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Abstract

We focus on a hybrid approach of feature selection. We begin our analysis with a $lter model, exploiting the
geometrical information contained in the minimum spanning tree (MST) built on the learning set. This model exploits a
statistical test of relative certainty gain, used in a forward selection algorithm. In the second part of the paper, we show
that the MST can be replaced by the 1 nearest-neighbor graph without challenging the statistical framework. This leads
to a feature selection algorithm belonging to a new category of hybrid models ($lter-wrapper). Experimental results
on readily available synthetic and natural domains are presented and discussed. ? 2002 Pattern Recognition Society.
Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

The problem of feature (attribute, or variable) selec-
tion, i.e. the selection of relevant description variables in
the data, has historically been a prerogative of statisti-
cal research. It is only recently that this problem has re-
ceived growing attention in computer science. One of the
main reasons for this trend in machine learning and data
mining has been to handle the rapidly growing quantities
of data, more or less noisy, collected thanks are due to
new acquisition technologies such as the world wide web
[1–3].
Feature selection can be of great help to handle

such a problem, primarily from an algorithmic and
complexity-theoretic point of view. Indeed, exploiting
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and mining large data requires the help of powerful ma-
chine learning and data mining algorithms, which can
be highly time or space consuming [1]. Provided feature
selection is done in low complexity and reduces signif-
icantly the size of the data, it may provide an eAcient
preprocessing stage to reduce the time or space required
practically by these machine learning and data mining
stages. In contrast, from a pure classi#cation standpoint,
the selection of a good feature subset appears to be of
little interest at #rst glance. Indeed, a Bayesian classi-
#er, i.e. realizing Bayes optimal error, is monotonic. This
means that adding features cannot decrease the model’s
performance. Theoretically speaking, in the feature selec-
tion framework, this statement postulates that removing
features can be of no help in improving the model’s per-
formance. However, the monotonicity assumption rarely
holds in practice [4]. The reason is that most practical ma-
chine learning and data mining algorithms are not ideal,
and irrelevant or weakly relevant features may damage
the accuracy of the model built. As an illustration, a study
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in Ref. [5] shows that with the decision-tree induction
algorithm C4.5 [6], the non-deletion of weakly relevant
features generates deeper decision trees with lower per-
formances than those obtained without these features. In
Ref. [7], the author shows that the storage of the IB3
algorithm increases exponentially with the number of ir-
relevant features. Similar conclusions are presented in
Ref. [8].
Finally, feature selection can be of great help simply

as a preprocessing step to induction algorithms, for the
objective to reduce the size of the formulas found. Sebban
et al. [9] report results concerning techniques removing
examples (and not features), known as prototype selec-
tion algorithms. They show for example that these algo-
rithms can reduce by more than 25% the size of the trees
found by C4.5 when they are run before C4.5, without
challenging the accuracy of the test. In many applications
where comprehensibility and visualization are crucial
issues, such a size reduction would be well worth the
run of a data reduction technique before any further
induction algorithm.
To summarize, scientists have been encouraged to

elaborate sophisticated feature selection methods to
tackle three problems:

• Reduce classi#ers cost and complexity.
• Improve model accuracy.
• Improve the visualization and comprehensibility of in-
duced concepts.

The diIerence between the features kept and those left
by a feature selection algorithm can be characterized by
a notion of relevance, a word we have already used, yet
we have not provided a formal de#nition of what it is.
Actually, there are many de#nitions of relevance, each of
which addresses from a particular point of view the (rel-
evant) question “relevant to what?” [10,11]. It is not the
purpose of this paper to present the many answers which
can be found. The reader may #nd general issues about
this problem in the two aforementioned papers, and more
speci#c computational issues about these de#nitions in
Ref. [12]. In all that follows, the focus of our paper shall
be on the resolution of the three problems cited before,
better than addressing the way our algorithm copes with
the selection of features relevant to some particular the-
oretical de#nition(s).
According to the terminology proposed in Ref. [11],

two generic approaches are available in feature selection:
wrapper and #lter models. The principle of #lter models
is to evaluate, using statistical techniques over the data,
the accuracy of the future, induced classi#er. Therefore,
the method “#lters out” irrelevant features before the in-
duction process. In wrapper models, we search for a good
subset of features using the induction algorithm itself.
The principle of wrapper models is generally based on
the optimization of the accuracy rate, estimated by one

of the following methods: holdout, cross-validation [13],
or bootstrap [14].
In this article, we begin our analysis with a new #lter

approach to #nd relevant features. We exploit the char-
acteristics of a neighborhood graph built on the learning
set, to compute a new estimation criterion based on a
quadratic entropy. The distribution of this criterion satis-
#es convenient normal properties, allowing the construc-
tion of a test to evaluate the quality of a feature subset.We
use this statistical test (more precisely the critical thresh-
old) in a forward selection algorithm. In order to reduce
the computational costs of the neighborhood graph’s
construction, we propose a more general framework
exploiting the 1-nearest-neighbor (1NN) graph. We
show that this geometrical structure is less expensive
to compute and leads to the construction of an original
hybrid model of feature selection, presenting charac-
teristics of both #lter and wrapper approaches. Finally,
we present some experimental results on benchmarks of
the UCI database repository, or on tailor-made synthetic
domains, comparing the performances of the feature
subsets selected by our algorithms with those obtained
in the original spaces, or with conventional approaches
of feature selection.

2. Feature selection and hybrid models of feature
selection

This part aims at presenting the general issues of
feature selection, the principal problems that are raised,
the usual solutions proned in #lter models, as well as
how our solution can be situated and motivated with
respect to the other ones. We #rst begin with some
elementary notations. We are given a p-dimensional
representation space, where p is the number of fea-
tures characterizing a set S of |S|= n learning instances
(or examples), where | : | denotes the cardinality. Each
instance !i is represented by a p-dimensional input vec-
tor X (!i)= (xi1; xi2; : : : ; xip), and by a label (or class)
Y (!i)∈Y; Y = {y1; y2; : : : ; yk}, where k =card(Y ) is
the number of classes.
Three problems participate in complicating the feature

selection problem. First, elementary combinatorics show
that feature selection should require the testing of 2p dif-
ferent subsets to #nd the optimal one, which is a suA-
ciently large exponential to prevent the practical feasi-
bility of the procedure, even for low-dimensional data.
Even worse, from a statistical point of view, even if

we could guarantee the testing of all combinations, the
quality of the feature subsets could practically only be
estimated, on the sole basis of the potentially small set of
instances available. Indeed, the learning instances do not
cover the entire set of all possible examples, a set to which
we refer as the whole domain. It can even be the case
that the available examples scarcely cover a tiny portion
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of it. Therefore, we cannot guarantee to be optimal in
the sense of some de#nitions evaluating relevance with
respect to this whole domain.
Finally, to complete the picture, from a complexity

theoretic point of view, feature selection can be proven to
be NP-hard for usual de#nitions of relevance [12]. Even
worse, it can be proven that approximating the minimal
relevant subset is hard up to very large factors [12]. More-
over, worst-case bounds of Ref. [12] establish that the
performances of feature selection algorithms (even non
necessarily polynomial time) can be almost as poor as
the results obtained without feature selection! All these
remarks show the necessity to build heuristics to address
feature selection.
According to the paper of Ref. [15], four basic issues

determine the nature of the heuristic search process:

• The starting point in the search space: with an empty
feature set (forward selection) or with all the features
(backward selection).

• The organization of the search: addition or deletion
of an attribute at each stage, never reconsidering the
previous choice.

• The strategy used to evaluate alternative subsets of
attributes (#lter or wrapper model).

• The criterion for halting search through the space of
feature subsets. The simplest solution consists in #xing
the size of the feature subset ad hoc.

With respect to these criteria, we basically consider
in that paper a hybrid #lter=wrapper approach using a
statistical criterion for halting search, adding features one
at a time, and starting from the empty feature subset.
If we drill down the concepts used for our approach

and consider it more in depth, the primary idea of our
approach was to use, for theoretical statistical reasons, a
convenient topology over the examples to evaluate rel-
evance. This topology is, we prove, similar to the one
built using nearest-neighbor (NN) algorithms. Replacing
this topology by the one of the 1-NN, we gain the bene#t
of fast computation while giving a wrapper Pavor to our
algorithm. When judged from a more practical point of
view, this choice might appear quite disputable. On one
hand, when used as a preprocessing step for a particular
type of induction algorithm, a wrapper approach optimiz-
ing the accuracy during feature selection while using the
same kind of formulas as the induction algorithm may be
very convenient to improve its results [11]. On the other
hand, the type of feature subset selected depends highly
on the concept used during the wrapper algorithm. This
is clearly not an advantage if an emphasis is made on the
explanation of the features obtained: in that case, an ap-
proach less dependent on a speci#c classi#er’s accuracy
is desirable.
With respect to these observations, it is important to

note that the wrapper Pavor in our algorithm is restricted

with respect to basic wrapper approaches, in which most
computation time is used to induce a concept represen-
tation (decision trees in many cases). Besides, the crite-
rion which we optimize is not the accuracy. In the light
of the numerous de#nitions of relevance [10], this is cer-
tainly an advantage: indeed, they establish that relevance
is an intrinsic property of the concept represented by the
attributes, thus imperfectly estimable by a particular for-
mula’s accuracy, subject to the representational bias of
some induction algorithm. This gives the #lter behavior
of our algorithm, and makes it an original alternative to
traditional feature selection algorithms, falling in either
the #lter, or the wrapper category.
To conclude this part on the general issues of feature

selection, we now present some of the criteria used to es-
timate the quality of feature subsets in #lter models. Five
principal categories of measures can be found throughout
the literature to evaluate the feature’s relevance in fea-
ture weighting or selection algorithms (feature selection
algorithms are weighting algorithms, where irrelevant or
weakly relevant features have zero weight. For more de-
tails about feature weighting see Ref. [16]).

• Interinstance distance: this criterion is used in Kira
and Rendell’s RELIEF [17]. This method selects a ran-
dom training case !j, a similar positive case !a, and
a similar negative case !b. It then updates the feature
weight, weighti, using

weighti =weighti − diI(xji; xai) + diI(xji; xbi); (1)

where diI(: ; :) is a given metric. Based on this princi-
ple, Kononenko proposes an extension of RELIEF in
Ref. [18].

• Interclass distance: the average distance between in-
stances belonging to diIerent classes is a good crite-
rion to measure the relevance of a given feature space.
However, the use of this criterion is restricted to prob-
lems without mutual class overlaps.

• Probabilistic distance: in order to correctly treat class
overlaps, a better approach consists in measuring
distances between probability density functions. This
method of proceeding often leads to the construction
of homogeneity tests [19].

• Class projection: this approach assigns weights using
conditional probabilities on features that can be indis-
criminately nominal, discrete or continuous [20].

• Entropy: feature selection can be understood in terms
of information theory. One can then assign feature
weights using Shannon’s mutual information [21]; see
also Ref. [22] where the cross-entropy measure is used.
This approach is certainly the closest to ours.

We propose in the next section a new method of eval-
uating the feature’s relevance. We assume that a clas-
si#er’s ability to correctly label instances depends on
the existence in the feature space of wide geometrical
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structures of points identically labeled.We #rst character-
ize these structures using the information contained in a
Minimum Spanning Tree. This information is used to ap-
ply a statistical test measuring what we call a relative
certainty gain.

3. The test of relative certainty gain

3.1. Geometrical concepts

Our approach relies in searching characteristics of
the learning sample in a neighborhood graph. More
precisely, we use a minimum spanning tree over the
learning sample, which is a simple structure to build, and
has interesting geometrical properties. The construction
of this neighborhood graph allows one to exploit local
and global informations about the concept to learn. For
the sake of completeness, we #rst review some basic def-
initions about graphs. They shall be completed in a next
subsection to introduce our information theory material.

De�nition 1. A tree is a connected graph without cycles.

De�nition 2. A subgraph that spans all vertices of a
graph is called a spanning subgraph.

De�nition 3. A subgraph that is a tree and that spans all
vertices of the original graph is called a spanning tree.

The following de#nition addresses weighted graphs,
in which each edge is given a real weight.

De�nition 4. Among all the spanning trees of a
weighted and connected graph, the one(s) with the
least total weight is(are) called the minimum spanning
tree(s), abbreviated MST(s) for short.

Suppose we are given a metric over the p-dimensional
representation space; we can easily build an MST by
considering the weight of an edge as the distance between
its two vertices. The MST therefore describes a tree with
the lowest weight over the complete graph.

3.2. Metrics

Examples can be described using various types of fea-
tures. While nearest neighbor techniques can handle con-
tinuous and discrete features well (using e.g. the Eu-
clidean distance), they are not suited to handle nominal
attributes, that is, symbolic attributes whose values do
not rePect any linear order, such as red, black, green,
white for color values [23]. The problem becomes diA-
cult when all these attribute types coexist. Our approach
to this problem is to use speci#c metrics adapted to the
nature of each feature. We sketch it here for complete-

ness. The main tool for adapting distances to nominal at-
tributes is the value diIerence metric (VDM) [20] which
de#nes the distance between two values x and x′ of an
attribute Xa as follows:

VDMXa(x; x
′) =

k∑
c=1

∣∣∣∣nXa;x;cnXa;x
− nXa;x′ ;c

nXa;x′

∣∣∣∣
q

=
k∑
c=1

|PXa;x;c − PXa;x′ ;c|q ;

where

• nXa;x is the number of instances in the training set S
that have a value x for attribute Xa,

• nXa;x;c is the number of instances in S that have a value
x for attribute Xa and output class c,

• k is the number of output classes,
• q is a constant, usually 1 or 2,
• PXa;x;c is the conditional probability that the output
class is c given that attribute Xa has the value x, i.e.,
P(c|Xa= x).

VDM cannot be used for any type of feature, even if it
provides a convenient solution for nominal attributes. The
main problem of VDM is that it largely ignores contin-
uous attributes, and requires discretization to map these
continuous values into nominal values. But such contin-
uous attributes are typically handled by the usual Eu-
clideanmetric. The fact that VDM and the Euclideanmet-
ric are complementary metrics has led to the creation of
the heterogeneous value diIerence metric (HVDM) [23].
This metric mixes the usual Euclidean distance for lin-
ear (i.e. continuous or discrete) attributes, and VDM on
nominal attributes. The distance between two instances
!i and !j then is:

HVDM(!i; !j)=

√√√√ p∑
a=1

d2Xa(xia; xja);

where dXa(x; x
′) denotes the distance between the two

values x and x′ for attribute Xa, and is de#ned as

dXa(x; x
′)

=




1 if x or x′ is unknown;

otherwise;

VDM∗
Xa(x; x

′) if attribute Xa is nominal;

Euclid∗Xa(x; x
′) if attribute Xa is continuous

or discrete:

Here, Euclid∗Xa(x; x
′) represents a normalized Euclidean

distance between x and x′, and VDM∗
Xa(x; x

′) represents a
normalized version of the VDM seen before for attribute
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Xa. We refer the reader to Ref. [23] for further consid-
erations about this metric, not needed here. Paper [23]
also provides other heterogeneous distance functions for
alternatives to HVDM in particular situations, i.e. when
one needs to optimize the distances on a speci#c problem.
We refer the reader to Ref. [23] for further details. These
heterogeneous distance functions are called the interpo-
lated value diIerence metric (IVDM) and the windowed
value diIerence metric (WVDM). The point is that most
of the distance functions in Ref. [23] properly handle
nominal and continuous input attributes, and allow the
construction of an MST in mixed spaces. Therefore, they
can naturally be used as they are in our algorithms.

3.3. Entropy notions

De�nition 5. Suppose we are given

Sk =

{
(�1; : : : ; �j; : : : ; �k)∈Rk : (∀j∈{1; 2; : : : ; k};

�j¿ 0) ∧
k∑
j=1

�j =1


 ; (2)

the k-dimensional simplex, where k is a positive inte-
ger. An entropy measure is an application from Sk to
R+, with the following properties (for more details see
Ref. [24]): Symmetry, Minimality, Maximality, Conti-
nuity and Concavity.

De�nition 6. The quadratic entropy is a function QE
from [0; 1]k to [0; 1],

(�1; : : : ; �k)→ QE((�1; : : : ; �k))=
k∑
j=1

�j(1− �j): (3)

3.4. Local and total uncertainties in the MST

Given the previous de#nitions, we use the quadratic
entropy concept to measure local and total uncertainties
in the MST built on the learning set.

De�nition 7. We de#ne the neighborhood N (!i) of a
given instance !i belonging to S as follows:

N (!i) = {!j ∈ S: !i is linked by an edge to !j

in the MST} ∪ {!i}: (4)

De�nition 8. The local uncertainty Uloc(!i) for a given
instance !i belonging to S is de#ned as follows:

Uloc(!i) = QE
(
ni1
ni:
;
ni2
ni:
; : : : ;

nik
ni:

)

=
k∑
j=1

nij
ni:

(
1− nij

ni:

)
; (5)

where ni:= card(N (!i)) and nij

= card({!l ∈N (!i) |Y (!l)=yj}).

De�nition 9. The total uncertainty Utot in S is de#ned
as follows:

Utot =
n∑
i=1

Uloc(!i)

=
n∑
i=1

ni:
n::

k∑
j=1

nij
ni:

(
1− nij

ni:

)
; (6)

where n::=
∑n

i=1 ni:= n+ 2(n− 1)=3n− 2.

The reason for the use ofUtot and the quadratic entropy in
order to evaluate the quality of some feature subset may
not appear clear at #rst glance; however, Utot is a natural
measure of the impurity observed on the MST, that is, a
measure of the overlaps between classes at the level of
each instance’s neighborhood. Intuitively, the better the
feature subset, the smallest the overlaps, and the smallest
Utot . Furthermore, at each instance’s level, the quadratic
entropy becomes equivalent to Gini’s impurity criterion,
used in the decision tree induction to evaluate the qual-
ity of a tree node in the well known CARTTM package
[24]. It is worthwhile to remark that Gini’s criterion, as
well as more recent criteria such as Schapire–Singer’s
Z criterion [25] have been rigorously proven to be very
eAcient measures to grow decision trees, in particular
more accurate than the accuracy itself [26]. Furthermore,
in our case, a convenient statistical test, which we now
describe, allows to estimate with con#dence whether a
feature subset can be preferred to another one in our al-
gorithm.

3.5. The statistical test

The previous criterion Utot allows one to estimate
the information level of the learning sample in a given
feature space. The statistical test proposed is based on
the following observation. In order to correctly estimate
feature relevance, a convenient approach consists in
measuring the class overlap degree in the probability
density functions, and compare this one with the degree
obtained with a total overlap. The way to proceed con-
sists in applying what is called in inferential statistics a
homogeneity test, with the following null hypothesis H0:

H0: F1(x)=F2(x)= · · ·=Fk(x)=F(x);

where Fi(x) is the repartition function of the class i. To
be able to apply this test, we must know the law of the
statistic used in the test (here, the total uncertainty Utot)
under the null hypothesis. Works proposed in Ref. [27]
show that the distribution of the relative quadratic en-
tropy gain is a �2 with (n−1)(k−1) degrees of freedom.
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Rather than considering directly Utot , we use the follow-
ing relative certainty gain,

RCG=
U0 − Utot

U0
; (7)

where U0 is the uncertainty of the learning set before the
construction of the MST:

U0 = QE
(n1
n
;
n2
n
; : : : ;

nk
n

)

=
k∑
j=1

nj
n

(
1− nj

n

)
; (8)

where nj =card({!i |Y (!i)=yj}). According to Ref.
[27],

n::RCG ≡ �2(n−1)(k−1);

E(n::RCG)= (n− 1)(k − 1);

V (n::RCG)=2(n− 1)(k − 1):

For reasonably large learning sets (n¿ 30), the distribu-
tion of n::RCG is approximately normal with expectation
(n− 1)(k − 1) and variance 2(n− 1)(k − 1):

n::RCG ≈ N ((n− 1)(k − 1); 2(n− 1)(k − 1)): (9)

The null hypothesis will then be rejected (up to risk ")
if and only if:

n::RCG − (n− 1)(k − 1)√
2(n− 1)(k − 1)

¿U" (10)

or equivalently, whenever

n::RCG¿ (n− 1)(k − 1) +U"
√
2(n− 1)(k − 1); (11)

where U" is the value of the repartition function of the
normal law N (0; 1) having probability " to be exceeded.
Instead of #xing the " risk in advance (generally 5%),
we can calculate the "c critical threshold necessary for
rejecting H0. Then, we can optimize "c as an estimation
criterion to search for the feature subset which allows
to be the farthest from the H0 hypothesis. Actually, the
smaller this risk is, the further from the H0 hypothesis
we are. Then, we use this risk "c in the following feature
selection algorithm.

4. The feature selection algorithm

The heuristic search, shown below, relies on a greedy
forward selection algorithm, optimizing the critical

threshold of the test at each time.

"0 ← 1;
E ← ∅;
X ← {X1; X2; : : : ; Xp};
stop← false;
do
for each Xi ∈X do
compute "ci, the critical threshold
in the E ∪ Xi feature space;

Xmin ← argmini "ci;
if "min¡"0 then
X ← X − {Xmin};
E ← E ∪ {Xmin};
"0 ← "min;

else
stop← true;

while stop= false;
return E;

5. Replacing the MST by the 1-NN Graph

In this section, we study how the MST can be replaced
by the 1-NN graph, thus shifting the behavior of our al-
gorithm toward wrapper approaches of feature selection.
Comparing experimentally the two approaches is the sub-
ject of the next sections.

5.1. 1-NN graph is equivalent to the MST

Now, we show that the 1-NN graph is an adequate
candidate to replace the MST. In most cases, all connex
parts of the 1-NN graph are in fact small MSTs; in the
remaining cases, they bear very close relationships with
MSTs.

De�nition 10. Let “nn(X (!); X (!′))” denote the rela-
tionship “X (!) is the nearest neighbor of X (!′)”.

In the case where one example might have more than
one nearest neighbor, the relationship is replaced by
“X (!) is one nearest neighbor of X (!′)”. The 1-NN
graph may be represented using an oriented graph
G=(S; A) where S is the training set, and A is the
nearest neighbor relationship. An arc comes from some
X (!)∈ S to some X (!′)∈ S whenever nn(X (!); X (!′))
holds, which additionally means that X (!) would vote
for X (!′) in the 1-NN algorithm. Before beginning the
study of some properties of G, it is convenient to note
that A mainly depends on the current subset of features
chosen.
We denote as G∗=(S; E) the simple non-oriented

graph built from G by replacing each arc by an edge,
and merging multiple edges between each couple of
vertices X (!) and X (!′), a situation which occurs only
when both nn(X (!); X (!′)) and nn(X (!′); X (!)) hold.
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In order to state the following lemma, we make the sim-
plifying hypothesis (which shall be relaxed later) that
for all examples in S their nearest neighbor is unique,
which precludes the random choice of one of the nearest
neighbors to vote.

Lemma 1. G∗ is cycle-free. In other words; G∗ de$nes
a forest.

Proof. We #rst prove that G∗ is cycle-free iI G is
circuit-free. Fix

∀X (!′)∈ S; di(X (!′))

= |{X (!)∈ S: nn(X (!); X (!′)) holds} | ∀X (!)∈ S;
we have di(X (!))6 1. Indeed, each example has exactly
one nearest neighbor. Fix as {X (!1); X (!2); : : : ; X (!s′)}
a subset of S de#ning a cycle in G∗. That means that
∀j∈{1; 2; : : : ; s′−1}; nn(X (!j); X (!j+1))∨nn(X (!j+1);
X (!j)), and nn(X (!1); X (!s′)) ∨ nn(X (!s′); X (!1)).
Since no vertex X (!)∈{X (!1); X (!2); : : : ; X (!s′)}
can satisfy di(X (!))¿ 1, we obtain that the cycle of
G∗ necessarily satis#es exactly one of the following
properties:

∀j∈{1; 2; : : : ; s′ − 1}; nn(X (!j); X (!j+1))

∧nn(X (!s′); X (!1)) (12)

or

∀j∈{1; 2; : : : ; s′ − 1}; nn(X (!j+1); X (!j))

∧nn(X (!1); X (!s′)): (13)

In other words, if G∗ contains a cycle, G contains a
circuit. The proof that G∗ contains a cycle if G contains
a circuit comes from the construction of G∗.
We now prove that G does not contain any circuit by

contradiction. Fix as {X (!1); X (!2); : : : ; X (!s′)} a sub-
set of S de#ning a circuit in G. Without loss of gen-
erality, we suppose that the following property is sat-
is#ed: ∀j∈{1; 2; : : : ; s′ − 1}; nn(X (!j); X (!j+1)) ∧ nn
(X (!s′); X (!1)). If we note as D(X (!); X (!′)) the dis-
tance between X (!) and X (!′) measured using the cur-
rently selected features, we get that D(X (!j); X (!j+1))
6D(X (!j+1); X (!j+2)); ∀j∈{1; 2; : : : ; s′ − 2}, and
D(X (!s′−1); X (!s′))6D(X (!s′); X (!1));

D(X (!s′); X (!1))6D(X (!1); X (!2)):

Our simplifying hypothesis implies that at least one of
the inequalities is strict, and we get a contradiction, as
claimed.

Lemma 2. Any tree in the forest G∗ is a minimum
spanning tree.

Proof. Again, the proof is obtained by contradiction. Fix
some subset of S, {X (!1); X (!2); : : : ; X (!s′)}, de#ning

a tree T in G∗. If it is not an MST, de#ne T opt as one
possible MST having smaller weight. Since T and T opt

are trees, they contain exactly s′ − 1 vertices and the
addition of one edge in them breaks their tree structure
by adding a cycle.
Summing up, because T and T opt are necessary

diIerent, that means that there exists a subset of vertices
{X (!j1 ); X (!j2 ); : : : ; X (!js′′ )} ⊆ {X (!1); X (!2); : : : ;
X (!s′)} such that

(1) {X (!j1 ); X (!j2 ); : : : ; X (!js′′ } de#nes a chain in T ,
(2) (X (!j1 ); X (!js′′ ) is in T

opt but not in T ,
(3) ∃i∈{1; 2; : : : ; s′′ − 1} such that (X (!ji); X (!ji+1))

is in T but not in T opt,
(4) D(X (!j1 ); X (!js′′ ))¡D(X (!ji); X (!ji+1)).

We show that (1–3) render (4) impossible. Suppose with-
out loss of generality that nn(X (!ji); X (!ji+1)) holds.
Since no vertexX (!)∈{X (!j1 ); X (!j2 ); : : : ; X (!js′′ )}

can satisfy di(X (!))¿ 1, we have

∀l∈{ji; : : : ; js′′−1}; nn(X (!jl); X (!jl+1)) holds:

and we necessarily have the following chain of inequal-
ities:

D(X (!ji); X (!ji+1))6D(X (!ji+1); X (!ji+2))

6 · · ·6D(X (!js′′−1 ); X (!js′′ )):

Because of (2) however, and the fact that nn(X (!js′′−1);
X (!js′′ )) holds, we also have

D(X (!js′′−1 ); X (!js′′ ))¡D(X (!j1 ); X (!js′′ )):

The chain of inequalities and the latter give D(X (!ji);
X (!ji+1))¡D(X (!j1 ); X (!js′′ )), a contradiction with
Eq. (4), as claimed. This ends the proof of Lemma 2.

For any graph (oriented or simple and non-oriented)
G=(V; A), and any subset A′⊆A, the graph G=
(V; A′) is called the partial subgraph of G induced by
A′ ⊆ A. A connex component of a simple non-oriented
graph G=(V; A) is a non-empty subgraph G′=(V ′; A′)
of G that satis#es the following properties: (i)
V ′ ⊆ V , (ii) ∀v∈V \ V ′; ∀v′ ∈V ′; (v; v′) �∈ A, (iii)
∀(v; v′)∈V ′2; (v; v′)∈A ⇒ (v; v′)∈A′. In the general
case where the unicity of the nearest neighbor is not
ensured, Lemma 2 can be easily generalized:

Lemma 3. The minimum spanning tree T =(S′; A′) de-
$ned over the subset of S containing the vertices S′ of
some connex component of G∗ is a partial subgraph of
this connex component (thus, induced by A′).

Proof. The proof of Lemma 2 states that any MST de-
#ned over a subset of vertices consisting of a connex
component of G∗ cannot contain vertices that are not in
that connex component.
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5.2. Complexity of computing the MST vs the 1-NN
graph

In order to compare the building of the MST with
that of the 1-NN graph, we make the hypothesis that the
distance matrix between examples is pre-computed. That
requires O(|S|2K) where K is the cost of computing the
distance between two examples, a function essentially
depending on the number of features.

5.2.1. Building the MST using Kruskal or Prim’s
algorithms
Both the algorithms are made faster by the precompu-

tation of the distance matrix between examples, in order
to sort them by an increasing order. Their overall com-
plexity is of order O(|S|2 log |S|).

5.2.2. Building the 1-NN graph
The computation of the 1-NN graph can be done with-

out sorting the edges. For any vertex, we only need to
#nd its nearest neighbor, which requires O(|S|) steps.
The overall complexity is therefore O(|S|2) steps, and
precludes the O(|S|2 log |S|) steps for sorting the edges
in the MST algorithms. This represents a clear advocacy
for the use of the 1-NN graph instead of the MST.

5.2.3. Reaching linear complexity for building the
1-NN graph
The MST could not be intuitively computed in less

than |S|(|S| − 1)=2 steps since it needs to explore in the
worst case all edges, even if the precomputation of the
distance matrix also orders the distances, modulo a pe-
nalizing log |S| factor for its complexity. However, the
time complexity for computing the 1-NN graph can eas-
ily be dropped down without additional costs. In order to
achieve it, we include in the precomputation of the dis-
tance matrix a test of constant-time for each couple of
instances, thus without increasing the overall complexity
in computing the matrix. We keep for each instance its
current nearest neighbor found, which can easily be done
by checking it along the two currently explored instances
whose distance is computed. Eventually, multiple nearest
neighbors are collected into a current list. The remain-
ing task for the 1-NN graph is simply to merge all lists
or singletons for each instances, which can be done in at
most |S| steps.

5.3. Toward a hybrid approach to feature selection

The choice to build the 1-NN graph instead of the
MST has a very important side eIect regarding the clas-
si#cation of feature selection algorithms. Our algorithm
becomes the optimization over a precise topology which
is that of the #nal classi#er, of a criterion being not the
accuracy. While it keeps the #lter behavior, the new ap-
proach shifts its behavior a little toward wrapper algo-

rithms, even though it does not suIer the drawback of
time-consuming concepts induction. Rather than keeping
the #lter’s term for the algorithm, we now relate to it as
a hybrid approach. Two experimental sections now fol-
low, studying respectively the MST and the 1-NN graph.
The #rst one on the MST evaluates the interest of our
approach of feature selection versus no feature selection
stage. In the following experimental section studying the
1-NN graph, we provide some comparisons between (i)
this hybrid approach, (ii) the #rst one using the MST,
and (iii) a conventional wrapper approach in which the
RCG is replaced by the accuracy.

6. Experimental results on the MST

In order to show the applicability of a new approach, an
experimental study should satisfy two criteria: relevance
and insight [28]. Relevance measures the implications
of the technique for problems on which the technique
may be used in practice, that is why this criterion is best
satis#ed by performing experiments on real world prob-
lems. Insight is aimed at testing explicit hypotheses on
the technique, by performing experiments on tailor-made
data; thus, this criterion is best satis#ed by performing
experiments on synthetic problems. In this section, we
present some experimental results on the two types of
problems. Some experiments concern synthetic domains.
In that case, we know a priori the number of relevant and
irrelevant features. There are three synthetic domains:

• Synt1: 10 features, among which seven have var-
ious degrees of relevance, and three are irrelevant
(X8; X9; X10).

• Synt2: 10 feat ures, among which three are redun-
dant features (X1; X2; X3), and seven are irrelevant (X4

through X10).
• Synt3: 100 features, including seven identically dis-
tributed relevant features (X1–X7), and 93 irrelevant
(X8–X100).

Irrelevant features in all these synthetic domains are i.i.d.
N (0; 1) random variables.
The second type of problems concern natural domains.

We test our algorithm on 10 data sets, among which seven
belong to the UCI database repository. 1

Results of Table 1 show that performances of our
feature selection algorithm are interesting, eliminating
both irrelevant and redundant features. In the major-
ity of cases, the accuracy estimates obtained with a
5-fold-cross-validation using a 10-NN classi#er are
better in the selected feature subspace than with all the
attributes. Statistically speaking, a sign test gives in
addition a threshold probability pt ≈ 10; 94% for

1 http:==www.ics.uci.edu= ∼mlearn=MLRepository.html.
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Table 1
Results on synthetic and natural domains: Acc1 corresponds
to the accuracy estimates with all the original features (recall
that p is their cardinality) and Acc2 presents results with the
selected feature subset (p′ is the subspace size). Best results
are indicated using bold faces

Dataset p Acc1 p′ Acc2

Audiology 69 70.2 21 70.3
Breast 13 66.2 3 82.7
Echocardiogram 6 65.9 1 64.9
Glass2 9 64.6 8 63.6
Hepatitis 19 78.5 9 80.2
Iris 4 82.3 2 93.5
Synt1 10 85.0 4 87.4
Synt2 10 72.4 5 73.0
Synt3 100 75.3 2 77.4
White house 16 91.5 1 95.7

testing the hypothesis “the accuracy gives results at least
as good as those of the RCG criterion”, while the RCG
uses on average almost 80% less features than the ac-
curacy. Given the relatively small number of datasets to
carry out this test, this represents an additional advocacy
for the use of the RCG criterion. Concerning the White
House domain, it is well known [29] that there exists
one attribute ( physician-fee-freeze) which gives more
than 95% accuracy on the test. This attribute is exactly
the one selected by our algorithm. Now, we investigate
the replacement of the MST by the 1-NN graph.

7. Experimental results on the 1-NN

In order to analyze the performances of our new ap-
proach, our experiments cope with two objectives:

(1) Check that our criterion built from the 1-NN graph
allows one to select a good subset of features, as
relevant as the one selected with the MST.

(2) Compare performances of our model with the wrap-
per model optimizing the accuracy of the 1-NN.
That amounts to comparing our hybrid model with
the equivalent wrapper model, that is, the wrapper
model having access to approximately the same “in-
formation” on the neighborhoods.

According to these objectives, our algorithm was run on
23 databases, most of which come from the UCI database
repository. Dataset LED is the classical LED recognition
problem [24], but to which the original ten classes are
reduced to two: even or odd. LED24 is LED to which 17
irrelevant attributes are added. Hard is a hard problem
consisting of two classes and 10 features per instance.
There are #ve irrelevant features. The class is given by
the XOR of the #ve relevant features. Finally, each fea-

ture has 10% noise. The Xd6 problem was previously
used by Ref. [30]: it is composed of 10 attributes, one
of which is irrelevant. The target concept is a disjunctive
normal form over the nine other attributes. There is also
classi#cation noise. Other problems were used as they
appeared in the UCI repository in the 1998 distribution
[29]. For each database, we used the following experi-
mental setup:

(1) A #rst feature subset is selected optimizing the in-
formation criterion based on the 1-NN graph.

(2) A second feature subset is selected optimizing the
accuracy of the 1-NN rule at each step of the algo-
rithm.

(3) In order to compare the relevance of the selected
subsets, we use a posteriori a 10-NN classi#er in
a 5-fold-cross-validation procedure. We applied this
strategy not only on the two selected subsets (RCG
and accuracy), but also on the whole set of features
(all attributes). The results are presented in Table 2.

A way to analyze the results consists in comparing the
performances of RCG vs. accuracy, RCG vs. all at-
tributes, and accuracy vs. all attributes. We can note that:

(1) Overall, our criterion built on the 1-NN graph allows
one and to obtain results similar to the MST. Among
nine common databases (Tables 1 and 2) treated by
the two geometrical structures, four give the same
selected feature subset, three are better for the MST,
and two are better for the 1-NN.

(2) In the majority of cases, RCG presents better re-
sults than those obtained by optimizing the accu-
racy. Among 23 databases, RCG allows 10 times
better accuracy, is identical 8 times, and has only 5
times smaller accuracy. Globally, the mean gain of
RCG is about +1:6%. A sign test gives a threshold
probability pt ≈ 0:05, which is signi#cant.

(3) The advantage of RCG is con#rmed by analyzing
the results of all attributes. Actually, for 17 bench-
marks, RCG allows a better accuracy (on average
+3:0%), with less features. A sign test gives a very
low threshold probability: pt ≈ 0:0053, which is
highly signi#cant.

(4) The advantage of accuracy against all attributes ap-
pears to be less signi#cant: a sign test now gives a
greater threshold probability pt ≈ 0:11.

The preceding experimental results show that the accu-
racy is not an accurate criterion to be optimized, since it is
outperformed by the RCG. Such results were previously
observed and theoretically explained in decision-tree
induction. In Ref. [26], a formal proof is given which
explains why the Gini criterion and the entropy should
be optimized instead of the accuracy when a top-down
induction algorithm is used to grow a decision-tree. Their
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Table 2
Results on 23 databases: the three last columns contain the a posteriori accuracy by cross-validation in the three diIerent feature
spaces (All stands for all Attributes, and Acc for accuracy). Bold faces indicate the best result(s)

Dataset p |S| RCG All Acc

Audiology 69 226 69.3 70.2 77.1
Australian 14 690 84.6 76.4 84.6
BigPole 4 3481 62.9 62.2 62.9
Breast cancer 9 699 93.3 95.8 95.0
Echocardiogram 6 131 66.8 65.9 60.1
German 24 1000 69.2 71.4 69.9
Glass2 9 163 65.6 64.6 63.1
Hard 10 256 52.4 49.0 48.8
Heart 13 270 74.6 77.6 74.7
Hepatitis 19 155 79.1 78.5 79.2
Horse 22 368 75.7 66.5 75.7
Iris 4 150 93.5 83.6 93.5
LED 7 500 87.0 88.0 77.9
LED24 24 200 84.7 70.3 79.1
Monks 1 6 432 83.6 75.6 83.6
Pima 8 768 70.1 68.7 70.1
Synt1 10 300 87.4 85.0 86.0
Synt2 10 300 73.0 72.4 73.0
Synt3 100 300 77.4 75.3 77.4
Vehicle 18 846 72.2 68.4 70.5
Waves 21 501 79.3 78.1 79.1
White house 16 435 95.5 89.1 94.3
Xd6 10 600 74.4 74.4 61.8

theoretical results support the claim according to which
maximization the accuracy should be done directly by
maximizing the accuracy’s increasing using a highly
concave criterion, like Gini’s or the entropy. In addition,
Ref. [26] provides an optimal criterion which should
give the maximal increase of the accuracy. This crite-
rion was later used in the AdaBoost boosting algorithm
of Ref. [25], and we refer to it as Schapire–Singer’s Z
criterion. It is a function from [0; 1]k to [0; 1]:

(�1; : : : ; �k)→ Z(�1; : : : ; �k)=
k∑
j=1

√
�j(1− �j): (14)

The results of Ref. [26], along with our results on the
comparsion of the RCG’s and the accuracy’s optimiza-
tion on the 1-NN graph (that of the #nal classi#er), are
an advocacy for testing the optimization of Schapire–
Singer’s Z criterion itself. In the experiments of
Table 3, we give a comparison between its optimiza-
tion and that of the quadratic-entropy. We can note that
among 15 databases, the feature subsets are 11 times
similar. If we except the audiology data set, the op-
timization of Z does not bring advantages in feature
selection. Nevertheless, it is important to note that we
do not dispose of a convergence in law’s result for the
Z criterion. This surely makes a stopping rule for the
growing of the selected feature’s set more hazardous.

Table 3
Comparisons between RCG and the Schapire–Singer’s Z crite-
rion on 15 databases. When single, the best result is indicated
using bold faces

Dataset RCG Z

Audiology 69.3 72.2
BigPole 62.9 62.9
Echocardiogram 66.8 62.7
Glass2 65.6 65.6
Hard 52.4 52.4
Heart 74.6 74.6
Hepatitis 79.1 79.1
Horse 75.7 75.7
Iris 93.5 93.5
LED 87.0 87.0
LED24 84.7 84.7
Pima 70.1 70.1
Vehicle 72.2 72.2
White house 95.5 94.5
Xd6 74.4 73.8

8. Conclusion

Algorithms allowing to improve the reliability and in-
terpretability of concept construction in machine learn-
ing and data mining have become a central issue of
these #elds, with the development of new data acquisition
techniques, and the increase in the size of databases.
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Feature selection algorithms are potential candidates to
address eAciently these problems. We have presented in
this paper a feature selection model based both on infor-
mation theory and statistical tests. A feature is selected
if and only if the information given by this attribute al-
lows to statistically reduce class overlaps. Results on syn-
thetic and natural domains show that our tool is suited to
treat irrelevant and redundant features, even in very large
feature spaces. In our approach, two parameters were
optimized. The #rst one concerns the geometrical struc-
ture to apply on the learning set, on which our criterion
is built. The analysis of the paper shows that the 1-NN
graph presents a framework similar to that of the MST,
and allows in reducing the complexity of our algorithm.
Second, we analyzed which criterion to optimize in our
algorithm. Our study shows that the quadratic entropy
(which has already shown its advantages in the decision
tree #eld) not only seems to be signi#cantly better than
the accuracy, but also, and more surprisingly, better than
the Z criterion of Ref. [25]. The analysis and explanation
of this phenomenon shall be the subject of future works.
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