variable in advance. In this work, we sug-
gest an agent-based scheme. In this multiagent system, each
agent has the autonomous capability to determine the number

1094-6977/$20.00 © 2005 IEEE
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Fig. 1. Fuzzy partitioning: (a) Overlap moderately. (b) Do not overlap. (c) Overlap too much.

of fuzzy sets and the distribution of these fuzzy sets consid-
ering the interpretable issues of fuzzy systems. We achieve these
goals by means of the hierarchical chromosome formulation and
an interpretability-based regulation method. Then, with these
fuzzy sets at hand, the agents will apply the Pittsburgh-style ap-
proach to extract interpretable fuzzy rules. The reason for us
to adopt the Pittsburgh-style approach is because the fuzzy rule
set can be treated as one solution, and many solutions can be
obtained simultaneously in a single run so that we can com-
pare the performance of the solutions based on the accuracy and
interpretability. The agents apply NSGA-II [23] multiobjective
decision-making method to evaluate fuzzy rule sets candidates.
After the agents have finished self-evolving, they can interact
with each other by switching fuzzy sets information and also
give birth to new agents. Based on the multiple criteria about the
accuracy and interpretability of fuzzy systems, the elite agents
are retained, whereas the obsolete agents are dead.

The paper is organized as follows. Section II discusses the
interpretability issues of fuzzy systems. The agent-based evolu-
tionary approach used to construct interpretable fuzzy systems
is discussed in Section III. In Section IV, the experimental re-
sults are given on some benchmark problems. Finally, we con-
clude this paper and give the future work prospect in Section V.

II. INTERPRETABILITY OF FUZZY SYSTEMS

The most important motivation to use a fuzzy system is that
it uses linguistic rules to infer knowledge, making it similar
to the way that humans think. Methods for constructing fuzzy
models from the training data should not be limited to finding
the best approximation of data only. It is more important to ex-
tract knowledge from training data in the form of fuzzy rules that
can be easily understood and interpreted. Interpretability (also
called transparency) of fuzzy systems has not received much
attention in the field of fuzzy modeling until the last few years.
One reason is that most researchers take it for granted that fuzzy
rules are easy for human beings to understand. However, it is
not necessarily true for complex systems. In the following, we
will discuss some important concepts about the interpretability
of fuzzy systems.

A. Completeness and Distinguishability

The discussion of completeness and distinguishability is nec-
essary if fuzzy systems are obtained by automatically learning
from data. The partitioning of fuzzy sets for each fuzzy variable
should be complete and well distinguishable. The completeness
of fuzzy systems means that for each input variable, at least one

fuzzy set is fired. We can describe this idea in the following def-
inition.

Completeness: For each input variable (an element of the
input vector , there exists fuzzy sets
represented by . Then, the partition
of the fuzzy sets is complete if the following conditions are sat-
isfied:

(1)

where is the universe of and is the dimension of the
input vector.

The concepts of completeness and distinguishability of fuzzy
systems are usually expressed through a fuzzy similarity mea-
sure in [2], [3], [7], and [24]. This similarity measure can be in-
terpreted in many different ways depending on the application
context. However, an important definition is given in [24]: Simi-
larity between fuzzy sets is defined as the degree to which fuzzy
sets are equal. In fact, if the similarity of two neighboring fuzzy
sets is zero or too small, it means that the fuzzy partitioning in
this fuzzy variable is incomplete or the two fuzzy sets do not
overlap enough. On the other hand, if the similarity is too big,
then it indicates that the two fuzzy sets overlap too much, and
the distinguishability between them is poor (Fig. 1).

In the following, let and be two fuzzy sets of fuzzy vari-
able (on the universe ) with the membership functions
and , respectively. The symbol represents the similarity
value of these two fuzzy sets . We use
the following similarity measure between fuzzy sets [24]:

(2)

where denotes the cardinality of the fuzzy set , and the
operators and represent the intersection and union, respec-
tively. There are several methods to calculate the similarity. One
form in [11] and [12] is described as

(3)

on a discrete universe . and in
(3) are the minimum and maximum operators. In our approach,
we use this form to calculate the similarity of fuzzy sets because
it is computationally simple and effective.
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B. Consistency

Another important issue about interpretability is the con-
sistency among fuzzy rules and the consistency with apriori
knowledge. Consistency among fuzzy rules means that if two
or more rules are simultaneously fired, then their conclusions
should be coherent [3] (i.e., if two or more rules have the similar
antecedents, their consequents should also be similar). The
consistency with apriori knowledge means that the fuzzy rules
generated from data should not be in conflict with the expert
knowledge or heuristics. A definition of consistency and its
calculation method among fuzzy rules is given in [7]. Also one
important factor about the consistency is that the antecedents of
one rule may include those of another rule. Take the following
three rules for example:

) If is small and is small and is big, then is
big.

) If is small and is small, then is medium;
) If is small, then is small.

Usually, we express the above three rules in the following
hierarchical form:

If is small and is small and is big, then is big.
Else if is small and is small, then is medium.
Else if is small, then is small.

In [25], it is called inclusion relation. If two fuzzy rules are
compatible with an input vector and one rule is included in the
other rule, the former should have a larger weight than the latter
in the fuzzy inference to calculate the output value. Let us con-
sider the following two rules and :

) If is and is and is
, then is and is .

) If is and is and is
, then is and is .

When the inclusion relation holds for all of the
input variables (i.e., for ), we say that the rule

is included in the rule (i.e., ). For the rule ,
the fire-strength , also called weight of the th rule is defined
as follows:

(4)

where is the total number of fuzzy rules in the rule base,
is the and operator, and minimum and product are the most

common and operators. As far as the inclusion relation is con-
cerned, a factor related to the rule is defined as

(5)

Then, the fire-strength of the rule considering the inclusion
factor is updated as

(6)

C. Compactness

A compact fuzzy system means that it has the minimal
number of fuzzy sets and fuzzy rules. In addition, the number

Fig. 2. Fuzzy system with two input variables (three fuzzy sets for each
variable) and three rules. (a) Sufficient utility. (b) Insufficient utility because
fuzzy set B2 is not utilized by any rules.

of fuzzy variables is also worth being considered. A compact
fuzzy system is always desirable when the number of input
variables increases.

D. Utility

Even if the partitioning of fuzzy variables is complete and
distinguishable, it is not guaranteed that each of the fuzzy sets
be used by at least one rule. We use the term “utility” to describe
such cases. If a fuzzy system is of sufficient utility, then all of the
fuzzy sets are utilized as antecedents or consequents by fuzzy
rules. Whereas, a fuzzy system of insufficient utility indicates
that there exists at least one fuzzy set that is not utilized by any
of the rules [Fig. 2(b)]. Then, the unused fuzzy sets should be
removed from the rule base resulting in a more compact fuzzy
system.

III. AGENT-BASED EVOLUTIONARY APPROACH

In this paper, we propose an agent-based evolutionary ap-
proach to constructing fuzzy models with considerations of both
the accuracy and interpretability. The basic modeling ideas are
illustrated in Fig. 3. There are two kinds of agents in the multi-
agent system: the arbitrator agent (AA) and the fuzzy set agent
(FSA). These fuzzy set agents are distributed independently and
obtain information from the AA in which the information is ex-
pressed in terms of training data in our specified research con-
text. We name the agent as FSA because it can autonomously
determine its own fuzzy sets information, such as the number
and distribution, and then learn to construct fuzzy rule base
based on the obtained fuzzy sets. As far as the social behavior
is concerned, the FSA is able to cooperate and compete with
other fuzzy set agents. Different from the parallel GA where an
individual in one subpopulation can migrate into another sub-
population and no subpopulations will be dead (i.e., removed
from the evolutionary process). While in our agent-based evolu-
tionary approach, the FSAs cooperatively exchange their fuzzy
sets information by ways of crossover and mutation of the hi-
erarchical chromosome and generate offspring FSAs. After the
self-evolving of the FSAs, they send their fitness information
in the form of accuracy and interpretability to the AA. In the
current work, the AAs use the NSGA-II algorithm to evaluate
the FSAs and judge which fuzzy set agents should survive and
be kept to the next population, whereas the obsolete agents are
dead. The agent-based evolutionary approach has the character-
istics of parallel GA. However, the agents have the ability of
competing with each other based on the considerations of accu-
racy and interpretability. They do not exchange individuals just
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Fig. 3. Multiagents system framework.

like parallel GA subpopulations; instead, they cooperatively ex-
change information about the fuzzy sets. In the following, we
will discuss how the proposed agent-based approach constructs
accurate and interpretable fuzzy systems.

A. Autonomous FSAs’ Intra Behavior

In the multiagent system, the FSAs employ the fuzzy sets dis-
tribution strategy, the interpretability-based regulation strategy,
as well as fuzzy rules generation strategy to build accurate and
interpretable fuzzy systems. The details of the strategies are dis-
cussed below.

1) Fuzzy Sets Distribution Strategy: Inspired by the insight
of biological DNA structure, a hierarchical chromosome formu-
lation for GA is introduced in [26]–[28], where the genes of
the chromosome are classified into two different types: control
genes and parameter genes. These genes are arranged in a hi-
erarchical form so that the control genes are able to manipulate
the parameter genes in a more effective manner. To indicate the
activation of the control genes, an integer 1 is assigned for each
control gene that is ignited, whereas 0 is for turning off. When 1
is assigned, the associated parameter gene corresponding to that
active control gene is activated. The effectiveness of this chro-

Fig. 4. Example of hierarchical chromosome representation. (a) Two-level
gene structure with phenotype X = (2; 6; 7). (b) Three-level gene structure
with phenotype X = (7;6).

Fig. 5. Example of hierarchical formulation.

mosome formulation enables the number as well as the distribu-
tion of fuzzy sets to be optimized. Fig. 4 illustrates the concept
further.

For each fuzzy variable , we determine the possible max-
imal number of fuzzy sets so that it can sufficiently represent
this fuzzy variable. For dimensional problems, there are to-
tally possible fuzzy sets. So there are

control genes coded as bits 0 or 1, where 1
is assigned to represent that the corresponding parameter gene,
which is dominated by this control gene, is selected for involve-
ment in an evolutionary process; otherwise, 0 is for turning off.
We apply the Gaussian combinational membership functions
(abbreviated as Gauss2mf) to depict the antecedent fuzzy sets
(i.e., a combination of two Gaussian functions). The Gauss2mf
function depends on four parameters and as given
by

(7)

where and determine the shape of the leftmost curve. The
shape of the rightmost curve is specified by and . So we
use the parameter list to represent one parameter
gene (i.e., a fuzzy set expressed in the form of a Gauss2mf mem-
bership function). The Gauss2mf is a kind of smooth member-
ship functions, so the resulting model will, in general, have a
high accuracy in fitting the training data. Another characteristic
of Gauss2mf is that the completeness of fuzzy system is guaran-
teed because the Gauss2mf covers the universe sufficiently. An
example of the relationship between control genes and param-
eter genes is given in Fig. 5. The FSA initializes its own control
genes and parameter genes randomly.
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Fig. 6. Merging A and B to create C .

2) Interpretability-Based Regulation Strategy: Although
the FSA initializes the fuzzy sets, the interpretability issues,
such as distinguishability, are not guaranteed automatically.
So the agent applies the interpretability-based regulation
strategy on the active fuzzy sets to obtain a better distribu-
tion of fuzzy sets and a more compact fuzzy system. In this
work, we define a fuzzy set using the membership function

, where are the lower bound,
left center, right center, and upper bound of the definition
domain, respectively . However, we use
the Gauss2mf as the membership function, so it is not easy
to obtain and just like the triangular or the trapezoidal
ones. We need to calculate and using a very small
number (for example, 0.001), which is regarded as equal
to zero .
Nevertheless, the interpretability-based regulation method is
also applicable to all other types of membership functions be-
sides Gauss2mf. The interpretability-based regulation strategy
includes the following two actions.

a) Merging Similar Fuzzy Sets: An example of the sim-
ilarity measure between two fuzzy sets is given as in (3). If
the similarity value is greater than a given threshold, then we
merge these two fuzzy sets to generate a new one. Consid-
ering two fuzzy sets and with the membership functions

and , the resulting
fuzzy set with the membership function
is defined from merging and by

(8)

The parameters determine the relative impor-
tance about the influence of the fuzzy sets and have on .
The threshold for merging similar fuzzy sets plays an important
role in the improvement of interpretability. According to our ex-
perience, values in the range [0.4, 0.7] may be a good choice.
In our approach, we set the threshold equal to 0.55. Fig. 6 illus-
trates the case for merging and to create .

b) Removing Fuzzy Sets Similar to the Universal Set or
Similar to a Singleton Set: If the similarity value of a fuzzy
set to the universal set is greater than an upper
threshold or smaller than a lower threshold , then we can
remove it from the rule base. In the first case, the fuzzy set is
very similar to the universal set and in the latter case, similar to
a singleton set. Neither case is desirable for interpretable rule
base generation. We set in this work.

After implementing the interpretability-based regulation
strategy, we have the assumption that the FSA obtains a fuzzy
system with sets, where
and the case that is equal to 0 indicates that the corre-
sponding fuzzy variable is not involved in the modeling of
fuzzy systems resulting in the dimensionality reduction by one.

3) Fuzzy Rules Generation Strategy: In the stage of fuzzy
rules generation, FSAs use the Pittsburgh-style approach
to extract rules. Assume there are fuzzy variables,
is the number of active fuzzy sets for variable . We also
consider the “don’t care” conditions (also called incomplete
rules) so the total maximum number of possible fuzzy rules is

for -dimensional prob-
lems. The task of FSAs in this stage is to find a small number of
rules considering both the accuracy and interpretability. In the
following, we will discuss how the FSAs achieve these goals.

a) Initialization of the Rules Population: In the Pitts-
burgh-style genetic-based machine learning approach, the
search for a compact rule set with high-performance ability
corresponds to the evolution of a population of fuzzy rule sets.
In this work, each fuzzy rule is coded as a string of the length

. We express the string as an array in the computer program,
and the th element of the array indicates which fuzzy set of
the th fuzzy variable is fired. The th element is denoted as
and initially set to an integer between 0 and with the same
probability . If is greater than zero, it is indicated
that the th fuzzy set of the th fuzzy variable is fired, whereas
if is equal to zero, this means that the th fuzzy variable does
not play a role in the rule generation. As far as the th fuzzy
variable is concerned, in the stage of fuzzy rules generation
strategy, there are active fuzzy sets related to this variable.
We initialize equal to zero considering the incomplete fuzzy
rule (i.e., the th fuzzy variable does not participate in the rule
generation), and should be equal to or less than because
there are only active fuzzy sets that exist for the th fuzzy
variable. Then, the FSA sets the population size (i.e., the
number of individuals or solutions involved in the evolutionary
algorithm). In the fuzzy rules generation strategy of this work,
each individual is a fuzzy rule sets that represents a fuzzy rule
base. For each individual of the fuzzy rule set population, it is
represented as a concatenated string of the length ,
where is a predefined integer to describe the size of the
initial fuzzy rule base. In this concatenated string, each sub-
string of the length represents a single fuzzy rule. Note that
we use the recursive least square method [29] and the heuristic
procedure in [20], [30]–[32] to determine rule consequents for
function approximation problems and classification problems,
respectively, so the rule consequents are not coded as parts
of the concatenated string. The fuzzy rule sets are randomly
initialized so that the cell value of the concatenated string
represents one of the fuzzy sets of the corresponding fuzzy
variable or is equal to zero indicating “don’t care” conditions.

b) Crossover and Mutation: Offspring rule sets are gen-
erated by crossover and mutation. As far as the crossover is con-
cerned, one-point crossover is used (Fig. 7). The crossover oper-
ation randomly selects a different cut-off point for each parent to
generate offspring rule sets. A mutation operation randomly re-
places each element of the rule sets string with another linguistic



148 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 35, NO. 2, MAY 2005

Fig. 7. Crossover operation.

value if a probability test is satisfied. Elimination of existing
rules and addition of new rules can also be used as mutation op-
erations. Such mutation operations change the number of rules
in the rule sets string. Note that the crossover and mutation op-
erations maybe introduce the same rules, the FSA will check the
offspring fuzzy rule base to delete the same rules and maintain
single among all of the rules after the crossover and mutation
operations, so the consistency of fuzzy systems is guaranteed.

c) Evaluation Criteria and Selection Mechanism: The
FSA uses the following three criteria to evaluate fuzzy rule set
candidates: 1) Accuracy: the accuracy is measured in terms of
mean-squared error (MSE) for function approximation prob-
lems and classification error rates for classification problems;
2) the number of fuzzy rules; 3) the total length of fuzzy rules
[9]: the total number of the rule antecedents displayed in the
rule base.

For the function approximation problems, the first-order
Takage–Sugeno (TS) fuzzy system [33] is generated. The TS
fuzzy system is very suitable for the approximation of dynamic
systems, and the first-order TS fuzzy system is very common
and effective. In our current work, unlike other GA-based
methods for generating fuzzy rules, the rule consequents are
not involved in the chromosome encoding. Instead, we use the
recursive least square method to calculate the rule consequents
for function approximation problems. So this approach has
a limitation in that it is suitable for the first-order TS fuzzy
modeling. However, a clear advantage of doing this is that it
can save the searching time and fully exploit the sampling data.
During the computation, we use the updated rule fire-strength
in (6) to calculate the conclusion.

As far as the classification problems are concerned, the
heuristic procedure is applied to generate rule consequents
from the training pattern data. For each -dimension training
pattern data , the fire-strength of rule
considering the inclusion relation is calculated using (6). Then,
for each of the classes, the sum of the fire-strength related to
rule is calculated as

(9)

Find the class as the consequent of rule which has the
maximum value of . If the maximum value of
cannot be uniquely specified, that is, there is more than one class

that has the same maximum value, the fuzzy rule is removed
from the rule base. After the rule base is constructed, we cal-
culate the classification accuracy through the single winner rule
method [34]. For each training pattern data , the winner rule

rule is determined as

(10)

where is the number of fuzzy rules. If the class result is not the
actual one or more than one fuzzy rules have the same maximum
fire-strength, the classification error increases one.

Based on the foregoing three criteria, the FSA uses the
NSGA-II [23] algorithm to evaluate the fuzzy rule set candi-
dates. In the multiobjective evolutionary optimization problem,
Pareto optimum [35] is the most commonly accepted term
in the literature. The Pareto optimal is defined as: A vector
of decision variables is Pareto optimal if there does
not exist another such that for all

and for at least one . It is based
on the minimization problems and denotes the decision
variable space and is one of the function objectives. This
definition says that is Pareto optimal if there exists no fea-
sible vector of decision variables which would decrease
some criteria without causing a simultaneous increase in at
least one other criterion. This concept always gives not a single
solution, but rather a set of solutions called the Pareto optimal
set. The vectors corresponding to the solutions included in
the Pareto optimal set are called nondominated. The NSGA-II
is a very famous Pareto-based multiobjective evolutionary
algorithm. In the current work, we mainly apply the selection
mechanism of the NSGA-II algorithm. In order to compare the
fuzzy rule set candidates, we predefine the preference for the
three criteria. The accuracy is predefined the first priority and
the other two criteria about the interpretability are predefined
the same second priority. In other words, we first compare two
fuzzy rule set candidates according to the accuracy only. If
these two candidates have the same accuracy level based on our
preference, then we compare the other two criteria to determine
which rule set candidate is better. If one rule set candidate is
better than the other based on the accuracy preference, then
there is no need to compare the other two criteria and we can
know which candidate is better. In the current work, we use the
difference of the accuracy value of fuzzy rule set candidates
to design the preference. If the difference is less than or equal
to a predefined value, then it is considered that the candidates
have the same accuracy level. Otherwise, if the difference is
greater than the predefined value, then we can determine which
candidate is better without continuing to compare the other
two criteria. We take such measures because a fuzzy system
constructed by learning from data is meaningful with a certain
degree of accuracy. Suppose that there are rule
set candidates, where is the parent population size and

is the number of offspring resulting from crossover and
mutation operations. The FSA selects best candidates
from the mixed populations. It is an elitism strategy by nature.

Notice that during the course of rules generation, the suffi-
cient utility that we have discussed in Section II is not guaran-
teed. So the FSA recognizes the unutilized active fuzzy sets and
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flips their corresponding control genes from 1 to 0 to guarantee
the sufficient utility of fuzzy systems at the end of the evolution.

B. Interaction Among Agents

The FSAs can interact with each other. In the current work,
we assume that the number of offspring FSAs that we
want to generate is even and less than or equal to the number
of FSAs in the current population: .
We select FSAs from the current agent population and
use the crossover and mutation operations to generate
offspring agents (i.e., two parent agents generate two offspring
agents). The FSAs are different and selected randomly
with the same probability. It is because such a selection mech-
anism is simple and easy to implement. Then, crossover and
mutation operations are implemented on both the control genes
and parameter genes of two paired parent agents, and two off-
spring agents are generated. The offspring agents use the in-
terpretability-based regulation strategy and fuzzy rules gener-
ation strategy to obtain the fuzzy rule base. Thus, the cooper-
ation among the FSAs are achieved by exchanging fuzzy sets
information and generating child agents. Then, four criteria in-
cluding the three foregoing criteria and the number of fuzzy sets
are transferred to the AA. As mentioned above, the accuracy
is predefined the first priority and the other three criteria are
predefined the same second priority. The AA implements the
NSGA-II algorithm to evaluate the parent and offspring fuzzy
set agents and select best agents to become the next agent
population. Better FSAs considering both the accuracy and in-
terpretability survive from the competition, whereas the worst
ones are discarded from the evolutionary process. We endow
the agents with the ability to cooperate and compete with other
agents to achieve the global goal: constructing fuzzy systems
considering both the accuracy and interpretability.

IV. EXPERIMENTAL RESULTS

In order to examine the performance of our agent-based evo-
lutionary approach, we use three benchmark problems in the lit-
erature. Matlab 6.1 is applied to implement the experiments. To
prepare the training and test data for Example and , we use
the Simulink Toolbox of Matlab to build the simulated model
to generate the sampling data (see the description in the cor-
responding part). As far as Example Iris Data is concerned,
the sampling data are downloaded from the University of Cali-
fornia, Irvine (UCI) database [36].

A. Nonlinear Plant With Two Inputs and One Output

The second-order nonlinear plant is studied by Wang and Yen
in [13]–[15], Roubos and Setnes et al. in [11] and [12], and
Jiménez, et al. in [4]

(11)

(12)

The goal is to approximate the nonlinear component
of the plant with a fuzzy model. In

Fig. 8. Input u(k), unforced system g(k), and output y(k) of plant in (11).

Fig. 9. Trends of average accuracy, fuzzy sets number, rules number, and rule
base total length of the plant in (11).

this work, 400 sampling data points were generated from the
plant model. 200 samples of training data were obtained with a
random input signal uniformly distributed in the interval

, while the last 200 validation data points were
obtained by using a sinusoid input signal .
The 400 simulated data points are shown in Fig. 8.

In this agent-based approach, we use eight fuzzy set agents
each of which has five fuzzy rule set solutions, so there are 40
fuzzy systems obtained. The trends plot about four criteria in-
cluding average accuracy (MSE), average fuzzy sets number,
average fuzzy rules number, and average fuzzy rule base total
length among the multiagent system is given in Fig. 9.

Fig. 9 shows the average tendency of the four criteria in 100
generations. It can be seen that the agents are able to improve
both the accuracy and interpretability of the fuzzy systems con-
tinuously due to the fact that the four criteria are optimized si-
multaneously in our approach. It can also be noticed that fluc-
tuations in performance still exist, although NSGA-II is known
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Fig. 10. Pareto front about the fuzzy systems of the plant in (11).

as an elitist strategy. This fluctuation is probably caused by the
randomness in the NSGA-II selection mechanism.

Also we give the Pareto front (the plot of the objective func-
tions whose nondominated vectors are in the Pareto optimal
set is called the Pareto front) [35] after 100 iterations of the
evolution. Fig. 10 shows the tradeoff among the multiple ob-
jectives within the nondominated fuzzy system solutions. The
upper left figure illustrates the trade-off relation between the
accuracy and fuzzy sets number, the upper right figure shows
the tradeoff between that accuracy and fuzzy rules number, the
lower left figure for the tradeoff between the accuracy and fuzzy
rules total length and the lower right one shows the tradeoff
among three objectives: accuracy, fuzzy sets number, as well as
fuzzy rules number. There are 14 nondominated solutions out
of the 40 (only nine different forms). Then, we use the 14 non-
dominated fuzzy system solutions to test the validation data set.
Fig. 11 shows the test results. For comparison, we use all of the
40 fuzzy system solutions to test the validation data set and show
the nondominated solutions based on the test accuracy and the
other three criteria in Fig. 12. There are eight nondominated so-
lutions (only three different forms) associated with the test data.
In Table I, we compare our results with those of other methods
in the literature.

In this example, we use the first-order TS fuzzy system (i.e.,
the TS fuzzy system with the linear consequents), and all of the
models of the compared methods in [4], [11]–[15] are of the TS
fuzzy systems. However, not all of the models have the linear
form of consequents, some of them have the singleton form. We
listed the consequent type in Table I. Because the first-order TS
fuzzy system is applied, so the recursive least square method is
very suitable to calculate the rule consequents. The training it-
eration number of the recursive least square method is identical
to the number of training sample data (i.e., 200 in Example A)
for each generation. We also list the number of generations per-
formed by our approach and the compared methods (except the
methods that do not use the evolutionary algorithm). The non-

Fig. 11. Test results of the nondominated fuzzy systems of the plant in (11).

Fig. 12. Pareto front of the fuzzy systems of the plant in (11) for the test data
set.

dominated solutions about test data are given in Table II. Due
to space limitations, we do not give the fuzzy distribution and
fuzzy rules expression in this paper.

B. Lorenz System

The Lorenz system studied in [8] is described by the fol-
lowing differential equations:

(13)

(14)

(15)
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TABLE I
FUZZY MODELS OF THE NONLINEAR PLANT OF EXAMPLE A

TABLE II
NONDOMINATED FUZZY MODELS OF TEST DATA OF EXAMPLE A

In order to make a comparison with the results obtained in
[8], we use the same means to generate the sampling data. That
is to say, , and . In the
simulation, we predict from and .
Four-hundred data points are obtained from (13)–(15) using the
fourth-order Runge–Kutta method with a step length of 0.05,
where 200 pairs of data are used for training and the other 200
are for test. The sampling data pairs are shown in Fig. 13.

In this work, we use eight fuzzy set agents and five fuzzy rule
set solutions for each agent, so there are 40 fuzzy systems. The
trends plot about the same four criteria as those in Fig. 9 is given
in Fig. 14. Fig. 15 shows the tradeoff among the multiple objec-
tives within the nondominated fuzzy system solutions based on
the training data. There are 17 nondominated solutions out of
the forty (eight different forms).

Then, we use the 17 nondominated fuzzy system solutions
to test the validation data set. Fig. 16 shows the test results.
For comparison, we use all of the 40 fuzzy system solutions to
test the validation data set and show the nondominated solutions
based on the test accuracy and the other three criteria in Fig. 17.
There are ten nondominated solutions (seven different forms)
associated with the test data. In Table III, we compare the results
with those of [8]. The MSE result is not given in [8], so we use
“N/A” in Table III to denote such a case. The nondominated
solutions about test data are given in Table IV.

Fig. 13. Input x(t � 1); y(t � 1), and z(t � 1), output x(t) of the Lorenz
System.

From Table III, we can see that the number of fuzzy sets of
some solutions is less than the number of the input variables
(i.e., three in the Lorenz system). This indicates that our agent-
based evolutionary approach can use a more compact set of
input variables to train the fuzzy system. To show more clearly,
we add the second column named the number of input vari-
ables in Table III to illustrate such cases. The number before
the brace represents the number of input variables of which the
corresponding solutions make use, whereas the numbers in the
brace mean the number of fuzzy sets for each input variable in
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Fig. 14. Trends of average accuracy, fuzzy sets number, rules number, and rule
base total length of the Lorenz System.

Fig. 15. Pareto front of the Lorenz System.

order. For brevity, we give only one complete rule base related to
the solution eight in Table III. Fig. 18 shows the distribution of
fuzzy sets. The fuzzy rules are listed in Table V. From Table V,
we know that and are specific rules and is a general
rule, all of them are incomplete rules.

C. Iris Data

The Iris Data contains 150 pattern instances with four at-
tributes from three classes available from the University of Cali-
fornia, Irvine (UCI) database [36]. We use all of the data to train
ten fuzzy set agents each of which has eight fuzzy rule set solu-
tions, so we can get eighty fuzzy systems. The trends plot about

Fig. 16. Test results of the nondominated fuzzy systems of the Lorenz System.

Fig. 17. Pareto front of the Lorenz System for the test data set.

TABLE III
FUZZY MODELS OF THE LORENZ SYSTEM

the four criteria showed the tradeoff among the multiple objec-
tives within the nondominated fuzzy classifier system solutions
for Iris Data. Considering the brevity of the paper, we did not
give the figures in this work. There are 13 nondominated solu-
tions out of the 80 (five different forms). Also, we compare our
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TABLE IV
NONDOMINATED MODELS FOR TEST DATA OF THE LORENZ SYSTEM

Fig. 18. Fuzzy sets of the Lorenz System. (a) Input variable 2: y(t � 1). (b)
Input variable 3: z(t � 1).

TABLE V
RULE BASE FOR THE LORENZ SYSTEM

TABLE VI
COMPARISON RESULTS FOR IRIS DATA

results with other works. The comparison results are shown in
Table VI. We also noticed that we can use only three attributes
instead of four to train fuzzy classifier systems resulting in an
improvement of interpretability associated with compactness.

From Figs. 9 and 14, we can see that our agent-based ap-
proach can guarantee good convergence among the multiple ob-
jectives. The objectives considering both the accuracy and inter-
pretability can co-evolve. Another advantage of our approach is
that we can obtain multiple nondominated fuzzy systems con-
centrating on both the accuracy and interpretability. It is obvi-
ously illustrated in Figs. 10 and 15 and quantified in Tables I, III,
and VI. From these tables, we also demonstrate that the accu-
racy of our results is comparable to or better than other methods
known in the literature, and more important, most solutions we
get have better interpretability. The tradeoff between accuracy
and interpretability of fuzzy systems is also easily understood.

Fig. 19. Example A using one agent.

Different sets of fuzzy rules and fuzzy sets that emphasize dif-
ferent aspects of interpretability and accuracy may be built. In
this work, the number of fuzzy variables can be automatically
learned, for example, only two out of three input variables par-
ticipate in the fuzzy system construction for the Lorenz system,
and only three out of four attributes play roles in the fuzzy clas-
sifier system construction for the Iris Data. This leads to more
compactness not only associated with the number of fuzzy sets
but also related to the number of fuzzy variables. We are in-
spired by this aspect that more important variables can be de-
termined by the proposed approach and rule-based systems can
be built based on these important variables only. The irrelevant
variables are removed from the system construction. Thus, the
complexity of rule base construction is reduced greatly, espe-
cially for the high-dimensional problems. We hope that it will
work in the real-world nonlinear plant modeling and classifica-
tion problems, and so on. It will be worth paying much attention
to in future research.

In order to show the effectiveness of the multiagent approach,
we did experiments based on only one agent (i.e., just use one
agent to learn the fuzzy rule base without changing the other
parameters). Due to space limitations, we only give the trends
plot of example and in Figs. 19 and 20. We compare the
trends plot with those of the multiagent approach (Figs. 9 and
14). We can see that the average classification rate, fuzzy sets
number, fuzzy rules number, and fuzzy rules total length using
multiple agents are better than those of the single agent approach
and have a better convergence. It means that the multiagent ap-
proach has good abilities to explore interpretable rule base with
the accuracy consideration based on the obtained fuzzy sets. In
the multiagent system, the fuzzy sets number can reduce grad-
ually with the co-evolution of the other three criteria. The in-
terpretability improves related to the compactness issue. When
multiple agents participate in the evolutionary process, they can
cooperate and compete with each other to exchange the fuzzy
sets information to obtain compact fuzzy systems. It is also a
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Fig. 20. Example B using one agent.

main goal for us to design such a multiagent mechanism: to ex-
plore more appropriate fuzzy sets distribution and use a smaller
number of fuzzy sets.

V. CONCLUSION AND FUTURE WORKS

In this paper, we proposed an agent-based evolutionary ap-
proach to construct interpretable fuzzy systems. In the multia-
gent system, the FSAs autonomously implement the following
intratasks: i) Use the hierarchical chromosome formulation and
interpretability-based regulation strategy to obtain compact and
distinguishable fuzzy sets distribution, and ii) apply the Pitts-
burgh-style approach based on the obtained fuzzy sets to extract
interpretable fuzzy rules by means of NSGA-II multiobjective
decision-making method and the recursive least square method
for function approximation problems as well as the heuristic
procedure for classification problems. Then, the fuzzy set agents
cooperate with each other by exchanging fuzzy sets informa-
tion to create offspring agents. The arbitrator agent evaluates
the parent and offspring agents based on the criteria of accu-
racy and interpretability. During competition, the elite agents
survive to the next population and obsolete ones are dead. Sim-
ulation results show that our proposed approach can generate
multiple fuzzy systems with a good tradeoff between the accu-
racy and interpretability. In future research, we will concentrate
ourselves on the following issues to improve the performance of
our agent-based evolutionary approach: 1) further studying the
interaction mechanism among the agents to realize a more effec-
tive manner associated with cooperation and competition and 2)
applying some data mining techniques related to dimension re-
duction such as SUD [39], RELIEF, and SCM [40], etc. to our
multiagent system, hopefully using more important attributes to
train the agents leading to a more compact fuzzy system con-
struction.
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