
P e r g a m o n

PII:S0893-6080(96)00015-9

Neural Networks, Vol. 9, No. 4, pp. 603-625, 1996
Copyright © 1996 Elsevier Science Ltd. All rights reserved

Printed in Great Britain
0893q5080/96 $15.00 + .00

C O N T R I B U T E D A R T I C L E

Adaptive Critic for Sigma-Pi Networks

RICHARD STUART NEVILLE AND THOMAS JOHN STONHAM

Brunel University

(Received 18 July 1994; accepted4 December 1995)

Abstract--This article presents an investigation which studied how training o f sigma-pi networks with the associative
reward-penalty (A R-p) regime may be enhanced by using two networks in parallel. The technique uses what has been
termed an unsupervised "'adaptive critic element" (ACE) to give critical advice to the supervised sigma-pi network.
We utilise the conventions that the sigma-pi neuron model uses (i.e., quantisation o f variables) to obtain an
implementation we term the "'quantised adaptive critic", which is hardware realisable. The associative reward-
penalty training regime either rewards, r = 1, the neural network by incrementing the weights o f the net by a delta
term times a learning rate, ~, or penalises, r = O, the neural network by decrementing the weights by an inverse delta
term times the product o f the learning rate and a penalty coefficient, ~ × Arp. Our initial research, utilising a
"'bounded" reward signal, r* E { 0 , . . . , 1}, found that the critic provides advisory information to the sigma--pi net
which augments its training efficiency. This led us to develop an extension to the adaptive critic and associative
reward-penalty methodologies, utilising an "unbounded" reward signal, r* E { - 1 , . . . , 2}, which permits penalisation
o f a net even when the penalty coefficient, Arp, is set to zero, A,p = O. One should note that with the standard
associative reward-penalty methodology the net is normally only penalised i f the penalty coefficient is non-zero (i.e.,
0 < Arp ~< 1). One o f the enigmas o f associative reward-penalty (AR-I,) training is that it broadcasts sparse
information, in the form o f an instantaneous binary reward signal, that is only dependent on the present output error.
Here we put forward ACE and AR-I, methodologies for sigma-pi nets, which are based on tracing the frequency o f
• "stimuli" occurrence, and then using this to derive a prediction o f the reinforcement. The predictions are then used to
derive a reinforcement signal which uses temporal information. Hence one may use more precise information to
enable more efficient training. Copyright ©1996 Elsevier Science Ltd

Keywords--Sigma-pi, Adaptive critic, Associative reward-penalty, Multi-cube, Reinforcement, Dynamic
programming.

1. I NTRODUCTION

Biological neurons and synapses have information
processing capabilities that make use of both short-
and long-term information. We build on this fact by
utilising longer term information extracted from the
model of reality (F). The model of reality may be:
(1) a simulation model of the environment or reality

(R);
(2) a network trained to simulate the environment; or
(3) a set of stimuli and actions, which approximate

the environment 's bchaviour.
This information is used in order to approximate

dynamic programming (Werbos, 1992a), where
dynamic programming (DP) relates to the optimisa-

Requests for reprints should be addressed to Richard Stuart
Neville, Dept. of Electrical Engineering, Brunel University,
Uxbridge, Middlesex UB8 3PH, UK.

tion of a utility function (u) in a noisy and non-linear
environment. The method used to implement the
approximation of DP is called the adaptive critic
methodology, where a chile is placed hierarchically
above an action network which is being trained. An
action network is a net that inputs current state
information (xi or F or R) and outputs the action
vector u(t).

The adaptive critic's task is to produce another
output function J, given input stimuli from the
external model F and a utility function U (Figure
1), where J is termed the secondary or strategic utility
function. Dynamic programming (DP) is used to
maximise the function U over time by maximising the
J function in the immediate future (Werbos, 1989).
The adaptive critic is required to approximate DP by
using F as an input to optimise J over a short time
period and hence U over a long time period. The
critic implements this by recording short-term

604 R. S. Neville and T. J. Stonham

U(t)

F<,) = J~t+ I)

FIGURE 1. Diagrammatic representation of functional inputs and
outputs of an adapUve critic

fluctuations of F and using these and the utility
factory U to maintain longer-term metrics (J) in order
to advise an action network.

The adaptive critic element is normally used in a
control environment that requires temporal informa-
tion in order to control a dynamic system. It may also
be used for the more usual pattern recognition tasks,
which we shall cover in the following paragraphs.
Utilising the critic for these tasks still requires the
optimisation of a longer term utility function U and
the evaluation of a short-term strategic utility
function J, where the utility function U may be a
global mettle used to advise an action net performing
a credit assignment task (Minsky, 1961).

The format of the article is as follows; initially we
introduce our area of research. Then we state our
Rationale. The associative reward-penalty training
regime is then introduced. Then we review the
adaptive critic for semi-linear units. An introduction
to logical neural networks is then given. The sigma-pi
model is then presented. This is followed by a
description of associative reward-penalty for sigma-
pi networks. We then present a quantised adaptive
critic. This is followed by a methodology for dealing
with the quantised adaptive critic's enigma, which is
the exponential growth of resources as the number of
inputs to the critic increases. In the final simulation
work we contrast the adaptive critic method with the
more conventional associative reward-penalty para-
digm. In this final work we also show that a version
of the adaptive critic which utilises an "unbounded"
internal reinforcement signal promotes optimal
learning efficiency.

2. RATIONALE

The training of sigma-pi networks (Gurney, 1989)
utilising associative reward-penalty (AR-e) (which is
presented in Section 3) can be a time consuming
process. One of the contributory factors for this may
be the very limited band-width of information the
global scalar reinforcement, r E {0, 1}, signal pro-
vides when it is broadcast to the action network. The
scalar value does not advise the action network by
utilising secondary information such as past data

obtained from the environment R, which may aid the
net in its learning task. The (An_ e) algorithm has no
means of facilitating the use of cause-and-effect
information (Werbos, 1989) to make it possible to
give credit to good actions more precisely than one
could using an error driven reinforcement scheme
alone (Werbos, 1989). We investigate the quantised
ACE to enable us to increase the associative reward-
penalty learning rule's efficiency and to enable us to
re-formulate the ACE into a digital methodology so
that it is hardware realisable. The following
paragraphs relate how this may be done utilising
what is known as an adaptive critic as an adviser for
an action network (Neville, 1993; Neville & Stonham,
1993).

3. ASSOCIATIVE REWARD-PENALTY
TRAINING

3.1. Historical Overview of Associative
Reward-Penalty

The term "reinforcement" comes from experiments
on animal learning in psychology. Reinforcement
refers to increasing the probability of the occurrence
of the correct response to a specific event. Barto
(1992) states that the basic premise has root in the
classical "law of effect" of Thorndike (1911). The
associative reward-penalty (Aa_e) learning rule was
derived from research by Barto in 1987, his basic
work entailed using associative reward-penalty
applied to a task, e.g., where nonlinear associative
mapping are to be learnt by a feedforward network.
Barto and Jordans' work of 1987 on associative
reward-penalty (AR-e) followed research by Wil-
liams (1986, 1987a, b) on reinforcement training
methodologies.

The initial research on RAM-based digital
sigma-pi networks utilising the associative reward-
penalty paradigm was carried out by Gurney
(1989) and was extended by Neville and Stonham
(1994a, b, c, 1995) and Neville and Stonham
(1995a, b, c). Complementary work on similar
models (i.e., pRAMs) was done by Gorse and
Taylor (1990a, b, 1991), who also utilise the
reward-penalty methodology.

A unification of the sigma-pi model and the
reward-penalty algorithm has been presented for-
mally by Gurney (1992a, b, 1993). Investigations by
Neville (1990), into the use of reward-penalty for on-
board training of VLSI hardware implementation of
sigma-pi networks, initiated the work of Hui et al.
(1992a, b) into cascadable sigma-pi nets. Comple-
mentary work in this area has been carried out by
Clarkson et al. (1992), using the pRAM units of
Gorse and Taylor (1990a).

Adaptive Critic for Sigma-Pi Networks 605

3.2. The Basis of Associate Reward-Penalty

The associative reward-penalty (AR-p) algorithm
utilises a binary (scalar) reward signal "r" which is
globally broadcast across a network. The reinforce-
ment signal "r" is then utilised by each unit in the net
to determine their weight updates. The premise is that
the stochastic nodes in the net are given credit, or
reinforcement, if the net gives a "successful" output.
The net is given a debit or penalised if its output was
wrong (Minsky & Papert, 1969).

The associative reward-penalty training algorithm
has been used in a supervised manner on feedforward
networks (Barto & Jordan, 1987). The networks were
multi-layered, with input units which had clamped
values specified by sources external to the network.
The input units feed what were termed "hidden"
units, i.e., they were not available to the outside
world. The hidden units communicate with other
hidden units in the net hierarchically above them. The
final layer of hidden units, as there may be more than
one, feed the output units. The output units are
available to the outside world and are also known as
"visible" units.

Figure 2 shows a network of stochastic units in its
training environment and the communication be-
tween the network and its environment. The
operation of the network and the environment is
described as a set of steps:

Step I. The environment randomly selects an input
pattern for the network from a set of
patterns.

Step 2. Once the input has been selected an output
action (pattern) associated with this CLASS
of input pattern is also selected. The input
pattern is presented to the net and, on a layer
by layer basis, the activation passes through
the network from the input to the output.

Step 3. When all the units at the output of the net
have selected their action, a reward signal
"r" is calculated.

R e i n f o r c e m e n t
s ignal 'r'

b roadcas t to
all uni ts

Inputs

FIGURE 2. Stochastic network and training environmenL

Step 4. Each unit changes its internal state according
to some specified function of its current
state, the action just chosen, its input, and
the reward signal.

3.3. Associative Reward-Penalty for Stochastic
Semi-linear Nodes

The intention of this section is to introduce the
original concept of associative reward-penalty
learning rules for stochastic semi-linear nodes. The
input units, k, distribute the input stimuli to the
hidden units which have real-valued inputs, Xk, each
of which is associated with a weight, wjk, in a
multiplicative manner. The resultant products from
all the inputs are summed, to obtain the activation aj,
and passed through a semi-linear function such as the
sigmoid or squash function--this produces an out-
put, yj. The hidden units of the net are stochastic in
nature as the binary output, yj, is defined from the
probability of firing [which is identical to that of the
Boltzmann units, Hinton et al. (1984)]. Hence the
hidden units' output are defined by

P(yj = 1) = a(aj) o r P(yj = 0) = 1 - t r (a j) . (1)

The output units are deterministic semi-linear
units identical to those of Rumelhart et al. (1986),
whose output is given by:

1
y, = a(a,) = 1 + e-~,/---------'~ (2)

where

= F_, w,jy,, la)
J

Barto et al. (1987) trains the output units in the
manner of Rumelhart et al. (1986), who uses a
"delta", 6, rule. The delta rule adapts each output
node, i, given wij is its weight, in the following
manner

A w , j = (y ; - - (4)

where yi is the response of the deterministic output
unit i to the input pattern; Yi* E [0, 1] is the desired
response of unit i supplied by the teacher;
a'(ai) =o, (a i) (l - a (a i)) is the derivative of the
sigmoid function a evaluated at ai, and a is the
learning rate constant determining the step size.

One should note that, unlike the back-propagation
error method, the error for a given input pattern is a
random variable, due to the stochastic nature of the
hidden units.

606 R. S. Neville and T. J. Stonham

In order to train the hidden units an error metric is
utilised to define the reinforcement signal
" r E {0,1}"; this is normally the inverse of the
mean-square error, e0 [i.e., of the form given in
Section 6.2 eqn (34)] of the output units.

1 with probab i l i t y 1 - eo

r = 0 with probab i l i t y eo
(5)

The reward signal is then used to assign
incremental or decremental changes to the weights.

AWyk = S a[Yi- tr(aj)]xk if r = 1
 .aArp[l- Yi--a(aj)]Xk if r = 0 (6)

where a > 0 is the learning rate, which defines by
how much the weight is incremented, whilst
0 ~< A,p ~< 1 is a penalty coefficient that defines the
amount the weight is decremented, Xk is the real-
valued input and aj is the real-valued activation of the
hidden unit. This leads to a non-symmetrical learning
regime. It has been reported by Barto et al. (1987)
that the lambda, A,p, term enables the algorithm to
avoid "local minima". Gurney (1989) suggests that
non-zero lambda introduces noise into the learning
process and helps avoid absorption into "local
minima".

The stochastic nature of these nets, which leads to
non-deterministic searching of the state space, is
derived from the probabilistic interpretation of the
activations of the hidden units P(Yj= 1) = a(aj).
Hence when the net's stochastic response is correct,
i.e., when r-- 1, then the weights are incremented in
order to promote the probability of outputting the
same response associated with a given stimulus.

4. ADAPTIVE CRITIC

The adaptive critic (Barto et al., 1983; Barto, 1992;
Werbos, 1992a) in Figure 3 is placed hierarchically
above another network, which it advises. The critic
exploits cause-and-effect information; this enables
credit to be given to good actions (u (t)) , more
precisely than standard associative reward-penalty
(AR-p) error driven learning (Werbos, 1989). The

R(t) • Critic /~ U(t)

t
. . . . i

J

_I Action r - [network ~ u0)
l

FIGURE 3. Adaptive critic advising an action network.

adaptive critic element (ACE) supervises itself by
detecting changes in the environment (R(t)) (Myers,
1990). The guidance the ACE provides takes the form
of a prediction (Barto et al., 1983) or utility function
(Werbos, 1992a) which the ACE maximises over
time.

The critic may be used to optimise either a utility
function, a performance index or a cost function
(Werbos, 1992a). In our case, the critic optimises a
reinforcement signal which is used to advise an action
network of changes in the value of a performance
criterion. This type of predictive system is commonly
used in control theory (Barto et al., 1983).

In Barto et al.'s original research (1983), the critic
or functional network outputs an estimate of J, which
is used in the reinforcement of lower-level networks.
Their original functional network, in what has been
termed their two-net problem (Werbos, 1989),
estimates J and is called a "critic", because its main
function is to criticise or evaluate the results
produced by the action network, in order to permit
adaptation of the action network. Barto's method
may be thought of as a temporal difference (TD)
method (Werbos, 1992c) as Barto utilises data that
relate to past and present events to enable a payoff
metric to be optimised, where the payoff was used as
a "prediction" or "expectation" of a future reinforce-
ment (Myers, 1990). The prediction values are
calculated with reference to the ACE's input
eligibility traces, where the eligibility is a trace of
events over time (Barto et al., 1983).

The eligibility trace, Figure 4, may be described as
follows; given a pathway between two neurons, the
pathway reaches maximum eligibility a short time
after the occurrence of a non-zero input signal on
that pathway. The eligibility metric has been used by
Barto et al. (1983) to update the weights of their
action network, where the eligibility of a pathway
relates to what extent the weight on that input
pathway should be modified.

The input eligibility traces, (~), are averages,
where the bar (-) denotes an exponential average
over time. The relationship relates the future
eligibility trace, ~(t+l), to the present eligibility
trace, £(t), and the present input, xi(t), in an

l

Input [

0
T i m e P

I - - I
ElegibilitYtrace / %1...]

I L_

FIGURE 4. Diagrammatic representation of input eligibility trace.

Adaptive Critic for Sigma-Pi Networks 607

exponential relationship defined by eqn (9), which is a
recurrence relationship. The adaptive critic we utilise
predicts an internal reinforcement signal based on the
present external reinforcement signal and its past and
present prediction values. Each input to the adaptive
critic element is given its own trace. These input
eligibility traces increase when the input is active and
decrease to zero with time in the absence of future
activity, hence the most recently increased eligibility
traces would affect the production of an expectation
most strongly (Myers, 1990).

The algorithmic sequence the adaptive critic
follows is: given an external reward signal at time
T, the critic then deduces an internal reinforcement
based on the external reinforcement, the present and
past predictions. The future prediction value is then
derived as a function of the input eligibility trace.
Finally all the input eligibility traces are updated.

4.1. Complementary Work

The initial research of Barto et al. (1983) on
"neuronlike adaptive elements" utilised an associa-
tive search element (ASE) as the action network. The
ASE was advised by an adaptive critic element
(ACE). The ACE receives the externally supplied
reinforcement signal which it uses to derive an
improved reinforcement signal which it sends to the
ASE. The central idea behind the ACE algorithm is
that predictions are formed that predict not just
reinforcement but also future predictions of reinfor-
cement.

The ACE, Figure 5, has a reinforcement input
pathway, n pathways for non-reinforcement input,
and a single output pathway. The external reinforce-
ment, r(t), denotes the real-valued reinforcement at
time t, and let X i (t) , 1 <~ i <~ n, denote the real-valued
signal on the ith non-reinforcement input pathway at
time t. Each non-reinforcement input pathway, i, has

External
reinforcement

X l X 2 Xn Internal
reinforcement

FIGURE 5. Adaptive critic element used by Barto.

a weight with real-value vi(t) at time t. The internal
reinforcement output, fCt), is the improved reinforce-
ment signal that is used by the ASE in place of r. The
ACE determines f(t) by evaluating a prediction, P(t),
of eventual reinforcement that is a function of the
input vector, X(t).

The prediction is given by:

n

e(') = E vi(t)xic,). (7)
i=|

Then the weights, vi, are updated to enable P(t) to
converge to an accurate prediction. The updating rule
Barto used for the weights of the ACE was:

v,(,+ ,> = ~,c,> + ~['c ,> + 7Pc,> - vc,-,>]x,c0 (8)

where 0 ~</3 ~< 1 is a positive constant determining
the rate of change of vi and 0.0 < 3' ~< 1.0, is a
constant that has been called a "discount factor" by
Witten (1977), which enables the eventual extinction
of predictions in the absence of external reinforce-
ment. The prediction is self-sustaining if 3' = 1.0, but
if it is less than 1.0 the prediction decays in the
absence of external reinforcement, Barto et al. (1983)
used a discount factor of 0' = 0.95 for his research.

The trace, ~i, acts as a type of eligibility trace. The
input pathway gains positive eligibility whenever a
non-zero signal is present on that pathway. The input
eligibility trace was computed using the following
linear difference equation:

$i(,+,) = Aaee$i(0 + (1 - Aace)X~(t) (9)

where Aace,0 ~< Aace ~< 1 determines the trace decay
rate and xi(o is the present input. The ACE's output,
the improved or internal reinforcement signal, was
computed from the past and present predictions as
follows:

}~(t) = r(t) + D'P(t) -- P(t-I)- (lo)

The f was substituted for r, the original external
reinforcement, when the weights of the action
network were updated. The pole-balancing problem,
which Barto (1983) uses to demonstrate the ACE,
utilised an r of zero throughout the training steps and
it became -1 when failure occurred, i.e., the pole
would not balance.

Werbos (1989, 1990, 1992a, b, c) re-evaluates the
premise of the adaptive critic, to relate the
methodology to a wider area of research.

Werbos observes that the adaptive critic method
approximates dynamic programming, Figure 6, i.e.,
it is used to maximise a utility function in a noisy,
non-linear environment. He denotes the critic's

608 R. S. Neville and T. J. Stonham

Model of Utility
reality (F) function (U)

1 1
Dynamic

programming

Secondary or strategic
utility function (J)

FIGURE 6. Diagrammatic representation o! dynamic program-
ming.

inputs, R(t) (or b'), as the current description of
reality (xi input vector) and the utility function U(t)
(which is equivalent to the reinforcement r). The critic
outputs an estimate of the future utility, J, across
(t + 1) future time, where dis a payoff metric which is
used with the adaptive critic (J is optimised over time)
and where U is maximised over time by maximising J
in the immediate future. Werbos' research in this field
(1989, 1990, 1992a, b, c) has extended the basic
premise of the adaptive critic and he has presented
several variations on the adaptive critic theme which
use error back-propagation as the means of
evaluating the utility function.

5. INTRODUCTION TO LOGICAL NEURAL
NETWORKS

The majority of researchers into artificial neural
networks utilise neuron models that implement a
linear sum of the weights times their input stimuli.
This sum is then passed through an activation-output
function which is normally a sigmoidal transfer
function. These units are termed "'semi-linear" as
the shape or "linearity" of the transfer function is
defined by p [re. Section 6 eqn (25)] which is a positive
parameter that defines the shape of the curve. This
may be set to a hard-limiter if p --, 0 or with p ~ 0.4
the curve becomes "semi-linear", where both the
input and output of these units are real-valued.

A different perspective has been taken by some
researchers (e.g., Aleksander, 1989a, b, 1990; Gorse
& Taylor, 1990a, b, 1991; Gurney, 1992a, b, 1993;
Neville & Stonham, 1994a, 1995; Neville et al., 1995a,
b, c) who use what may be specified as "digital
networks", which have the ability to implement the
node functionality in hardware using random access
memories (RAMs). The main driving force behind
their research is derived from the fact that the
mainstay of computational devices used today are
"digital" in nature. These digital computational

devices process analogue information by first
digitizing the input (e.g., coding the analogue signal
using an analogue to digital (A/D) converter) then
processing the signal and finally converting the digital
signal back to analogue (e.g., decoding the digital
signal using a digital to analogue (A/D) converter).
The whole ethos of these RAM based units is that
they enable Boolean functions to be implemented as
look-up tables in a RAM. Hence logic nodes' inputs
and outputs are binary.

The basic difference between logical nodes and
semi-linear nodes, which sum the product of the
inputs and their weights, is that logical nodes respond
to their input patterns in addressable locations; the
locations contain either a logical "1" or "0", which is
set/reset during a training phase. The output is then
defined as the binary value stored at the location.

The following paragraphs give a brief overview of
the history of logical neural networks and sigma-pi
(probabilistic) neural networks.

5.1. Introduction to Sigma-Pi (Probabilistic) Neural
Networks

The generalisation of the logical node to the multi-
level probabilistic unit (Myers, 1989) is now
presented below.

The diagram depicted in Figure 7 shows a simple
three-state probabilistic logic node (PLN) (Kan &
Aleksander, 1987; Aleksander, 1989a, b; Neville &
Stonham, 1992, 1993b). Figure 7 introduces the
concept of a site containing a probability value that
defines the output, P(Y= l I#)= S~. For a three-
state unit (one should note that the term "state"
implies the number of discrete states the site-value of
a unit may take) the site-values are S, E {0, u, 1}
where

e (¥ : , I s ~ -- 0) = 0
e(Y= l lS~ = u) = 0.5
e(Y= l l S , = 1) = 1

defines the three possible states per site, of the basic
probabilistic logic node.

This may be represented in hardware terms as a
storage location (in the case of the three-state unit) in
a RAM which stores the site-value, S~. Then
S~, E {0, 0.5, 1 } in binary representation is
S~,bM , E {002,012, 102}, i.e., three values, note later
in the article we term this the machine-quantised
representation and designate it Sin-q.

We can now generalise the three-state unit to a
multi-level logical node, e.g., for a five-state unit the
site-value S~, takes the following probabilities {0,
0.25, 0.5, 0.75, 1} of outputting a logical "1" if the
output function is linear. If we interpret the site-value

Adaptive Critic for Sigma-Pi Networks 609

Input Address
address decoder
xl _1
x2 rl

x~ -I

Output
function Output ~'1 • • - Sit¢.ad~. ss . . . P-i bit

[] !' "Sii :es "' [[[~ ~_~ I . y]
P~ (Y= 1/it)

°., l i o I 0 u P

1 s~

i
. . . J .

Address
Input decoder

address Output Output - - ~ ~ funcfi°n ~-~ bit ~--~
Population of

" ~ values at sites
of hypercube

FIGURE 7. The elmple Ihree-state probablllstic logic node.

as ranging over a set of discrete levels,
Sm ~ { - 2 , . . . , + 2 } , where Sm is represented in
polarized notation, the output functions for the
linear and sigmoidal cases is depicted in Figure 8.

The more important issue is that these multi-level
units have had their functionality described mathe-
matically by Gurney (1989, 1992a, b, 1993), they are
then termed sigma-pi units (the notation is described
in the following paragraphs). The important aspect of
presenting a mathematical representation, which can
deal with real-valued inputs and outputs (e.g.,
analogue or continuous valued inputs), is that one
may analytically prove learning convergence in a
supervised regime, such as associative reward-
penalty and back propagation of error. The

mathematical foundation of the sigma-pi model is
covered in the following section.

6. THE SIGMA-PI NEURON MODEL

The neuron model we utilise has previously been
termed a sigma-pi unit, Figure 11 (Gurney, 1989,
1992a, b, 1993), these units are similar to pRAM
units (Gorse & Taylor, 1991) and as they are RAM
based they may be placed in the same category as
PLN units (Aleksander, 1989a, b).

The foundation of the research in this article is
based on the use of an artificial neuron model known
as a sigma-pi unit. The model was derived by Gnrney
(1989) from a mathematical description of the

1.00

0.75

0.50

0.25

0 :

P (Y : l/ltt)

l
l l l I 1
-2 -I 0 +I +2 Sit

1.00

0.75

0.50

0.25

0 =

P(Y= 1/t~)

I
f I (

-2 -1 0 +1 +2 Sit

Linear Sigmoidal

FIGURE 8. Output function five-state multi-level logic node.

610 R. S. Neville and T. J. Stonham

Address
Input decoder

address

Xl --I Site address
~I'IB2 ~1~2 ~ 1 ['1"2 ~l~l'2

S00 S01 Sl0 a l l

Site values

FIGURE 9. Simplistic structural details of a s lgma-pi cell, for analytical visualisation.

functionality of these devices. We start by visualising
a basic unit, shown in Figure 9.

Here x E { x l , x 2 , . . . ,x i} is a binary input vector
which may be represented as a set of bits in positions
xl to xi. The site address, # E {#1,#2 ,#i}, is
represented by a set of bits in positions #1 to #i. The
site-value, S~,, is addressed by the binary string #.

The functionality of these sigma-pi units has been
described mathematically by Gurney (1989) as

y = S~, (1 + fz,.~,) (11)
/~ i=1

where $ denotes polarised notat ion ~ E { -1 , 1},
E {--1, 1} and S l, denotes unpolarised notation,
i.e., in binary S~,~,, E {0, 1}. The output y is in
unpolarised notation, giving a binary representation
y E {0, 1 }. This may be cast in the more normal form
of an activation (which in the semi-linear case is a
linear sum-of-weights function) and an output
function.

The activation is

I E
i=n

a = S. H (1 +/2i$,) (12)
i=1

where a = y, hence

1
y = ~ (a + 1). (13)

One should note that the site-value is represented in
its polarised form S~, and)7 which take the values
{-1,1}.

We now present the sigma-pi models, which in the
case of our research take the form of stochastic
models as the site-values are interpreted as prob-
abilities. The input, xi, may also be interpreted as the
probability of a "1" appearing at the ith input to the
node. The output, y, is defined by a probabilistic
process which is presented in the following para-
graphs.

The first model is termed a time integration node
(TIN) by Gurney (1989), and contains a hypercube
of sites which feeds a bit stream or activation stream
which is then interpolated through an output
function, the T IN is shown in Figure 10.

A time integration node stores site-values in a
hypercube, which is addressed by an i bit input
vector. The input vector addresses a site, #, which
contains a site-value, S~,, which stores a value
S l, c { - S i n + Sin} which we interpret as a quan-
tised number for reasons of hardware implementa-

1
Address
decoder

Population of
values at sites
of hypercube

Bit
generator
function Activated

_ _ ~ stream

i i ~-~-_--,~-ff;

-Sm + ~ S m s~

Output
function

Output
stream

I Ik-

. ~ y = 1 7

FIGURE 10. The time Integration node (TIN) s igma-pi unit.

Adaptive Critic for Sigma-Pi Networks 611

tion, but it may also be a real-valued number. The
site-value is passed through a bit generator function,
which fills the activation stream with a bit, "b". The
stream is then used to estimate an activation value,
which is then passed through an output function
(which may be linear or sigmoidal) in order to
produce the output.

The TIN's activation may be defined as

a = 1---~ZSt`P(#) = (St')Sm (14)
t`

when

P(#) = ~'~]-[(1 + #izi) (15)

given

Pt` (xi) = 1 (1 + Izizi) (16)

where a is the activation which is found by
summation of all the addressed sites S u times P(#)
the probability that the site address was visited,
S u x P(u). The new input address is formed from a set
of Boolean variables, {Xi}. These are defined via a set
of probability distributions determined by zi.

P , (x i) = l (l + z i) and P o (x i) = l (l - z i) (17)

where zi, the input probability distribution, defines
the probability of the input xi.

Hence the probability Pu(xi) that xi is equal to the
ith component of the site address/z is given in eqn
(16), when P(#) gives the probability that the current
input address locates site #, noting that (.) denotes an
expectation value and - 1 < a < 1.

I f we define the current input address as r/, then use
S o to generate "a" , the new activation stream bit is
given by

1 (Sn /Sr a + l) . P(b ---- lit/) = (18)

Over many time steps, if the input vector is held
constant

(b) = e , (b) : ~ ~ - 1 (19)

then

If N! is the number of ls in the activation stream
which is L bits long, then an estimate for (b) is ~ .

An estimate a* for the activation is

N I
a" = 2 - 2 - - 1. (21)

This is then used to obtain an estimate, y* = a(a*), of
the output y in the case of a sigmoidal output
function or y* = (a*) in the case of a linear output
function. This in turn defines a distribution on a
Boolean random variable y, by P1 (y) = y*, which is
used to communicate the output to the next layer.
Under stationary conditions, the stream's output bits
generated in this manner then estimate the value of
"y" for this node.

The T IN may be utilised for continuous valued
inputs where the real-valued input defines the
probability (zi) of entering a ' T ' onto an input xi
of a node. One should note in our depiction of the
TIN the site-values are quantised, hence the linear bit
generator is quantised into multi-levels as is the
sigrnoidal output function, this is due to quantisation
of a* to allow these models to be hardware realised.
This method has been generalised to enable the
sigma-pi units to operate with real-valued site-values,
which are termed an "analogue model", we in fact
utilise a unit known as a "stochastic model".

When the T IN sigrna-pi unit is configured into a
multi-layered net topology a change in the input
probabilities means that the new outputs at the final
layer will be estimated after "'mL" time steps, where
"m" is the number of layers in the network.

A training regime (i.e., associative reward-penalty)
requires correlations between short term fluctuations
in the output of the nodes in subsequent layers to
provide information for training, we utilise the non-
linearity a(.) in the output stream bit generator for
this reason. This may not be required if, for example,
we were using a TIN to perform an approximation to
a function, e.g., a polynomial function, and obviously
if we required a linear unit we would utilise a linear
output function.

Another type of model exists which we will term
the "direct output node" (DON), as it does not
utilise the bit stream to provide an output. With this
the activation in the analogue model is

a = a(St`) H (1 + fiiz,) (22)
t` i = 1

so that in the stochastic model

a = ~-~a(Su)P(#) : (o'(St`)). (23)
a = 2 (b) - 1 = (b-) . (2 0) t`

612 R. S. Neville and 7". J. Stonham

Address
decoder

Population of
values at sites
of hypercube

Output
function

i

Output
stream

t
l

°W'
r J

P (Y= 1/~)

. s g

FIGURE 11. The direct output node (DON) sigma-pi unlL

The output is just put equal to the activation "a"
and

P (y = l l 0) = ~ (S ~) . (24)

Hence in the TIN's case y = a ((S u / S m)) whereas
in the DON y = (cr(Su)) . The stochastic model of the
D O N is depicted in Figure 11. If one requires a linear
interpretation of the output the cr notat ion may be
dropped.

The sigmoidal function a(Si,) is defined as

=

1 + e-S"~" (25)

where p is a positive valued parameter that
determines the shape of the curve, re. the start of
Section 5.

The DON is a simplified version of a T IN with no
activation stream, so the site-values are only
processed through the output functions to any
subsequent layers and output streams. The site-
values in the D O N are quantised and if the output
stream is not required as a stochastic representation
of the nodes' output (activation), then the resultant
model is the same as the multi-level probabilistic logic
node (M P L N) of Myers and Aleksander (1988).

In our research we use the stochastic model direct
output node (DON). The output behaviour of these
units is similar to that of the Boltzmann units of
Hinton et al. (1984, 1985). The direct output node is
so called as it produces an output directly from the
site-value stored at the site-address defined by the
input vector and not from an activation stream which
the TIN utilises to obtain an output.

6.1. The Quantised Model and Low-Level Machine
Representation

For our implementation all site-values are quantised,
denoted "q". This enables the sigma-pi unit to be
hardware realised, hence the site-value is divided into
D discrete levels, where

G, e {-s in, . . . , + s . }

and, hence, there are

(26)

levels.
This leads to the interpretation of Su as equal to

q

& = K (28)

then

G , = {nln = --Sr,, , --1,0,+1, . . . ,+Sin} (29)

hence if S m = 5 then

G, = {nln = - 5 , . . . , - 1 , 0 , + 1 , . . . ,+5} (30)

giving

S~,, = kS,,,] = {n'ln' = - 1 , . . . , - 0 . 2 , 0 , +0.2,... ,+1}.

This may be represented in hardware as:

S~_, = {n"ln" = 0, . . . ,Sin,... ,2S,}

(31)

(32)

D = (2Sin + 1) (27)

Adaptive Critic for Sigrtu~Pi Networks 613

which we term the machine-quantised (m - q)
representations, which is normally stored in binary
form, which for Sm = 5 is

S~_, = {nOln" = 00002,...,01012,...,10102} (33)

which is the low-level machine representation of the
site-value.

6.2. Associative Reward-Penalty for Sigma-Pi Units

In order to define a reward-penalty signal " r " [refer
to Section 3.3, eqn (5)] for sigma-pi units, we first
introduce the mean-squared output error term:

1 i=l, 2

e o = ~ E [Y ; - t r (S i ~)]
v i = |

(34)

where [.]2 is the square error per input stimuli, defined
on the output-- this is summed over all N~ output
units or visible units. The sum over the set I~ of these
output units. The error is the difference between the
target response, Y~ e {0, 1 }, of a stated output for a
given input/output pattern pair and the sigmoidal
value of the site o(si '~, where # specifies an address
on unit ~s input hnes. The scalar reward is defined
probabilistically by eqn (5).

The site-values of the sigma-pi units are adapted
dependent on the reinforcement value, r, for each
node, j, for input address # then

f a[$ q - o(/~)] if r = 1
AS~ (a s) ~Arp[1 -- In -- ~ (S ~)] i f r = 0

where a > 0 is the learning rate and 0 I> Arv /> 1 is
the penalty coefficient.

6.3. Training Output Units

The output units are trained using a delta rule, where
the addressed site, #, of output node, i is updated
using:

f a[Y / - a(S~)] if r' = 1 (36)
AS~ : [~A,p[1 - Y~ - a(S~) l if r" = 0

where the reward signal "r/ ' ' for each output unit i is
derived from the unit's output error

g0= [Y[- ~(S~)] 2 (37)

where Y~ E {0, 1 } is the target response for the unit.
A different approach is to use the delta rule of

Widrow and Hoff (1960), where the output units are
adapted with:

O" i (38)

The adaption technique above is a symmetrical
learning rule, our methodology utilises a non-
symmetrical learning rule for updating of visible
and hidden units, as the noise term A is then utilised
to avoid absorption to sub-optimal states. This
philosophy is also followed by Gorse and Taylor
(1990a, b), but they utilise separate independent
reward and penalty signals.

6.4. Real-Valued Associative Reward-Penalty AR- p~
In the preceding section we have presented the
standard AR-e training regime which utilises a
binary reinforcement signal " r ~ {0, 1 }". In order to
evaluate the effects of enlargement of the reinforce-
ment signals bandwidth, we utilise the real-valued
reinforcement training regime of Barto et al.
(1987). This method is utilised to enable us to
compare the real-valued Associate Reward-Penalty
training rule with the quantised Adaptive Critic
methodology presented in the preceding para-
graphs.

The original Associative Reward-Penalty of
Barto (1987) utilises a scalar reinforcement signal,
r E {0, 1}, defined in (5) which is probabilistically
interpreted from the output error. Barto and
Jordan (1987) call this type of regime the "'P-
model" AR-e rule. To enlarge the bandwidth of the
information globally broadcast to a network, a
real-valued reinforcement was utilised
0.0 ~< r ~ ~< 1.0 given by

r ~ = 1 - e0 (39)

where e0 is defined in eqn (34). Barto and Jordan
(1987) calls this type of regime the "S-model" AR-e
rule.

The real-valued reward-penalty A~_ e ~ algorithm
for each node j , for input address # now becomes:

AS/~ : c ~ [Y J - a (~)] r ~t + CtArp[1 - YY- o'(/~)] (1 - r ~) .

(40)

The A~_ e rule is non-symmetrical update rule if
0.0 ~< A, e ~< 1.0, which allows both reinforcement and
penalisation to affect the update process simulta-
neously.

614 R. S. Neville and T. J. Stonham

6.5. Quantised Sigma-Pi Model Training and Noise

In order to approximate the expectation of AS~, over
time, the fractional component of A S u is interpreted
as a probabilistic component. Then the site changes
in the quantised model are:

AqS u = I,, + Fu (41)

where Iu is the integral part of the left hand side
(LHS), formed by truncating the A change in the site-
value; Fu is the remaining fractional part.

Then

AqSl~ = I u + 6S# (42)

where 6S u is a unit increment or decrement made
stochastically with probability [F~[. That is

P(rS u : + 1) : 1[1 + sgn(ASu)][F I

P(rSu = - 1) = 1[1 - sgn(mSu)]lF I

6S u = 0 otherwise

(43)

where F is the fractional component and "sgn" is the
sign of the delta change ASf, (i.e., if A S u = 1.25 then
sgn(AS~) = +1 and if A S u = -1 .6 then
sgn(AS~) = --1).

This gives the required expectation

([~qSla) ~- Slj or I~qalJ -~- /~Sl~ -~- ?lq (44)

where nq is a noise term with zero expectation. We
observe that the effective noise nq may be increased or
decreased dependent on the value of S,, and p [i.e.,
eqn (25)]. When Sm ~ oo the noise term nq ~ O, but
by selection of an S,,, = 10, say, we may obtain
beneficial results from the noise term.

We may also set the slope of the sigrnoid, which
previous researchers have set to a high slope p = 0.04
(Penny et al., 1990), to a semi-linear curve, i.e.,
p = 0.3 and hence more noise may also be introduced
into the incremental learning regime. This hypothesis
has been extended in the light of Gullapalli's (1988)
work, as he postulates that by keeping the values of
the units output, Y, from saturating (i.e., going to
their maximum values, as in the case of Y pertaining
to a real number) one may enhance learning
efficiency. In our case by using p = 0.3 one does not
allow the a(.) to asymptotically reach its maximum
value, hence the difference term [Y - a(S~,)] never
goes to zero (which it would do if p = 0.04, where it
has a very narrow non-asymptotic region). One
should note by setting p = 0.3 we obtain a
probabilistic output even when the site-value reaches

its extreme asymptotic values. This may also be
another reason why we obtain more efficient learning
when p = 0.3. Initial studies of the variation of Sm
and p were carried out by Myers (1989), where a
value of S m = 5 (D = 11), gave optimal results when
tested on seven-bit parity and simple 16-pattern
generalisation tests.

The reader should of course be aware that
functions (35) and (36) will be clipped at their
extreme values due to the nature of the bounding of
S# E {-am, am}, but this may be overcome if one
multiplies the whole of the right hand side (RHS) by
sigma primed.

6.6. Algorithmics of the AR-p Training of Sigma-Pi
Networks

The algorithm presented in pseudo-code for associa-
tive reward-penalty training of sigrna-pi units is
detailed below.

clamp training vector
for each layer do {

latch addresses
generate new site-values
generate new output bits

} od
calculate error e0
generate reinforcement bit r

for each unit in each layer do {
calculate AS~

} od
update site-values.

Making error estimates with eqn (34), on the
ascent of r [defined in Section 3.3, eqn (5)], then using
eqn (35) for the hidden units and eqn (36) for the
visible or output units updates.

One should note that this is a "sequential" training
method, where each vector is presented, delta changes
in the site-values A S u are made, then the next vector
is presented. This differs from the methodology used
by Rumelhart et al. (1986) who use a "batched"
training update method, whereas we only require
errors on a per pattern basis or "sequential" training
update method.

7. T H E QUANTISED ADAPTIVE CRITIC
E L E M E N T

In the subsequent work on the adaptive critic, we
utilise the formalised conventions which we have
previously used for the sigma-pi model, refer to
Sections 6 and 6.1, which are:

(1) all stimuli to the action net and the adaptive critic
element are binary,

Adaptive Critic for Sigma-Pi Networks 615

(2) the binary input vectors, which stimulate the
critic, address site locations,

(3) the site-values stored at the locations may be
viewed as values stored in n-tuples,

(4) the stored site-values are quantised.

The following paragraphs formally introduce our
adaptive critic methodology, in order to utilise the
sigma-pi convention of notation, for tasks requiring
temporal predictions such as control systems or
sequential tasks that require temporal information
(Barto et al., 1983; Myers, 1990). Then we put
forward an adaptive critic element (ACE) for the
more orthodox tasks, such as those carried out by
feedforward networks. Werbos (1990) previously
stipulated that the adaptive critic can be used to
adapt conventional networks that perform tasks like
pattern recognition. In the succeeding work we
extend Barto's (1987) associative reward-penalty
(AR-p) paradigm to incorporate Barto et al.'s
(1983) research and introduce an adaptive critic
which is connected to a sigma-pi network (action
network), in order to aid the action network while it
is being trained.

7.1. The Quantised Adaptive Critic for Sigma-Pi
Networks

We now formulate the mathematical notation of an
adaptive critic for sigrna-pi nets.

The adaptive critic element receives an external
reinforcement, as used in the standard AR-p (re.
Section 3), derived from an action network's output
(re. Section 3.3), which is a scalar signal.

In order to evaluate the internal reinforcement,
~(t), we calculate:

r(t) = r~ ,) + 7/'(,) - P(,-,). (45)

The prediction, P0), relates to the present
prediction while P(t-t) is the past prediction--these
values are stored in a quantised manner, where
P(.) E {0 , . . . ,+Pn} , giving D = P n + l discrete le-
vels, which are stored as q bit numbers (e.g., if
Pn = 8 then P(.) E {0.125nln = 0, 1 , . . . ,N} where
N = 0.125/0.125 --- P~). The multiplying coefficient
0 . 0 < 7 ~<1.0 has previously been termed the
"discount factor", which in our case may be
thought of as a means of reducing the effect the
most recent prediction has on the evaluation of
~(t), if 7 < 1.0. The reinforcement value
r ' E { - 1 , + 1 } denotes a scaled reward [re. Section
7.2, eqn (48)], which enables the predictions, P(.),
to incrementally increase from zero to one and also
be decremented from one back down to zero.
Note, to use ~(t) with A R - p w e must re-scale it [c.f.
eqn (52) in Section 7.2].

The prediction is updated by:

AP(t+t) = flf(t)$,(t) (46)

where 0 < /5 < 1 is a rate coefficient which defines by
how much the prediction is incremented or decre-
mented. The input eligibility, ~(0, is interpreted as;
given an "g ' bit input vector {Xl, x2 , . . . , xi}, which
addresses location "v" in an eligibility n-tuple, giving
an eligibility value ~,(t)E {0 , . . . ,+$~} , that is
specified as a "q" bit number, having D = gn + 1
discrete quantisation levels (e.g., if xn = 16)
then ~(.) = {0.0625nln = 0, I , . . . , N} where
N = 1.0/0.0625 = ~n-

The input eligibility trace is updated by:

X=(t+,) = A, ceX=¢0 + (1 - Aace)X,ft) (47)

for all input addresses 0 ,<< u ~< r/, where r/equals the
maximum input address (e.g., for an 8-tuple
r /= (28) - 1 or 255 decimal or FF hexidecimal),
and where xv(t) is a binary trigger for the eligibility
trace, when site "v" is addressed xv(t) = 1 (i.e., where
input address v equals the n-tuple address u) and all
other non-addressed traces are updated with
x~,(t) = 0, and where 0 <)kaee < 1 is a positive
constant determining the decay rate. The input
eligibility figures are now viewed as quantised values
stored as a set of traces in a n-tuple, which are
updated every time the action network carries out a
"forward pass" operation.

The above formalises the adaptive critic to what
we will term the "quantised adaptive critic element"
(QACE). However, the above quantised critic is
usually utilised for tasks where temporal information
is being used. The paragraphs below instruct one how
the QACE rule may be amended, to utilise the QACE
in the more normal "static" mapping situations.

7.2. Quantised Adaptive Critic Element for Pattern
Mapping Tasks

The QACE we define here carries out static mapping
tasks, which is one that maps input vector X to
output vector Y, where Ybelongs to one o f k different
classes. The quantised adaptive critic stores the
variables that it utilises in the same manner as the

Input
address

latch Address Divide
xl _ ~ x~ by Pn

P~qi
Quantised prediction

FIGURE 12. Diagrammatic representation oG the prediction
values stored in an n-tuple.

616 R. S. Neville and 1". J. Stonham

sigma-pi unit (re. Section 6.1). The QACE is
addressed by an i bit vector, defined by the input
vector { X l , X 2 , . . . , x i } , which addresses a location
defined as address v.

The vector v addresses three locations in the ACE
in parallel, these site-values store the prediction
values P~(t), Pv(t-l) and x~(t) the eligibility values,
which are all q bit numbers, of the type defined in
Sections 6.1 and 7.1. The method of storing the
predictions (which is also utilised for storage of the
eligibility values) is diagrammatically depicted in
Figure 12.

The QACE utilises the standard external reward,
r(t), which is given in eqn (5), Section 3.3, where
r(t) E (0, 1} is a binary scalar value. The reinforce-
ment is then scaled, to enable one to obtain a
reinforcement which may be a negative - 1 or positive
+1 value, in order to calculate a prediction of the
reinforcement Ap~ value that increases and de-
creases, the scaled reinforcement is given by:

r~t) = (2 x r(t)) - 1. (48)

We then obtain a bivalent reinforcement of the type
used by Barto et al. (1983), where r ' E {-1 , +1}. The
scale reward signal is then used to derive an improved
or internal reinforcement signal, given by:

r(t) = r~t) + "YPv(t) -- P~(t-I) (49)

where Pv(t) is the present prediction and P~(t-l) the
past prediction. It should be noted that this is not the
same as Barto's (1983) original work, where he uses
the prediction values P(t) and P(t-l) . We use the
present and previous prediction values for the given
site address v. The multiplying coefficient
0.0 < 7 ~< 1.0 has previously been termed the
"discount factor", re. Section 4.1.

The prediction value is updated by:

APv(t+I) =/~f(t)$,(o (50)

where 0 </~ < 1 is a positive constant determining
the rate of change of Pv(.). All the input eligibility
traces are updated using:

~,1,+1> = ,~,co~,~,) + (1 - ~,~)x,<,) (51)

for all input addresses 0 ~< u <~ r/, where r/ = the
maximum input address (e.g., for an 8-tuple
r /= (28) - 1 or 255 decimal or FF hexidecimal),
and where)~aee, 0 < ~ace < 1 determines the elig-
ibility trace's decay rate.

The binary value, x~, is a trigger for the eligibility
trace, and when the site v is addressed xv = 1 and all

other non-addressed traces are updated with
xu#v = 0. The internal reinforcement, f(t), is then
re-scaled

. 1
r(t) = ~ (r(t) + 1.0) (52)

which denotes a quantised reinforcement
r~t E {0.0, . . . , 1 0}, that is termed the "bounded"

. " * *

reward signal r(t) [e.g., rtt ~ E {0.125nln
= 0, 1. , . . . ,N} for all our experiments" Pn = ~n = N,
we set N equal to 8]. It is termed "bounded"
reinforcement signal as the re-scaled reward (52) is
limited to the maximum and minimum values of
Barto's (1987) scalar reinforcement (i.e., mini-
m u m = 0 and max imum= 1). When the internal
reinforcement is not limited to these extremes it is
then defined as an "unbounded" reinforcement
signal, r~t), which denotes a quantised reinforcement
r~t) E { - 1 .0 , . . . , + 2 .0 } , which permits penalisation
even when the penalty coefficient, Arp, in the
associative reward penalty training regime is zero,
i.e., Arp = 0.

The sigma-pi unit's addressed sites, given node j
and site address #, are then updated using:

(53)

The reader should of course be aware that the
function (53) will be clipped at its extreme values due
to the nature of the bounding of S~, E { - S m , . . . , Sin},
but this may be overcome if one multiplies the whole
of the right hand side (RHS) by sigma primed.

7.3. Example Evaluation of the Internal Reward Using
the Adaptive Critic Elements

The ACE methodology utilises one ACE per net, as
per the Barto et al. (1987) initial research. This is
based on the premise that the ACE is utilised to
predict "r" , which is derived from the input
eligibilities obtained from the environment R.

In Figure 13 we present a diagrammatic representa-
tion of an example evaluation of the internal reward
signal using the ACE. In time period t the external
reward, r(t), the past Pv(t-1) and present Pv(t)
predictions are r(t) = 0 and P,(t) > Pv(t-1) . Then the
internal reward, f(t), defined by eqn (49) calculates a
pseudo-penalty value (i.e., the internal reward is not
equal to minus one) which means that the internal re-
scaled reward r~t)is a non-zero reinforcement signal.
The effect the ACE has in this case is to reduce the
penalty signal to the artificial neural network that it is
advising. This was caused by the present prediction,
Pv(t), being larger than the past prediction, Pv(t-1).

Adaptive Critic for Sigma-Pi Networks 617

r(t)

P o (t)

l .O - -, .
i
n
i
i
i

0 '
1.0 - -, .

i
i
i
i

0 _,.~1 .

1 . 0 .

P o (t - l) 0
] . 0 - - 1 .

i
i
M
i

^ i

r (o 0 - ~ .
i

t

- l . O '

l . O - - , .
i
i
i

$

r(t) 0 - 2 .

FIGURE 13. E x a m p l e e v a l u a t i o n of he I n t e r n a l r e w a r d .

7.4. Multi-Cube Feedforward Structures of Sigma-Pi
Units

The sigma-pi model we use may be defined as a
collection o f site-values at the corners of a hypercube
and as such are termed cube based nodes. One of the
problems with fully connected networks of sigma-pi
(logical) nodes that require each unit to cover a large
input retina is that these units suffer from the
problem of exponential rise in resources as the
number of inputs increases. For example if one uses
a 3-tuple we require 23 ~ 8 sites in the cube. But if we
need a fully connected net to cover an input retina of

Address
decoder

~ ~ Populationof
values at sites

- - of hypercube

25 inputs, then we require a 25-tuple giving
225 ~ approx. 33 x 106 sites in the cube.

A single cube nodes functionality may contain
thousands more functions than required. If one
considers the standard sigma-pi unit with a single
cube of site-values followed by an output function, a
linear extension of this type of structure would be to
sum the outputs from several cubes (Gurney, 1989)
and then pass this through an act ivat ion-output
function. This is depicted in Figure 14.

The next extension to this type of structure would
be to utilise linear weights on connections from other
inputs or units to the summation unit of the multi-
cube unit, to enable these units to be configured into
competitive networks (i.e., in competitive nets, the
units compete for the opportunity to respond to the
input stimuli). One should note that the multi-cube
structure with no output function, but just an integer
output, is the same structure as the W l S A R D system
(Wilkie, 1983), whereas if one configures the multi-
cube unit with a hard limiting (or threshold) output
function we have the type of topology put forward by
Minsky and Papert (1969) for their perceptron.

The multi-cube structure overcomes the restriction
that single-cube sigrna-pi units have, as the multi-
cube is a linearly scaleable unit. We may also
generalise this methodology to store other variables
(not just site-values), as we have done in our work on
the quantised adaptive critic (Neville, 1993; Neville &
Stonham, 1993, 1994b, c) to overcome general
problems of exponential increase of resources, which
relate to the number of inputs to a system.

Activation
output

function

Address
decoder

21 \ \ --q

\ \

-I

~J- I [Population of
" ~ \ values at sites

[I of hypercube
-I

FIGURE 14. Single-cube sigma-pi unit TOP and a multi-cube sigma-pi unit BOTTOM.

Population of I ~ values at sites
of hypercube

Activation
Population of [\ output
values at sites ncUon
of hypercube ~.~

618 R. S. Neville and T. J. Stonham

• -" Input ",,
• • address , Divide

,'~ latch x2Xl ~ [---7 ~o Address ~ ',, by Pn

• " ,, Quantised prediction ':
s S , J

I • j

7 " - - _-
," QACE

s ¢ • .

,';'" Input "'-
, " address "',

• latch Values stored on

11 III ",,,,
Sigma ',

• II1 ,\ oc.on ' , ,
' \ \ ~ Divide ",i

I "

"'"" -, -""" Multi-cube QACE

FIGURE 15. Multi-cube quantised adaptive critic element.

7.5. The Multi-Cube QACE

The basic adaptive critic methodology utilises a single
cube or n-tuple (where n is the number of inputs to
the QACE, giving full coverage of the input retina),
for each of the Pv(t), Pv(t-l) and $~(t) variables.

I f the ACE has to operate with a large number of
input variables, then using a single n-tuple to cover
the whole input space would not be feasible as the
storage requirements grow exponentially. For exam-
ple, if we had 20 input lines (variables) we would
require 22o storage locations for each of the three
different stored variables (i.e., the P~(O, Pv(t-l) and
x,(t))- The multi-cube QACE is utilised to overcome
the exponential rise of resources as the number of
input variables rise. If one considers the QACE's
input lines as connected to an input retina, then the
input retina is sub-divided into sub-retinas.

Each of the partial retinas is then allocated three
tuples to store the Pv(0, Pv(t-1) and ~(t) variables for
that region. Then to calculate the overall or mean
prediction, one sums all the partial predictions and

divides by the number of n-tuples (sub-cubes)
covering the whole input retina.

The multi-cube QACE, Figure 15, overcomes the
above restrictions on its memory requirements as it is
linearly scalable and may be utilised when one
requires full connectivity. The mean output of these
multi-cube structures is derived from several cubes,
termed sub-cubes.

The internal reinforcement then becomes:

r (t) = r~ t) + ")'ev(t) - - / ~ v (t - I) (54)

where/~v(.) is the mean of all the addressed sites of the
"At"' sub-cubes.

The mean prediction, _Pv(.), given by:

1 k = N P,(.)=~k~_?,,(.) (55)

where the vectors defined by l:k, are the partial

Adaptive Critic for Sigma--Pi Networks 619

addresses presented to the sub-cones when the input
vector address is v. The prediction values are now
updated using the mean eligibility, x,(t), derived from
all the sub-cubes, which is given by:

| k=h"

~,0) = . ~ ~,,,,. (56)
F~q

Hence the prediction is updated using:

a e . . , . , , = aec,)~,(,)- (57)

The input eligibility traces are updated as before,
on a per sub-cube basis, where each sub-cube covers a
fraction of the input retina.

8. EXPERIMENTAL WORK

8.1. The 8-3-8 Encoder

The bench mark used to evaluate our research on
the quantised ACE training with binary data was the
8-3-8 Encoder, Figure 16, previously utilised by
Hinton et al. (1984). The encoder network has eight
inputs, three hidden units and eight outputs. The
encoder's task is to transmit eight-bit binary input
vectors across the hidden layer boundary, hence these
units must learn to represent each vector with a
different three-bit code. The problem relates to the
complexity of coding training data onto the narrow
channel. To explain this, we look at the case when
only one of the eight bits in the input vector has a set
bit, then the hyperplane in each output unit separates
off a single corner on the 3-cube unit. This may be
coded in eight ways, one for each corner of the cube,
for the first output unit, leaving seven different coding
choices for the next unit and so on giving 8 different

coding solutions. This means there are 8 s possible
code sets, so that only approximately 0.24% of these
are useful. But to make the coding task hard we have
four adjacent set-bits. Now each hyperplane must
separate the cube into two equal parts. But when this
is done by one node, there are immediate constraints
on the coding the neighbouring units may utilise.
Once four nodes have been specified the others are
uniquely determined. This coding scheme yields 192
viable valid codes, which represents about 0.0011%
of all possible code solutions.

Since all simulations begin with all site-values
a(S~) = 0.5 or S~ = 0, giving P(Y = 11/~) = 0.5, i.e.,
50% probability of the output Y obtaining a value
"1", in other words no prior information has been
bestowed on the network, then finding a solution to
such a problem requires that the two visible groups
come to agree upon the meaning of a set of codes
without any prior conventions for communicating
through the hidden units.

8.2. The 8-3-8 Encoder and Experimental
Delimitations

The encoder we utilise for these experiments is an 8
input, 3 hidden unit and 8 output unit network as
described in Section 8.1. The 8-3-8 encoder was used
as a benchmark for this work. The training vector set
used were hexadecimal numbers {F0, 78, 3C,
1E, OF,87, C3,E1}, hence Np =8. The training set
was randomly ordered for each sample and a different
seed was given to the stochastic operator of the net at
the start of each training session. The training vectors
each have four adjacent set-bits.

The output-stream of the direct output node
(DON) is utilised in the experimental work to
communicate an estimate of the output value,

Outputs

Inputs

FIGURE 16. The 8 3 4 encoder network.

620 R. S. Neville and T. J. Stonham

y * E [0,1]. The output-stream is utilised in the
following manner. The current input address #
addresses, S~,, which is used to generate a new
output-s t ream bit. We now count the number of ls
(defined as N1) in the output-stream. Then an
estimate for y* is obtained using:

t N
y" = ---:' (58)

L

where L is the length of the output-s t ream and Nl is
the number of ones in the stream. Assuming
stat ionary conditions, the stream of output bits
generated in this manner will, over time, transmit
an estimate of the value of y for a given node. The
stream of bits appearing at the output may be likened
to the trains of action potentials transmitted along
axons. This means one is using a time integration of
the output-s t ream to derive an estimate of the
output ' s value.

In order to define our error metric we first define a
mean-squared error over a set of Np patterns as:

1 k=JV,
E = ~.. E e~ (59)

P k = l

where the mean-squared error, e'0, is

, 1 / ~ - '~ t i
eo = -~v i~=l l, Yt -- Yi*)2 (60)

where Y~ ~ {0, 1} was the target output and yi* was
estimated from an output-stream which was a 100 bit
long stream, L = 100, this is summed over all Nv
output units. The sum is over the set Iv of these
output units. The results presented in the following
paragraphs show graphs of the error ~0, given by:

1 n=Nfn

~o =~-d ~ e (61)
n = l

the average error over one hundred trained networks
(Ntn = 100) after 6000 training cycles had elapsed,
over all Np training patterns, where each output, y*, is
calculated after 100 forward passes. I t is important to
note that if this is not done and one takes the
instantaneous output o f the s igma-pi visible units one
obtains a probabilistic output and we require an
estimate of a deterministic output.

For all experiments the constants we utilise are
p = 0.3, Arp = 0.0 and Sm E { - 1 0 , . . . , + 1 0 } . For the
A C E 7 = 0.95, Aace = 0.8, fl = 0.5 and
Pn = $~ = N = 8. Each graph has a y-axis which is
the average error, ~0, and an x-axis which is

.2

0.1-- I I I I I I
0.1 0.3 0.6 1.0 3.0 6.0 10.0

Learning rate

FIGURE 17. Average log er ror 6o versus log a, for sigma-pi
based 8-3-8 encoder with eight training vectors having four set-
bits. The graph shows the average error e0, over 100 trained
nets, after the nets have been trained for 6000 cycles.

partitioned for eight learning rates a = {0.1,0.25,
0.5, 1.0, 2.0, 5.0, 10.0, 20.0}.

8.3 Standard Associative Reward-Penalty .4A_p

Presented in Figure 17, is a simulation of the effect of
varying the standard associative reward-penal ty 's
learning rate a, as previously described in Section 8.2.
The graph shows that the optimal learning rate is
a = 1.0 as it reduces the average error, ~0, by the
largest amount. Fo r learning rates les than or greater
than a = 1.0, one obtains a lower average error
figure. This graph is presented as a base line for
comparing the results presented in this section.

8.4. Real-Valued Reinforcement Associative
Reward-Penalty A R_ p~
Comparison of the s tandard associative A R - e and
real-valued r 9~, A R _ e ~ is shown in Figure 18. The
results presented in the graph show that for learning
rates greater than a = 2.0 the real-valued reinforce-
ment associative reward-penal ty was more efficient at

~ ~ 0 . 2 - o//

0.1- I I I I I I
0.1 0.3 0.6 1.0 3.0 6.0 10.0

Learning rate

FIGURE 18. Average log er ror eo versus log a, for s igma-pi
based 8-3-8 enceder with eight training vectors having four set-
bits. The graph shows the average error ~ over 100 trained
nets, after the nets have been trained for 6000 cycles. The dotted
l ine shows the error for the standard AR-p. The solid l ine shows
the error with real-valued reinforcement rgle[0,1].

Adaptive Critic for Sigma-Pi Networks 621

• ,,,s**]

0.1
0.1 0.3 0.6 1.0 3.0 6.0 10.0

Learning rate
FIGURE 19. Average log er ror eo versus log ,% for slgme.-pl
based 8-3-8 encoder with eight training vectors having four set-
bits. The graph shows the average error 6o over 100 trained
nets, af ter the nets have been trained for 6000 cycles. The dotted
l ine shows the er ror for the standard An-p. The solid l ine shows
the er ror with one QACE and "bounded" Internal reinforcement
r*({0.O 1.0}.

0.2

0.] I I I I I I
0.1 0.3 0.6 1.0 3.0 6.0 10.0

Learning rate

FIGURE 21. Average log er ror eo versus log r,, for s igma-pl
based 8-3-8 encoder wlth elght training veclors havlng four set-
blts. The graph shows the average er ror 6o over 100 tralned
nets, after the nets have been trained for 6000 cycles. The dotted
line shows the error for the standard Aa_p. The solld l ine shows
the error wlth a multl-cuba QACE and "bounded" Internal
relnforcornent r * ({0 .0 , . . . , 1.0}.

training the 8-3-8 encoder net. If one considers the
reduction in average error, ~0, over all eight learning
rates, the overall improvement was 9% better than
the standard associative reward-penalty results
shown by the dotted line in Figure 18.

"bounded" QACE regime than for the standard
AR_p training rule, while the average error over all
eight learning rates was 11% lower for the
"unbounded" QACE regime than for the standard
AR_ e training rule.

8.5. Quantised Adaptive Critic and Associative
Reward--Penalty Training

The following figures give the simulation results for
one QACE; Figure 19 shows the effect of "bounded"
internal reinforcement r* E { 0 . 0 , . . . , 1.0} and Figure
20 the "unbounded" r* E {-- 1 . 0 , . . . , 2.0}. The graphs
presented show that the quantised adaptive critic and
associative reward-penalty results give lower average
errors after 6000 training cycles, for learning rates of
greater than a = 1.0 for the "bounded" and
"unbounded" ,4R-e regimes. The average error over
all eight learning rates was 10% lower for the

8.6. Multi-Cube Quantised Adaptive Critic and
Associative Reward-Penalty Training

Finally the multi-cube QACE is simulated, with four
2-tuples covering the input retina of the 8-3-8
encoder. Figure 21 shows the effect of "bounded"
internal reinforcement, r*E {0.0, . . . , 1.0}, and Fig-
ure 22 the "unbounded" internal reinforcement,
r* E {-- 1.0,. . . , 2.0}.

The two graphs show that the "bounded" multi-
cube QACE and the AR-e methodology, while the
"unbounded" multi-cube QACE and AR-e training
gave a further reduction of the overall average error

.s •

0.2 -- "• o'°

• ,, ¢ s

"*~ t •

0 . 1 ~
0.I 0.3 0.6 1.0 3.0 6.0 I0.0

Learning rate

FIGURE 20. Average log er ror ea versus log a, for s igma-pi
based 8-3-8 encoder with eight training vectors having four set-
bits. The graph shows the average error e0 over 100 trained
nets, after the nets have been trained for 6000 cycles. The dotted
l ine shows the er ror for the standard AR-p. The solid l ine shows
the er ror with one QACE and "unbounded" Internal reinforce-
ment r*({--1.0,.. . , 2.0}.

b •

0.1
O.l 0.3 0.6 1,0 3.0 6.0 I0,0

Learning rate

FIGURE 20. Average log er ror 60 versus log ~, for s igma-pi
based 8-3-8 encoder with eight training vectors having four set-
bits. The graph shows the average er ror ~ over 100 trained
nets, after the nets have been trained for 6000 cycles. The dotted
line shows the error for the standard AA-p. The solid l ine shows
the error with a multi-cuba QACE and "ubounded" Internal
reinforcement r ' e { - 1 . 0 , , . . . : 2.0}.

622 R. S. Neville and T. J. Stonham

of a 19% drop over all eight learning rates when
compared with the standard A R - p training regime,
the dotted line in the graph.

9. DISCUSSION

Our research into an adaptive critic for sigma-pi
networks utilised an unsupervised critic net in
parallel with a supervised logical neural network.
The critic provides advisory information to the
net which was found to augment the net's training
efficiency. These techniques use what has been
termed an "adaptive critic element" to give critical
advice to the sigma-pi network which has been
given a specific task. This leads us to the more
notable achievement of the presentation of an
extension to the associative reward-penalty algo-
rithm, which utilised a quantised adaptive critic
element (QACE) and "unbounded" internal reinfor-
cement signal, which permits penalisation of a net
even when the penalty coefficient, Arp, is set to
zero. It should be noted, of course, that it is
normally the case that the net is only penalised if
the penalty coefficient is non-zero, 0 ~< Arj, < 1.

It is of interest to note that in the field of (logical)
neural networks a limitation may exist which stems
from the fact that it is normally the case that
supervised learning regimes only rely on an error
figure, which only relates to the present input pattern
or batch of present input patterns, to adapt the
weights of the net while training. This may be a
limitation as no other knowledge is utilised during
training, while the QACE and the A R - p training
methodology utilises data that relates to past and
present data (events).

In this research we study the effects of using an
unsupervised quantised adaptive critic placed hier-
archically above a supervised sigma-pi network,
where the critic monitors the input stimuli and
traces the frequency of "stimuli" occurrence. This
was then used to derive predictions of reinforcement,
based on the past and present predictions. The
predictions of reinforcement are then used to
calculate an internal reward signal.

The investigation into an adaptive critic for
sigrna-pi structures introduces one to the concept of
utilising two networks in parallel, working toward
the same goal of optimising a function over time.
This work involved carrying over methodologies
from the field of semi-linear structures to our
sigma-pi units or cube-based logical nodes and the
realisation that by utilising the conventions of
sigma-pi nodes (e.g., quantisation of variables) one
may implement the quantised adaptive critic in
hardware.

10. D E V E L O P M E N T OF IDEAS

Our investigation, which relates to the adaptive
learning rule work we previously carried out
(Neville & Stonham, 1992, 1994a), studies how to
further increase the associative reward-penalty's
learning rule efficiency. We used an adaptive critic
to obtain more information from the incoming data
to better adjust the reinforcement signal to the net.

The research into the adaptive critic evolved as an
extension of our initial work with adaptive associa-
tive reward-penalty training where we developed
adaptive training regimes (Neville & Stonham, 1992,
1994a). Here we looked at the problem from a
different perspective, which was to utilise predictive
techniques in order to define an "internal" reinforce-
ment. We used the same methodology for the
adaptive critic that we utilise for sigma-pi units,
which was that each variable was quantised and these
were then stored in addressable locations in n-tuples.
We also initially limited or "bounded" the value of
the "internal" reward signal to the more normal {0,
l} (Barto & Jordan, 1987). The internal reinforce-
ment was derived from predictions of the reinforce-
ment which are in turn derived from eligibility traces.
This turned out to be a non-optimal solution and
when we stopped restricting the "internal" rewards
value, as was the case for the "unbounded"
(r~t) E { - 1 . 0 , . . . , 2.0}), we obtained an extension to
the reinforcement training methodology which
permits penalisation of a sigma-pi net even when
the penalty coefficient, Arp, was set to zero. Normally
the net is only penalised if the penalty coefficient is
non-zero, 0 < Arp < 1. This "unbounded" approach
may have repercussions if it is carried over to research
on semi-linear units.

The other novel feature of the work on quantised
adaptive critics was the realisation that one may
utilise the multi-cube structure to enable storage of its
variable to be linearly scalable, as the number of
inputs increases.

11. CONCLUDING REMARKS

The results for the series of simulations are given in
Table 1. Here we compare the three different methods
with the standard associative reward-penalty, AR-p,
learning rule. The percentage figure represents the

TABLE 1
Average Reduction of Error for the Eight Learning Rates

" B o u n d e d U n b o u n d e d "

Real-value AR_p '~ 9 % - -
Single QACE 10% 11%
Mul t i -cube QACE 10% 19%

Adaptive Critic for S igma-Pi Networks 623

average percentage reduction of the average error, ~0,
over all eight learning rates when compared with the
standard associative reward-penalty, AR-e, update
rule.

When comparing all the quantised adaptive critic
elements (QACEs) with real-valued associative
reward-penalty (A~_e) we see that the quantisation
of the prediction and eligibility trace values does not
reduce the training efficiency.

The "unbounded" quantised reinforcement QACE
gives increased efficiency of training when compared
to the "bounded" version. It is of interest that the
"unbounded" multi-cube QACE induces more
efficient training, this may be explained by noting
that the net is given more information while training.
The increase of information provided to the net is due
to :

(a) The "unbounded" reward signal's ability to
reward-penalise the net to a higher degree. If,
for example, the external reward provides a
penalty signal and the temporal difference
between the predictions is a negative quantity
(i.e., the 7Pv(t) <P~(t-l)) the prediction of
reinforcement is reduced, and then the critic
advocates penalisation of the net to a greater
degree. The critic may also increase the reinforce-
ment if the external reinforcement signal is a
reward and the temporal difference between the
predictions is positive (i.e., 7Pv(t) > ev(t - l)) .

(b) When utilising a multi-cube [i.e., multiple n-
tuples, with an output sigma that sums the
presently addressed sites in each tuple to give
an average (mean) value (re. Section 7.5)] to store
the predictions and trace values one deviates
from the original concept of Barto et al. (1983).
Barto utilises what he terms "one in a box"
coding to provide an input address for the
associative search element (ASE) and the
adaptive critic element (ACE), which is analo-
gous to a single n-tuple, where each input address
only addresses one site. One should, of course,
note that the term "n-tuple", which is used as a
sigma-pi or logical node stores the site-values in
an n-tuple, which is addressed by an n bit input
vector {xl,x2, . . . ,xn}. The methodology of "n-
tuple" pattern recognition techniques was origin-
ally researched by Bledsoe and associates (1959,
1962). In the case of logical or RAM-based
nodes, mapped to a digital input retina, each
pixel in the input image is represented by a single
bit. A number "'n" of such bits taken from the
input image form an n-tuple input vector. In the
case of the single-cube sigma-pi unit the input
addresses a single site, #, which contains a site-
value, S~,, which determines the probability of
outputting a logical 'Y ' , while in multi-cube

structures the output is defined by summing the
sites in the sub-cubes and dividing by the number
of sub-cubes to obtain a probability of outputting
a logical "1". This means, in the case of the
multicube QACE, that when one utilises
"partial" predictions (e.g., each sub-cube only
provides a "partial" prediction, which are then
summed to provide the total prediction) one is in
effect taking into account information which
relates to the occurrence of the "partial"
addresses in the input stimuli.

In this research we have put forward the quantised
adaptive critic methodology which enables one to
extend the original version of AR-e for sigma-pi nets
by encapsulating a critic element in the environment
to enable the reinforcement signal to provide more
detailed information to the net while it is being
trained.

We have also overcome one of the problems of the
QACE, which is the exponential growth of resources
when the number of inputs to it increases, by utilising
a multi-cube structure. A notable achievement of this
research is the presentation of an extension to the
reinforcement training methodology that utilises an
"unbounded" reinforcement signal, which permits
penalisation of a net even when the penalty coefficient
is set to zero, normally the net is only penalised if the
penalty coefficient is non-zero.

REFERENCES

Aleksander, I. (1989a). Canonical neural nets based on logic nodes.
In 1st IEE International Conference on Artificial Neural
Networks (pp. 110-114).

Aleksander, I. (1989b). The logic of connectionlst systems (Chapter
8 pp. 135-155), a probabilistic logic neuron network for
associative learning (Chapter 9, pp. 156-171) (see also
Chapters 1, 10 and 11). In: I. Aleksander (Ed.), Neural
computing architectures." the design of brain-like machines,
North Oxford Academic Publishers Ltd.

Aleksander, I. (1990). Weightless neural tools: towards cognitive
macrostrnctures. In: CAIP Neural Network Workshop. New
Jersey: Rutgers University.

Barto, A. (1992). Reinforcement learning and adaptive Critic
methods. In Handbook of intelligent control." neural, fuzzy, and
adaptive approaches (pp. 469-491). New York: Van Nostrand.

Barto, A., & Jordan, M. (1987). Gradient following without back-
propagation in layered networks. In Proceedings 1st IEEE
Conference on Neural Networks (pp. II.629-II.636).

Barto, A., Sutton, R., & Anderson, C. (1983). Neuronlike adaptive
elements that can solve difficult learning problems. IEEE
Transactions on Systems Man, and Cybernetics, SMC-13(5),
834-846.

Bledsoe, W. W., & Browning, I. (1959). Pattern recognition and
reading machines. In Proceedings of the Eastern Joint Computer
Conference (pp. 225-232).

Bledsoe, W. W., & Blisson, C. L. (1962). Improved memory
matrices for the n-tuple pattern recognition method. IRE
Transactions on Electronic Computers, EDll , 141-415.

Clarkson, T., Gorse, D., Taylor, J., & Ng, C. (1992). Learning

624 R. S. Neville and T. J. Stonham

probabilistic RAM nets using VLSI structures. IEEE Transac-
tions on Computers, 41, 1552-1561.

Gorse, D., & Taylor, J. (1990a). Reinforcement training strategies
for probabilistic RAMs. In Theoretical aspects ofneurocomput-
ing: selected papers from the symposium on neural networks and
neurocomputing (pp. 180-184). NEURONET90.

Gorse, D., & Taylor, J. (1990b). Training strategies for
probabilistic RAMs. In Parallel processing in neural systems
and computers (pp. 161-164). Amsterdam: North-Holland.

Gorse, D., & Taylor, .I. (1991). A continuous input RAM-based
stochastic neural model. Neural Networks, 4, 657-665.

Gullapalli, V. (1988). A stochastic algorithm for learning real-valued
functions via reinfarcement feedback. COINS Technical Report
Number: 88-91, September 29th. The Department of Computer
and Information Sciences (COINS), The University of
Massachusetts.

Gurney, K. (1989). Learning in nets of structure hypercubes. PhD
thesis, Department of Electrical Engineering, Brunel Univer-
sity, Manchester (available as: Technical Memo CN/R/144).

Gurney, K. (1992a). Training nets of hardware realisable sigma-pi
units. Neural Networks, 5, 289-303.

Gurney, K. (1992b). Weighted nodes and RAM-nets: A unified
approach. Journal of Intelligent Systems, 2(1-4), 155-185.

Gurney, K. (1993). Training nets of stochastic units using system
identification. Neural Networks, F3 > 6(I), 133-145.

Hinton, G., Sejnowski, T., & Ackley, D. (1984). Boltzmann
machines: constraint satisfaction networks that learn. Technical
Report CMU-CS-84-119, Carnegie Mellon University, Pitts-
burgh, PA.

Hinton, G., Ackley, D., & Sejnowski, T. (1985). A learning
algorithm for Boltzmann machines. Cognitive Science, 9, 147-
169.

Hui, T., Bolouri, P., & Gurney, K. (1992a). VLSI implementation
of digital neural network with reward-penalty learning. 3rd
International Workshop on VLSI for Neural Networks and
Artificial Intelligence, Oxford University.

Hui, T., Gurney, K., & Bolouri, P. (19921)). A cascadable 2048-
neuron VLSI artificial neural network with on-board learning.
International Conference on Artificial Neural Networks, Bright-
on, UK.

Kan, W.-K., & Aleksander, I. (1987). A probabilistic logic neuron
network for associative learning. Proceedings IEEE Interna-
tional Conference on Neural Networks, San Diego, Volume II,
pp. II.541-II.548.

Minsky. M. (1961). Steps towards artificial intelligence. IRE, 49, 8-
30.

Minskey, M., & Papert, S. (1969). Perceptrons: an introduction to
computational geometry. Cambridge, MA: The MIT Press.

Myers, C. (1989). Output functions for probabilistic logic nodes.
1st IEE International Conference on Artificial Neural Networks.

Myers, C. (1990). Learning with delayed reinforcement in an
exploratory probabilistic logic neural network. PhD thesis,
Imperial College of Science, The University of London,
Department of Electrical Engineering.

Myers, C. & Aleksander, I. (1988). Learning Algorithms for
Probabilistic Neural Nets, 1st International Neural Network
Society Annual Meeting, Boston, USA.

Neville, R. (1990). Investigate and evaluate the design of
probabilistic nodes for boolean n-cube networks. Master's
thesis, Department of Electrical Engineering, Brunel Univer-
sity.

Neville, R. (1993). Augmentation of aigma-pi structures and learning
regimes. PhD thesis, Department of Electrical Engineering,
Brnnel University, Middlesex.

Neville, R., & Stonham, T. (1992). Adaptive reward-penalty for
probabilistic logic nodes. International Conference on Artificial
Neural Networks, IJCNN-92, Brighton.

Neville, R., & Stonham, T. (1993). Adaptive critic for probabilistic

logic nets. World Congress on Neural Networks (pp. III.389-
III.392), Portland, Oregon.

Neville, R., & Stonham, T. (1994a). Adaptive associative reward-
penalty algorithms for sigma-pi networks. International Journal
of Neural, Parallel and Scientific Computations, June, 2(2), 141-
164.

Neville, R., & Stonham, T. (1994b). Unbounded reinforcement for
the associative reward-penalty algorithm. The Worm Congress
on Neural Networks, WCNN-94 (pp. III.637-I11.640), San
Diego, CA.

Neville, R., & Stonham, T. (1994c). A comparison study of
unbounded and real-valued reinforcement associative reward-
penalty algorithms. The International Conference on Artificial
Neural Networks, ICANN-94 (pp. 651-654), Sorrento, Italy.

Neville, R., & Stonham, J. (1995). Generalisation in sigma-pi
networks. Connection Science: Journal of Neural Computing,
Artificial Intelligence and Cognitive Research, March, 7(i) 29-59.

Neville, R., (}lover, R. J., & Stonham, J. (1995a). Evaluation of
training sigma-pi networks on a massively parallel processor.
World Congress on Neural Networks, WCNN-95, Washington,
DC (pp. II-484-II-487). 1995, International Nueral Network
Society Annual Meeting, Renaissance Hotel Washington, DC
July 17-21, Volume II, ISBN 0-8058-2125-2.

Neville, R., Glover, R. J., & Stonham, J. (1995b). Evaluation of
training & mapping sigma-pi networks to a massively parallel
processor. IEEE ICNN'95, International Conference on Neural
Networks, Perth, Western Australia, 27 November-1 December.

Neville, R., Glover, R. J., & Stonham, J. (1995c). Mapping neural
networks to the associative string processor. Department of
Electrical Engineering, Brunel University, England, Registered
as Technical Memorandum N/R/150 in the Department of
Electrical Engineering, Brunel University, Copyright ©
October 1995.

Penny, W., Gurney, K., & Stonham, T. (1990). Reward-penalty
training for logical neural networks. In International Conference
on Artificial Intelligence, Applications and Neural Networks (pp.
26-29), Zurich.

Rumelhart, D., McClelland, J., and the PDP Research Group
(1986). Parallel distributed processing. Cambridge, MA: MIT
Press.

Thorndike, E. (1911). Animal intelligence. Darien, CT: Hafner.
Werbos, P. (1989). Back-propagation and neurocontrol: A review

and prospectus. IEEE Proceedings of the International Joint
Conference on Neural Networks (IJCNN'89) (pp. 1:I.209-I.216),
New York.

Werbos, P. (1990). Consistency of HDP applied to a simple
reinforcement learning problem. Neural Networks, 3, 179-189.

Werbos, P. (1992a). Approximate dynamic programming for real-
time control and neural modelling. In Handbook of intelligent
control: neural, fuzzy and adaptive approaches (pp. 493-525),
New York: Van Nostrand.

Werbos, P. (1992b). Neurocontrol and supervised learning: An
overview and evaluation. In Handbook of intelligent control."
neural, fuzzy and adaptive approaches (pp. 65-89), New York:
Van Nostrand.

Werbos, P. (1992c). Neurocontrol and fuzzy logic: Connections
and design. International Journal of Approximate Reasoning, 6,
185-219.

Widrow, B., & Hoff, M. (1960). Adaptive switching circuits. 1960
IRE Western Electric Show and Convention Record, Part, 4, 96-
104.

Wilkie, B. A. (1983). A stand-alone, high resolution, adaptive pattern
recognition system. PhD Thesis W499, Department of Electrical
Engineering, Brnnel University, Middlesex.

Williams, R. (1986). Reinforcement learning in connectionist
networks: a mathematical analysis. Technical Report ICS
Report 8605, Cognitive Science, University of California, San
Diego, CA.

Adaptive Critic for Sigma-Pi Networks 625

Williams, R. (1987a). A class of gradient-estimation algorithms for
reinforcement learning in neural networks. Proceedings of the
International Conference on Neural Networks (Vol. II; pp.
II.601-II.608), San Diego, CA.

Williams, R. (1987b). Reinforcement-learning connectionist systems.
Technical Report NU-CCS-87-3, College of Computer Science,
Northeastern University, Boston, MA.

Witten, I. H (1977). An adaptive optimal controller for discrete-
time Markov environments. Inform. Contr., 34, 286-295.

ai

wij

0%)

St̀
?(X)

NOMENCLATURE

real-valued activation of the/ th node
real-valued weight between node i and j
sigmoid function
reads as "sigmoid prime", represents the

derived function of (-)
hypercube site or addresses #
site-value at site-address
probability of event X occurring

X

Y
(k)
k*
(ql }

r

Zx(v)
ot

A

P

sgn(ASt`)

binary input vector, which may be
represented by a set of bits
{x,,x2,...,xo}

binary output
expectation of variable k
estimate of value of k
set of elements of q for which the property

s holds
binary scalar reward signal
binary target output response
incremental (or 6) change in value of v
learning rate
punishment coefficient; sets ratio of

punishment to reward in the training
regime

parameter governing steepness of
sigmoidal function

is the sign of the delta change ASt` (i.e., if
ASt` = 1.25 then sgn(ASt`)u = +1 and
if AS~, = - 1.6 then sgn (AS t,) = - 1)

