
1142 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 5, SEPTEMBER 1999

Presupervised and Postsupervised
Prototype Classifier Design
Ludmila I. Kuncheva and James C. Bezdek,Fellow, IEEE

Abstract—We extend the nearest prototype classifier to agener-
alized nearest prototype classifier(GNPC). The GNPC uses “soft”
labeling of the prototypes in the classes, thereby encompassing
a variety of classifiers. Based on how the prototypes are found
we distinguish betweenpresupervisedand postsupervisedGNPC
designs. We derive the conditions for optimality (relative to the
standard Bayes error rate) of two designs where prototypes rep-
resent: 1) the components of class-conditional mixture densities
(presupervised design) or 2) the components of the unconditional
mixture density (postsupervised design). An artificial data set and
the “satimage” data set from the database ELENA are used to
experimentally study the two approaches. A radial basis function
(RBF) network is used as a representative of each GNPC type.
Neither the theoretical nor the experimental results indicate clear
reasons to prefer one of the approaches. The postsupervised
GNPC design tends to be more robust and less accurate than
the presupervised one.

Index Terms—Mixture modeling, prototype classifiers, proto-
type selection, RBF neural networks, supervised and unsuper-
vised designs.

I. INTRODUCTION

L ET be a set of labeled
training data. There are two approaches to prototype

classifier design with . We can use the labels of the data
during training to guide an algorithm toward “good” (labeled)
prototypes; or we can ignore the labels during training, and
use thema posteriori to label the prototypes. We call these
two schemespresupervisedandpostsupervisedlearnining. The
use of labels during training (presupervision) seems intuitively
more reasonable than postsupervised training but there is little
evidence that this is the case.

The notion of prototype classification is not limited to
finding the nearest prototype and assigning its class label to the
object to be classified. Here we consider a broader framework
called ageneralized nearest prototype classifier (GNPC)which
encompasses a variety of classifiers. It assigns a label to a new
data point on the basis of some subest of the prototypes and
their labels in the classes. The way offindingprototypes is not
specified by the GNPC definition.

Among classifiers that can be represented as a GNPC are the
classical nearest mean and nearest neighbor designs [8], [22],

Manuscript received March 3, 1998; revised September 29, 1999. This work
was supported in part by the NRC COBASE program and ONR under Grant
N 00014-96-1-0642.

L. I. Kuncheva is with the School of Mathematics, University of Wales,
Bangor, Bangor, Gwynedd LL57 1UT, U.K.

J. C. Bezdek is with the Department of Computer Science, University of
West Florida, Pensacola, FL 32514 USA.

Publisher Item Identifier S 1045-9227(99)05981-0.

some types ofradial basis function (RBF)networks [5], [19],
[23], a class of fuzzy if–then systems [15],learning vector
quantization (LVQ)classifiers [11], [12], [14], edited nearest
neighbor rules [6], fuzzy nearest neighbor rules [1], [13], [26],
multiple prototype classifiers [2], and a number of neural-
network implementations of the nearest neighbor design [7],
[17], [26]. Each of these has specific strategies and algorithms
for finding the prototypes. The diagram in Fig. 1 groups the
GNPC’s into presupervised and postsupervised designs with
respect to the way the prototypes are found and labeled. In each
group we distinguish GNPC’s with crisp and noncrisp (soft)
labels for the prototypes. The connection between models and
groups of models that fit within the GNPC framework has
been addressed many times [3], [20]. Ripley [20] points out
that some neural network models are just renamed kernel
or Parzen classifiers. Asymptotically (when the number of
prototypes/hidden nodes tends to infinity) the models coincide.
Here we are interested in the finite-sample case; then different
designs can offer significantly different performance.

We study two semiparametric designs (one from each GNPC
group) and show that presupervised mixture modeling needs
one type of assumption (decomposition) while the dual postsu-
pervised design needs two types of assumption (decomposition
andhomogeniety) for optimality relative to the standard Bayes
error rate (Bayes-optimality [8], p. 16). Two RBF networks are
chosen as representatives: the RBF trained by orthogonal least
squares (OLS RBF) [4], a presupervised GNPC; and the RBF
trained by clustering followed by nonnegative least squares
(NNLS RBF) [19], a postsupervised GNPC.

Section II gives our definition of the GNPC. In Sections III
and IV we define the mixture models and derive conditions
for Bayes-optimality of the GNPC. Experimental results with
OLS RBF and NNLS RBF on two data sets (one synthetic
and one real) are given in Section V. Section VI contains our
conclusions.

II. THE GENERALIZED NEAREST

PROTOTYPE CLASSIFIER (GNPC)

We consider mutually exclusive classes with crisp labels
, where is the canonical basis of

. Objects associated with classare labeled by the vector
if , and , otherwise.

Let be the feature space. Any function is
calleda crisp classifier. Let be a
set of point-prototypes. Our GNPC is based on the following
principles.

1045–9227/99$10.00 1999 IEEE

KUNHCEVA AND BEZDEK: PRESUPERVISED AND POSTSUPERVISED PROTOTYPE 1143

Fig. 1. Families of generalized nearest prototype classifiers.

• Every prototype may “vote” for all classes, and the
strength of ’s vote for class is defined by
a constant .

• The closer (more similar) is to the prototype , the
higher the “relevance” of the -th vote is to the label
for .

Assume that each prototype is labeled by a column vector
, thereby constituting a label

matrix . In our model the number
of prototypes may be less than, equal to, or greater than
the number of classes; and the label vector may be
crisp or soft (fuzzy, probabilistic, possibilistic).

Definition 1: A norm-induced similarity function
, where is a set of parameters for, is

any monotonically decreasing function of
any norm metric on . For example, if denotes the
Euclidean norm metric, could be

(1)

Let be an aggregation function defined as generalized
matrix multiplication using an operator instead of summa-
tion and a operator instead of multiplication. Let
and be two matrices of size and ,
respectively. The matrix

is defined as

(2)

Definition 2: The GNPC is implemented with the 5-tuple
where

• is the set of prototypes;
•

is the label matrix for the prototypes in
classes;

• is a similarity function, where is a set
of parameters;

• is any -norm and is an aggregation operator [24].

For an unlabeled vector , the GNPC calculates the
vector of similarities between and

1144 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 5, SEPTEMBER 1999

which is then used to compute the label vector
. As a special case thecrisp

GNPC assigns the crisp class label to if

(3)

Ties are broken randomly.
Thus any unlabeled is labeled on the basis of its proximity

(or similarity) to the prototypes combined with their class
label information. Note that the GNPC at (3) assignsa crisp
class label. The GNPC is completely specified by
and . We can try different combinations of these GNPC
choices and select the most successful GNPC design by
optimizing its classification accuracy.

In the next section we derive two models of the GNPC based
on postsupervised and presupervised mixture modeling [18],
[21] where the components are kernel-type functions (e.g.,
Gaussians). Each component corresponds to a prototype whose
probability density function(PDF) gives the similarity of to
the prototype . The mixing coefficients are used to compute
the “soft” class labels of the prototypes.

III. POSTSUPERVISEDGNPC DESIGN

Let be a random vector coming from one of
classes. Let denote the prior probability; the
class-conditional PDF; and the posterior probability
for class . Let be the unconditional PDF

(4)

The objective is to build a GNPC that produces a Bayes-
optimal classification decision (assuming a zero-one loss ma-
trix), i.e., the class label assigned tois when

(5)

Hence, a sufficient condition for optimality of the GNPC is
that, if sorted by magnitude, have the same order
as the sorted .

We consider mixture modeling for the GNPC design.
Mixture modeling is used to identify the priors, the class-
conditional PDF’s and the unconditional PDF, which can
be used with Bayes rule to calculate . Kernel
mixture models are nonparametric. Typically, all training data
points are used, each one generating a kernel (e.g., Parzen’s
window classifier). Other methods (e.g., neural networks) try
to reduce the number of kernels without much degradation in
classification performance. Shrinking the number of kernels
shifts the mixture paradigm from nonparametric toward
“semiparametric” [23].

We assume that can be approximated by another
mixture of new PDF’s using as priors

(A1) (6)

where will be referred to as “hidden cate-
gories” [23]. We will try to use as few mixture components

(prototypes) as possible, so the approximation at (6) will differ
from the true value at (4). We call (6) thedecomposition
assumption, and shall refer to it as (A1). We require that the
mixture components of (6) have kernel-type PDF’s. That is,
besides the condition

(7)

each is based on a kernel-type function [10],
, where is a

smoothing parameter and is a prototype. A typical
choice is the Gaussian kernel

(8)

where is a covariance matrix. Often is chosen to be
the same for all prototypes, or at least common for all
the prototypes of each class. Equation (6) provides Parzen’s
estimate of the PDF at (4) [8], [10] if each kernel is centered
at a data point and if the number of data pointsapproaches
infinity.

In the sequel we assume that we have a satisfactory al-
gorithm to estimate all the parameters of the mixture (6),
the a priori probabilities for the classes , and the
conditional probabilities . We do not restrict the
class-conditional PDF’s . The classes and the hidden
categories are related through

(9)

where is the probability of classif hidden category
occurs. By conditioning (9) on we obtain the posterior

probability for class as

(10)

To build an RBF network Traven [23] assumes that

(A2) (11)

We call (11) thehomogeneity assumptionand shall refer to it
as (A2). Substituting (11) into (10)

(12)

Developing (12) further, we have with Bayes rule

(13)

Let

(14)

KUNHCEVA AND BEZDEK: PRESUPERVISED AND POSTSUPERVISED PROTOTYPE 1145

Fig. 2. Scatter plot ofX disregarding the class labels.

Dropping the denominator of (13), which is the same for all
, and dividing by , the Bayes-optimal classifier under as-

sumptions (A1) and (A2) can be represented by the following
set of discriminant functions:

(15)

where is the probability of simultaneous occurrence
of class and hidden category . Assuming kernel-type
PDF’s, can be represented as ,
where is a similarity function (Definition 1) and is any
norm on . Equation (15) can then be rewritten as

(16)

where stands for the probability . Therefore, the
postsupervisedGNPC that is a Bayes-optimal classifier under
assumptions (A1) and (A2) is

product

average

The following examples illustrate the situation with respect
to Bayes optimality of GNPC . Plotted in Fig. 2 is data set

consisting of 200 two-dimensional (2-D) points. The vectors
come from two classes with labels .
The class labels of the points arenot shownin Fig. 2. was
generated from (4) using a mixture of two Gaussians with
identity covariance matrices, viz.,

(17)

where and are the prototypes of the
two mixture components (hidden categories and).

Below we detail four casesA, B, C, andD. The illustrations
(Figs. 3, 4, 5, 7, and 9) usethe samedata set with

Fig. 3. Case A: The most desirable class labeling of
X : p(x j i) = p̂(x j Ci); i = 1; 2.

Fig. 4. Case B:The worst class labeling ofX : p(x j 1) = p(x j 2).

different labelings corresponding to “ideal” sampling from the
respective cases.

Case A: Ideally, the classes will correspond one-to-one to
the hidden categories (e.g., Fig. 3, where class 1, denoted by
circles has the same parameters as, and class 2, denoted
by filled circles, has the same parameters as). In this case

if
otherwise

(18)

Since is proportional to , it is
easy to show that the classification decision of GNPC
is Bayes-optimal.

Case B:The worst possible case of class labeling ofis
shown in Fig. 4. The classes are equiprobable and the class-
conditional PDF’s are identical, i.e., these labels correspond
to the case where

(19)

In this case the hidden categories and cannot be
associated with a specific class label. Therefore, it is pointless
to attempt to identify and because the probability
of each class to occur together in either category is 0.5.
The error of the GNPC will be 0.5, and, again, this
is the Bayes-optimal error rate. The situation in Fig. 4 can
occur when some other feature has been used to label the data
and this information is not represented in the current feature
space .

Case C: Fig. 5 shows the case where eachclass has a
bimodal PDF whose modes are situated at the common pro-
totypes and . Class-conditional PDF’s that will generate

1146 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 5, SEPTEMBER 1999

Fig. 5. Case C:Decomposable bimodal class-conditional PDF’s.

Fig. 6. Case C:Bimodal class-conditional PDF’s forx 2 <.

labels such as those shown in Fig. 5 are

(20)

and

(21)

An example of bimodal class-conditional PDF’s for
is shown in Fig. 6. The modes and are the same for both
PDF’s but the functions are mirror-wise symmetric. If data
are drawn from a mixture of the two PDF’s shown in Fig. 6
with mixture coefficients 0.5, the result will be two distinct
Gaussian clusters in, each one containing objects from both
classes as illustrated in Fig. 5. As long as the class-conditional
PDF’s are decomposable on and , the
classification decision of the GNPC is Bayes-optimal.

Case D: In all cases considered so far assumptions (A1)
and (A2) are satisfied, i.e., is exactly decomposable on

and , and the probability of class conditioned by
does not depend on. For example, for the case in Fig. 4,
for every that is known to have come from , the
probability that is from class 1 is 0.25, no matter whereis
located. Sometimes, however, the dependence of on

is not negligible. This is illustrated in Fig. 7. The “clusters”
corresponding to and are not homogeneous, i.e., they
possess hidden substructure which will be ignored if the GNPC

Fig. 7. Case D:Nondecomposable class-conditional PDF’s.

is built as suggested above. Here the homogeneity assumption
(A2) is not satisfied.

The class labels in Fig. 7 are artificially assigned to
(Fig. 2) according to the rule: is assigned to

Class 1, if ;
Class 2, otherwise.

For this labeling the class-conditional PDF’s are shown in (22)
and (23) at the bottom of the page, where

(24)

and

(25)

Fig. 8 shows separately the two classes and the class bound-
aries for 2000 points generated from the same distribution
as . Note that densities (22) and (23) are nonoverlapping,
which means that the Bayes error rate for this case is zero.
Neglecting nonhomogeneity of the two hidden components by
assigning and as in the
GNPC description, the error rate will be nonzero.

Fig. 9 shows the difference between the homogeneous and
nonhomogeneous groups. The two scatterplots are the same
as in Figs. 4 (upper) and 7 (lower). The small “windows” in
the upper plot show that the ratio of the number of points
from class 1 to class 2 is approximately the same ,
no matter where the window is placed. In the lower plot the
ratio depends on the window location, which suggests that the
GNPC is not Bayes-optimalbecause assumption (A2) is
violated.

Nonoptimality can also arise if the true density is
not decomposable on the hidden categories
[violation of Assumption (A1)]. This can be overcome by

if
otherwise.

(22)

if
otherwise.

(23)

KUNHCEVA AND BEZDEK: PRESUPERVISED AND POSTSUPERVISED PROTOTYPE 1147

Fig. 8. The classes and class boundaries for samples from (22) and (23).

(a)

(b)

Fig. 9. (a) Homogeneous and (b) nonhomogeneous groups.

increasing . In all the above examples we assumed that
is decomposable on and . Therefore,

in the postsupervised model, the sources of “nonoptimality”
of the GNPC are potentially two: the inexact representation
of [Assumption (A1)], and neglecting the dependency of

on [Assumption (A2)].

IV. PRESUPERVISEDGNPC DESIGN

Instead of (6) we approximate the class-conditional PDF’s
on separate sets of prototypes. This approach has been used
for constructing a sparsely connected RBF network [5] but in
general, the more popular design is the postsupervised one.
Let the set of prototypes be arranged as follows:

(26)

where the subset is used
to approximate , the th class-conditional density,

. Assumption (A1) now takes the
form that the conditional PDF in (4) can be approximated by

(27)

Since the prototypes are uniquely connected with the classes,
assumption (A2) is not needed here. Therefore, in presuper-
vised mixture modeling for GNPC design the only source
of nonoptimality is imprecision in approximating the class-
conditional densities by decomposition on finite sets of kernel-
based components.

Recalling that in (14) is the maximal PDF value and
using the discriminant functions

(28)

one possible Bayes-optimal presupervised GNPC design is

GNPC

if
otherwise

product

average

(29)

In the presupervised design we have onlyone type (the
decomposition) of assumption, but it must hold forall class-
conditional PDF’s. Thus, we need assumptions to hold.
Therefore, the number of prototypes required can be greater
than that for GNPC . With more prototypes, GNPC can
also overcome the “nonhomogeneity” problem because thes
can be restricted to small parts of the feature space where the
class-conditional PDF’s might be practically homogeneous.
By increasing the number of prototypes the decomposition
assumption will be less likely to be violated. Asymptotically

1148 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 5, SEPTEMBER 1999

Fig. 10. Scatterplot of the six classes on features # 17 (horizontal) and 18 (vertical).

this leads to approximation of the true class-conditional (and
the unconditional) PDF’s.

V. EXPERIMENTAL RESULTS

To illustrate the two designs we used the following data sets.

• The 2-D data (case D). The training set consists of 200
points and the test set of 2000 points in, all drawn
from the distribution (22) and (23).

• The “satimage”data from ELENA database. The data
can be obtained by anonymous ftp at ftp.dice.ucl.ac.be, di-
rectory pub/neural-nets/ELENA/databases. Thesatim-
age data is generated from Landsat Multispectral Scanner
image data. It consists of feature vectors
with 36 attributes (four spectral bands nine pixel
intensities per 3 3 window). The data are classified
into six physical classes, and are presented in random

order in the database. Here we used only features 17–20,
as recommended by the designers of the database. The
first 200 vectors were used for training and the remaining
6235 for testing. Fig. 10 shows scatterplots of the six
satimage classes on features 17 and 18.

Our objective is to experimentally compare particular presu-
pervised and postsupervised GNPC designs. At the beginning
of Section III we assumed that we had a satisfactory algorithm
to approximate the mixture densities. Practically, classifiers
based on explicit mixture modeling are seldom used. Thus,
the imprecision of the approximation algorithm may spoil the
comparison. Instead, we chose one representative from each
group of GNPC’s (in boldface in Fig. 1).

• OLS RBF (Presupervised GNPC)[4]. This RBF net-
work is considered because the prototypes to be retained
are selected from the training data on the basis of a score

KUNHCEVA AND BEZDEK: PRESUPERVISED AND POSTSUPERVISED PROTOTYPE 1149

Fig. 11. Test versus training error rates for the presupervised and postsupervised GNPC designs with the 2-D data.

calculated using data labels. A parameter that must be
specified in advance issc, the “scaling factor” in the
denominator of the power of the kernel exponent. It
corresponds to the smoothing parameterin (8) and has
the same value for all prototypes. We tried five different
values ofscwith each data set, viz.,sc
and for the 2-D data andsc and for
the satimage data.

• NNLS RBF (Postsupervised GNPC)[19]. This design
is postsupervised because the prototypes are found by
clustering the whole data set, disregarding the class labels.
To obtain the similarity we use

(30)

where is the “nearest neighbor heuristic,” as suggested
in [19]. The label matrix is then found by a nonneg-
ative least squares procedure (see the Matlab reference
books, MathWorks, Inc., and the reference recommended
there [16]). NNLS is a version of the least squares
method in which the resultant vector (a row of) is
nonnegative. Although less accurate, NNLS was adopted
because we wish to keep the interpretation of as soft
class labels for the prototypes (negative labels do not
make sense). NNLS yields the best possible match for

under the nonnegativity constraint.

For the OLS RBF we used the Neural-Network Toolbox for
Matlab and for the NNLC RBF, the-means clustering code
from the pattern recognition package PRTOOLS for Matlab
[9]. With the 2-D data was varied from two to 30 (29
values) and with the Satimage data, from six to 30 (26 values).
Since the OLS RBF is a deterministic algorithm, for a specific
sc we ran it once for each , i.e., 29 (or 26) runs. The
NNL RBF depends on the initialization of the hard-means,
and therefore it was run ten times starting from different
initializations for each number of prototypes (clusters),
i.e., total 290 (260) runs.

For comparison we also used the following classifiers from
[9]:

parametric Linear discriminant classifier (LDC)

Quadratic discriminant classifier (QDC)

Nearest mean classifier (NMC)

semiparametric Logistic classifier (LOGC)

nonparametric Nearest neighbor (1-nn)

Parzen windows classifier (Parzen).

We carried out one hold-out experiment with each data set
because we observed that the training and the test error rates
correlate well. This is shown in Figs. 11 and 12 which plot
the test versus training error rates for the runs with one of
the OLS RBF’s (withsc for the 2-D data andsc
with the satimage data) and with the NNLS RBF. A well-
designed classifier will have the same training and test error
rates and will be a dot on the diagonal. In the best case, these
error rates will be zero or close to the left bottom corner. The
figures show that the presupervised designs produce smaller
error rates with both data sets and that for the smallest error
rates they are likely to overtrain. This is indicated by the points
on the two left-hand plots that are above the diagonal (i.e., the
test error rate is higher than the training error rate), especially
with the 2-D data. The postsupervised designs show better
match, i.e., the test error rates are even a little bit lower than
the training rates (right-hand plots).

Fig. 13 shows the test error rates with the two GNPC
designs:

• Presupervised (OLS RBF). We show the error rate on
the test data using thescvalue that produced the smallest
resubstitution error on the training data:sc with the
2-D data, andsc with the satimage data.

• Postsupervised (NNLS RBF). The plain lines in Fig. 13
show the averaged error rates of the runs with different
initializations and the same number of prototypes.

The figure shows that the presupervised design provides lower
error rates. Looking at the training-test plots (Fig. 12) with the

1150 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 5, SEPTEMBER 1999

Fig. 12. Test versus training error rates for the presupervised and postsupervised GNPC designs with thesatimage data.

Fig. 13. Best case error rates for the postsupervised and presupervised GNPC’s.

satimage data we see that although the presupervised GNPC’s
reach lower training error, the best-case test error is as high
as that of the postsupervised GNPC’s. This is observed for
high and is caused by overtraining of the presupervised
GNPC’s. The postsupervised design seems more robust since
the training and test error rates correlate well and are of the
same magnitude (Figs. 11 and 12). For small numbers of
prototypes the supervised design is clearly better. The gap
between the accuracies of the two designs is more clear with
the 2-D data. Even with the high overtraining for small training
errors (high) displayed in Fig. 11 the presupervised design
shows bettertestaccuracy than the postsupervised design. This
is probably due to the specific structure of the data (CaseD)
which makes the supervised design a more reasonable choice.

Tables II and III display the minimal error rates found by the
two designs. Here “minimal” means that we take the smallest
error on the training data and show thecorrespondingtest
error. The number of prototypes used is shown in parentheses.

TABLE I
ERROR RATES IN [%] ON THE TEST DATA SETS

Where more than one classifier achieves the same lowest
training error rate all test error rates are shown. We display
the results for all five OLS RBF’s as a function ofsc. The
numbers in boldface indicate what test error we would have
if we chose the classifier with the globally minimal training
error. The two GNPC designs compare favorably to the set
of conventional classifiers (Table I). For the 2-D data, the
averageerror rate for the six classifiers in Table I is 18.66%,
whereas the average error in Table II (best case) for the 6
GNPC designs is 11.5%. For the satimage data the Table I
average is 19.12% whereas the GNPC average from Table III

KUNHCEVA AND BEZDEK: PRESUPERVISED AND POSTSUPERVISED PROTOTYPE 1151

TABLE II
BEST CASE (MINIMAL) ERROR RATES OF GNPC IN [%] WITH THE 2-D DATA

TABLE III
BEST CASE (MINIMAL) ERROR RATES OF GNPC IN [%] WITH THE SATIMAGE DATA

is 17.85%—not as dramatic an improvement as for the 2-D
data—but better than the Table I results.

Tables II and III show that the value of the scaling parameter
can be crucial for good performance. On the other hand,
initialization of crisp -means clustering did not seem to
have much effect on classification performance: scatterplots
of the test versus training errors with both data sets for the
postsupervised design grouped along the bisectrix of the-st
quadrant. This means that the presupervised design is more
sensitive to initialization. But this design takes less time, and,
since the training algorithm is deterministic, it is easier to
check the possible choices and selectsc.

VI. CONCLUSION

Which is the preferable design for a prototype classifier like
the GNPC—the presupervised or the postsupervised scheme?

Considerations in Sections III and IV suggest the following.
For Bayes optimality with a fixed number of prototypes the
postsupervised design requires two types of assumptions (de-
composition and homogeneity) while the presupervised design
requires only one (decomposition). With a small number of
prototypes both types of assumptions may not hold, thus
leading to degraded performance. The rate of degradation
depends on how badly the assumptions are violated. Increas-
ing the number of prototypes strengthens the decomposition
assumption, leading (asymptotically) to approximation of the
true PDF’s. Alleviation of the homogeneity assumption is
less obvious. Therefore, it is not generally clear which of
the two approaches should be preferred. If we have reasons
to suspect that the classes have hidden substructures (e.g.,
compact groups of objects forming clusters of irregular shape
within larger compact clusters of data, as in CaseD) the
presupervised design seems to be a better choice.

Our experiments show that the postsupervised GNPC design
is robust (to initialization change) and accurate. It can be
expected to work well when data sets do not contain peculiar
class shapes and where natural clusters in data correspond to
classes (or parts of classes). The majority of data sets are of
this type. Although there is a tendency toward overtraining, the

presupervised design seems a better choice for “difficult” data
sets. Splitting the training data into training and validation sets
can help prevent overtraining, and is always recommended as
a good engineering practice. With respect to the experimental
part, we agree that we cannot make firm conclusions and give
recommendations based on experiments only. Here we report
only what our experimentshave shown. We are aware that
there will always be data sets for which our conclusions will
not hold, and we assume that the reader is aware of this too.

REFERENCES

[1] J. C. Bezdek, S. K. Chuah, and D. Leep, “Generalizedk-nearest
neighbor rules,”Fuzzy Sets Syst., vol. 18, pp. 237–256, 1985.

[2] J. C. Bezdek, T. R. Reichherzer, G. S. Lim, and Y. Attikiouzel, “Multiple
prototype classifier design,”IEEE Trans. Syst., Man, Cybern., vol. 28,
pp. 67–79. Feb. 1998.

[3] C. M. Bishop,Neural Networks for Pattern Recognition. Oxford, U.K.:
Clarendon, 1995.

[4] S. Chen, C. F. N. Cowan, and P. M. Grant, “Orthogonal least squares
learning algorithm for radial basis function networks,”IEEE Trans.
Neural Networks, vol. 2, pp. 302–309, 1991.

[5] R. L. Coultrip and R. H. Granger, “Sparse random networks with
LTP learning rules approximate Bayes classifiers via Parzen’s method,”
Neural Networks, vol. 7, pp. 463–476, 1994.

[6] B. V. Dasarathy,Nearest Neighbor (NN) Norms: NN Pattern Classi-
fication Techniques. Los Alamitos, CA: IEEE Comput. Soc. Press,
1990.

[7] C. Decaestecker, “NNP: A neural net classifier using prototypes,” in
Proc. IEEE Int. Conf. Neural Networks, San Francisco, CA, 1993, pp.
822–824.

[8] R. O. Duda and P. E. Hart,Pattern Classification and Scene Analysis.
New York: Wiley, 1973.

[9] R. P. W. Duin,PRTOOLS. A Matlab Toolbox for Pattern Recognition,
Delft Univ. Technol., Delft, The Netherlands: 1997.

[10] K. FukunagaIntroduction to Statistical Pattern Recognition. Orlando,
FL: Academic, 1972.

[11] N. B. Karayiannis and P.-I. Pai, “Fuzzy algorithms for learning vector
quantization,” IEEE Trans. Neural Networks, vol. 7, pp. 1196–1211,
1996.

[12] N. B. Karayiannis, J. C. Bezdek, N. R. Pal, R. J. Hathaway, and P.-I.
Pai, “Repairs to GLVQ: A new family of competitive learning schemes,”
IEEE Trans. Neural Networks, vol. 7, pp. 1062–1071, 1996.

[13] J. M. Keller, M. R. Gray, and J. A. Givens, “A fuzzyk-nearest neighbors
algorithm,” IEEE Trans. Syst., Man, Cybern., vol. 15, pp. 580–585, 1985.

[14] T. Kohonen, “Improved versions of learning vector quantization,” in
Proc. Int. Joint Conf. Neural networks, San Diego, CA, 1990, pp.
I-545–550.

1152 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 5, SEPTEMBER 1999

[15] L. I. Kuncheva and J. C. Bezdek, “A fuzzy generalized nearest prototype
classifier,” in Proc. 7th IFSA World Congr., Prague, Czech Republic,
vol. III, 1997, pp. 217–222.

[16] C. L. Lawson and R. J. Hanson,Solving Least Squares Problems.
Englewood Cliffs, NJ: Prentice-Hall, 1974, ch. 23.

[17] R. P. Lippmann, “Pattern classification using neural networks,”IEEE
Commun. Mag., pp. 47–64, 1989.

[18] G. J. McLachlan and K. E. Basford,Mixture Models. Inference and
Applications to Clustering. New York: Marcel Dekker, 1988.

[19] J. Moody and C. J. Darken, “Fast learning in networks of locally tuned
processing units,”Neural Comput., vol. 1, pp. 281–294, 1989.

[20] B. D. Ripley, Pattern Recognition and Neural Networks. Cambridge,
U.K.: Cambridge Univ. Press, 1996.

[21] D. M. Titterington, A. F. M. Smith, and U. E. Makov,Statistical Analysis
of Finite Mixture Distributions. Chichester, U.K.: Wiley, 1985.

[22] J. T. Tou and R. C. Gonzalez,Pattern Recognition PrinciplesReading,
MA: Addison-Wesley, 1974.

[23] H. G. C. Traven, “A neural network approach to statistical pattern
classification by “semiparametric” estimation of probability density
functions,” IEEE Trans. Neural Networks, vol. 2, pp. 366–377, 1991.

[24] R. R. Yager and D. P. Filev,Essentials of Fuzzy Modeling and Control.
New York: Wiley, 1994.

[25] M.-S. Yang and C.-T. Chen, “On strong consistency of the fuzzy gen-
eralized nearest neighbor rule,”Fuzzy Sets Syst., vol. 60, pp. 273–281,
1993.

[26] H.-C. Yau and M. T. Manry, “Iterative improvement of a nearest
neighbor classifier,”Neural Networks, vol. 4, pp. 517–424, 1991.

Ludmila I. Kuncheva received the M.Sc. degree
from the Technical University, Sofia, in 1982, and
the Ph.D. degree from the Bulgarian Academy of
Sciences in 1987.

In 1993 she was a Visiting Researcher at ELITE
Laboratory, Aachen, Germany, and in 1995 to
1996 worked with the Neural Systems Group, EEE
Department, Imperial College, London, under a
Royal Society Research Fellowship. She was a
Visiting Researcher in Pensacola, FL, sponsored
by a COBASE research grant in 1996 to 1997.

Her interests include pattern recognition, neural networks, fuzzy classifiers,
prototype classifiers and multiple classifier systems.

James C. Bezdek(M’80–SM’90–F’92) received
the BSCE degree from the University of Nevada,
Reno, in 1969, and the Ph.D. degree in Applied
Math from Cornell University, Ithaca, NY, in 1973.

He is currently a Professor in the Computer Sci-
ence Department at the University of West Florida,
Pensacola. His interests include optimization, pat-
tern recognition, computer vision and image pro-
cessing, computational neural networks, and medi-
cal applications.

Dr. Bezdek is the founding Editor of theInter-
national Journal of Approximate Reasoningand the IEEE TRANSACTIONS ON

FUZZY SYSTEMS.

