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Presupervised and Postsupervised
Prototype Classifier Design

Ludmila I. Kuncheva and James C. Bezdé&kllow, IEEE

Abstract—We extend the nearest prototype classifier to gener-  some types ofadial basis function (RBFpetworks [5], [19],
alized nearest prototype classifi€6NPC). The GNPC uses “soft” [23], a class of fuzzy if-then systems [13arning vector
labeling of the prototypes in the classes, thereby encompassmgquamization (LVQ)classifiers [11], [12], [14], edited nearest

a variety of classifiers. Based on how the prototypes are found " . ;
we disti)rllguish betweenpresupervisedand pcf)stsupyeF;visedBNPC neighbor rules [6], fuzzy nearest neighbor rules [1], [13], [26],

designs. We derive the conditions for optimality (relative to the Multiple prototype classifiers [2], and a number of neural-
standard Bayes error rate) of two designs where prototypes rep- network implementations of the nearest neighbor design [7],

resent: 1) the components of class-conditional mixture densities [17], [26]. Each of these has specific strategies and algorithms
(presupervised design) or 2) the components of the unconditional for finding the prototypes. The diagram in Fig. 1 groups the

mixture density (postsupervised design). An artificial data set and S - . . .
the “satimage” data set from the database ELENA are used to GNPC's into presupervised and postsupervised designs with

experimentally study the two approaches. A radial basis function respect to the way the prototypes are found and labeled. In each
(RBF) network is used as a representative of each GNPC type. group we distinguish GNPC'’s with crisp and noncrisp (soft)

Neither the theoretical nor the experimental results indicate clear |abels for the prototypes. The connection between models and
reasons to prefer one of the approaches. The pos’[supervisedgroups of models that fit within the GNPC framework has
GNPC design tends to be more robust and less accurate than . . .
the presupervised one. been addressed many times [3], [20]. Rllpley [20] points out
that some neural network models are just renamed kernel
or Parzen classifiers. Asymptotically (when the number of
prototypes/hidden nodes tends to infinity) the models coincide.
Here we are interested in the finite-sample case; then different
designs can offer significantly different performance.
. INTRODUCTION We study two semiparametric designs (one from each GNPC
ET X = {x1,---.x,} C R be a set of labeled group) and show that presupervised mixture modeling needs
training data. There are two approaches to prototygée type of assumptiomiécompositiopwhile the dual postsu-
classifier design withX. We can use the labels of the datdervised design needs two types of assumptieg¢mposition
during training to guide an algorithm toward “good” (labeledpndhomogenietyfor optimality relative to the standard Bayes
prototypes; or we can ignore the labels during training, ar@dror rate (Bayes-optimality [8], p. 16). Two RBF networks are
use thema posteriorito label the prototypes. We call thesechosen as representatives: the RBF trained by orthogonal least
two schemegresupervise@ndpostsupervisetbarnining. The squares (OLS RBF) [4], a presupervised GNPC; and the RBF
use of labels during training (presupervision) seems intuitiveliained by clustering followed by nonnegative least squares

more reasonable than postsupervised training but there is litNLS RBF) [19], a postsupervised GNPC.
evidence that this is the case. Section Il gives our definition of the GNPC. In Sections I

The notion of prototype classification is not limited t(ﬁnd IV we define the mixture models and derive conditions
finding the nearest prototype and assigning its class label to fRe Bayes-optimality of the GNPC. Experimental results with
object to be classified. Here we consider a broader framewé?kS RBF and NNLS RBF on two data sets (one synthetic
called agenera"zed nearest prototype classifier (GNM)Ch and one real) are given in Section V. Section VI contains our
encompasses a variety of classifiers. It assigns a label to a ri@gclusions.
data point on the basis of some subest of the prototypes and
their labels in the classes. The wayfinfding prototypes is not

Index Terms—Mixture modeling, prototype classifiers, proto-
type selection, RBF neural networks, supervised and unsuper-
vised designs.

specified by the GNPC definition. [I. THE GENERALIZED NEAREST
Among classifiers that can be represented as a GNPC are the PROTOTYPE CLASSIFIER (GNPC)
classical nearest mean and nearest neighbor designs [8], [22]ie considerc mutually exclusive classes with crisp labels
Tovisp = {e1,---,e.}, where I, is the canonical basis of
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Fig. 1. Families of generalized nearest prototype classifiers.

» Every prototypev,; may “vote” for all ¢ classes, and the Let .4 be an aggregation function defined as generalized
strength ofv,’s vote for classi, 1 <4 < ¢ is defined by matrix multiplication using arS operator instead of summa-
a constant,; € [0, 1]. tion and a7 operator instead of multiplication. L&} = [g;;]
» The closer (more similark is to the prototypev;, the and R = [r;;] be two matrices of sizes x m andm x k,
higher the “relevance” of ther;-th vote is to the label respectively. The matrixA(Q, R) = [aijlnxk, ¢ = 1, -+, 15
for x. 7 =1,---,k is defined as
Assume that each prototyps is labeled by a column vector
I(v;) € [0,1]° — {0}, thereby constituting a x n, label
matrix Ly = [[(v1),---,1(vy,)]. In our model the number
of prototypesn, may be less than, equal to, or greater than Definition 2: The GNPC is implemented with the 5-tuple
the number of classes and the label vectoi(v;) may be (V,Ly,s, 7,S) where
crisp or soft (fuzzy, probabilistic, possibilistic). « V={vi, -, vy}, vi € R%is the set of prototypes;
Definition 1: A norm-induced  similarity ~ function . f,, [((v1), -, U(va,)], Uvi) € [0,1]° — {0}, i =

aij = 8 (T(qie,717)). @)

s(A(x,v);6), where 6 is a set of parameters fos, is
any monotonically decreasing function: ®* — [0,1] of
any norm metricA on R¢. For example, ifAg denotes the
Euclidean norm metricg could be

s(Ap(x,v);n) = nexp <_%AE(X7 v)2>, n<1. (1)

1,---,n, is the label matrix for the prototypes in
classes;

* s(Ag(x,v);0) is a similarity function, wherd is a set
of parameters;

e 7T is anyt-norm andsS is an aggregation operator [24].

For an unlabeled vectox € ¢, the GNPC calculates the

vector of similaritiess = [s1,- -+, s,,]" betweenx and {v;}
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which is then used to compute the label vectaix) = (prototypes) as possible, so the approximation at (6) will differ
A(Ly,s) = [1(x),- -, ue(x)]?. As a special case thaisp from the true values(x) at (4). We call (6) thedlecomposition
GNPC assigns the crisp class lalgle 1., to x if assumptionand shall refer to it asAl). We require that the
mixture components of (6) have kernel-type PDF’s. That is,
p(x) = iiﬁlﬁ.}.{,c{“i(x)}' (3 pesides the condition
Ties are broken randomly. / px|Cpdx=1, 1<j<mn, (7)
Thus any unlabele# is labeled on the basis of its proximity R

(or similarity) .to the prototyped” combined with .their glass eachj(x | C;) is based on a kernel-type function [10],

label information. Note ihat the GNPC at (3) assignacrisp x| C)) = 1/h§1 K(A(x,v;)/h;), whereh; € R* is a

class label. The GNPC is completely specified{by Ly, s, 7 smoothing parameter and, € % is a prototype. A typical

and S}. We can try different combinations of these GNP(EEhoice is the Gaussian I«Jernel

choices and select the most successful GNPC design by

optimizing its classification accuracy. px|Cp) = 1
In the next section we derive two models of the GNPC based (2m)¥/2hd\/]S]

on postsupervised and presupervised mixture modeling [18], 1

[21] where the components are kernel-type functions (e.g., X exp <—W\/(x—vj)TS—1(x—vj)> (8)

Gaussians). Each component corresponds to a prototype whose J

probability density functiofPDF) gives the similarity ok to  \yhere S is a covariance matrix. Oftel§ is chosen to be

the prototypev;. The mixing coefficients are used to computghe same for all prototypes, or at least common for all

the “soft” class labels of the prototypes. the prototypes of each class. Equation (6) provides Parzen’s
estimate of the PDF at (4) [8], [10] if each kernel is centered
Ill. POSTSUPERVISEDGNPC [ESIGN at a data point and if the number of data pointapproaches
Let x € ®¢ be a random vector coming from one of INfinity. _
classes. LetP(i) denote the prior probabilityp(x | i) the |I’_‘| the sequgl we assume that we have a satigfactory al-
class-conditional PDF; an(i | x) the posterior probability gorithm to estimate all the parameters of the mixture (6),
for classi, i = 1,- - -, c. Let p(x) be the unconditional PDF the a priori probabilities for the classe$P(i)}, and the
. conditional probabilities{Pr(: | C;)}. We do not restrict the
. g p class-conditional PDF'g(x | ¢). The classes and the hidden
p(x) = ;P(L)p(x| i) “) categories are related through

The objecti\{e is to bwid_ a GNPC that produces a Bayes- P(i) = ZP(CJ)Pr(i 10y, i=1- e )
optimal classification decision (assuming a zero-one loss ma- .
trix), i.e., the class label assigned#ois e; € I..is, When =t
wherePr(i | C;) is the probability of classif hidden category
C; occurs. By conditioning (9) ox we obtain the posterior

i é)robability for classi as

P(l|x)= llgzach(L | x). (5)

Hence, a sufficient condition for optimality of the GNPC

that, if sorted by magnituddu;(x)}5_, have the same order . i .
as the sorted P(i | x)}{_, Vx € R P(i|x) =Y P(Cj | x)Pr(i | Cj,x). (10)
We consider mixture modeling for the GNPC design. J=t

Mixture modeling is used to identify the priors, the classrg puild an RBF network Traven [23] assumes that
conditional PDF’'s and the unconditional PDF, which can

be used with Bayes rule to calculafe’(i | z)}. Kernel Pr(i | Cj,x) = P(i | Cj). (A2) (11)
mixture models are nonparametric. Typically, all training data . . :
points are used, each one generating a kernel (e.g., Parzé(i{esca” (11) th_eh(_)mogene_lty assumptiamd shall refer to it
window classifier). Other methods (e.g., neural networks) tﬂ§ @2). Substituting (11) into (10)

to reduce the number of kernels without much degradation in np
classification performance. Shrinking the number of kernels P(i | x)~ Y P(C; | x)Pr(i | Cj). (12)
shifts the mixture paradigm from nonparametric toward j=1

‘semiparametric’ [23]. Developing (12) further, we have with Bayes rule
We assume thap(x) can be approximated by another ping (12) ' y

mixture of new PDF's{f(x | C;)} using {P(C;)} as priors Pli | )~ i: x| g{.}zf(cj) Pii | C)). 13)
j=1

p(x) ~p(x) =Y _ P(C)p(x | Cy), (A1) (6)
= Let

where {C1,---,C,,, } will be referred to as Hidden cate- A= max {max{p(x | Oj)}}. (14)
gories [23]. We will try to use as few mixture components J=Lynnp (x€R?
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Fig. 2. Scatter plot of\’" disregarding the class labels. Fig.3. Case A: The most desirable class labeling of
X:px|i)=px]|C),i=12
Dropping the denominator of (13), which is the same for all
4, and dividing by A, the Bayes-optimal classifier under as- e .,
sumptions A1) and @A2) can be represented by the following o e
set of discriminant functions: . ° o° S oe o8 o
n LTS o Q ° [ ] . 50 o o
1 P X C - o o % o [}
a0= S X oy im1e a2, e e e, WS
np — O P ge) fe) ° 8
= .. Ooo ol?:o’g f.:b ° .o ¥ g O:o o ©
wherePr(i, C;) is the probability of simultaneous occurrence © , o, ® oo T
of class and hidden category’;. Assuming kernel-type . % . o .
(o)
PDF'’s, p(x | C;)/A can be represented a$||x — v,||;8;), ° e,

wheres is a similarity function (Definition 1) and - || is any

norm onRe. Equation (15) can then be rewritten as Fig. 4. Case B:The worst class labeling ok : p(x | 1) = p(x | 2).

respective cases.
(16) Case A:ldeally, the classes will correspond one-to-one to
the hidden categories (e.g., Fig. 3, where class 1, denoted by

wherel;; stands for the probability’r(i, C;). Therefore, the circles has the same parameters(as and class 2, denoted
postsupervise®GNPC that is a Bayes-optimal classifier undepy filled circles, has the same parameter<’ak In this case

1 p ‘ . . . w ” .
1i(X) = Gi(x) = = ZS(HX — ;10,5 i=1, ¢ different labelings corresponding to “ideal” sampling from the
P j=1

assumptionsA1) and @2) is L[PG =P(C)=PG). Wti=j .,
GNPC. . — Y0, otherwise "7 T %
post —
18
Ly = [l(v1), -, l(va,)]; 1y = Pr(s,C)) Since s(A(x,v;);6;) is proportional top(x | ), it is

easy to show that the classification decision of GINRC

s(llx = vjll:6) = plx | ¢;)/A s Bayes-optimal
7 = product Case B:The worst possible case of class labeling fis
S = average shown in Fig. 4. The classes are equiprobable and the class-

] ) o . conditional PDF’s are identical, i.e., these labels correspond
The following examples illustrate the situation with respegf the case where

to Bayes optimality of GNPg.:. Plotted in Fig. 2 is data set . .
X consisting of 200 two-dimensional (2-D) points. The vectors P(x | 1) =p(x | 2) = 0.56(x [ C1) + 0.56(x | C2).  (19)

1 _ T. _ T
come from two classes with labeds = [1,0]";e; =[0,1]". |, this case the hidden categori€d and C» cannot be
The class labels of the points amet shownin Fig. 2..X was  assqciated with a specific class label. Therefore, it is pointless

'gene'rated fro'm 4) using a mixture of two Gaussians withy attempt to identifyC; and C, because the probability
identity covariance matrices, viz., of each class to occur together in either category is 0.5.

(%) = 0.5p(x | Cy) + 0.5p(x | Ca) The error of the GNPgL,. will be 0.5, and, again, this
1 ) i (17) s the Bayes-optimal error rateThe situation in Fig. 4 can
p(x|Cy) = o exp(2l=ville) =1 2 occur when some other feature has been used to label the data

and this information is not represented in the current feature
wherev; = [1,2]* andv, = [7,3]7 are the prototypes of the space®?.
two mixture components (hidden categorigs and C5). Case C: Fig. 5 shows the case where eaclass has a
Below we detail four cases, B, C, andD. The illustrations bimodal PDF whose modes are situated at the common pro-
(Figs. 3, 4, 5, 7, and 9) us¢he samedata setX with totypesv; andvs. Class-conditional PDF’s that will generate
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Fig. 5. Case C:Decomposable bimodal class-conditional PDF’s. Fig. 7. Case D:Nondecomposable class-conditional PDF’s.
is built as suggested above. Here the homogeneity assumption
plxi) p(xi2) (A2) is not satisfied.
The class labels in Fig. 7 are atrtificially assigned Xo
i j (Fig. 2) according to the rulex is assigned to
Class 1, if[z sin(z1) — 1.6] < z2 < [zy sin(zy) + 1.6];
, : Class 2, otherwise.
For this labeling the class-conditional PDF’s are shown in (22)
: ™ X and (23) at the bottom of the page, where
1% v & sin(€)+1.6
T e —
Fig. 6. Case C:Bimodal class-conditional PDF’s far € R. 1= / /fsul(f) L6 5’ T] | Cl) drdf, a=1-a

(24)
labels such as those shown in Fig. 5 are

p(x|1)=0.25p(x | C1) 4+ 0.75p(x | Ca), (20) €sin(§)+1.6
1—/ / B[ ]T | Coydrde. by=1—b
¢

sin(¢)—1.6
p(x | 2) = 0.75p(x | C1) +0.25p(x | C2). (1) (25)

and

An example of bimodal class-conditional PDF’s fore & Fig. 8 shows separately the two classes and the class bound-
is shown in Fig. 6. The modes andv” are the same for both aries for 2000 points generated from the same distribution
PDF’s but the functions are mirror-wise symmetric. If datas X. Note that densities (22) and (23) are nonoverlapping,
are drawn from a mixture of the two PDF's shown in Fig. 8vhich means that the Bayes error rate for this case is zero.
with mixture coefficients 0.5, the result will be two distinctNeglecting nonhomogeneity of the two hidden components by
Gaussian clusters ift, each one containing objects from bottassigningl(v,) = [a1,a2]! andi(vy) = [b1,b2]7 as in the
classes as illustrated in Fig. 5. As long as the class-conditio@&NPC description, the error rate will be nonzero.

PDF's are decomposable gifx | C;) and i(x | C5), the Fig. 9 shows the difference between the homogeneous and
classification decision of the GNRE;; is Bayes-optimal nonhomogeneous groups. The two scatterplots are the same
Case D:In all cases considered so far assumptioA%)( as in Figs. 4 (upper) and 7 (lower). The small “windows” in
and @A2) are satisfied, i.ep(x) is exactly decomposable onthe upper plot show that the ratio of the number of points

;1 and C;, and the probability of class conditioned byC; from class 1 to class 2 is approximately the saré.5),
does not depend or. For example, for the case in Fig. 4no matter where the window is placed. In the lower plot the
for everyx € R2 that is known to have come froi@¥;, the ratio depends on the window location, which suggests that the
probability thatx is from class 1 is 0.25, no matter whetds GNPG,; is not Bayes-optimabecause assumptioi\Z) is
located. Sometimes, however, the dependenda@f| C;) on violated.

x is not negligible. This is illustrated in Fig. 7. The “clusters” Nonoptimality can also arise if the true densityx) is
corresponding ta”; and C, are not homogeneous.e., they not decomposable on the hidden categof€s,---,Cy, }
possess hidden substructure which will be ignored if the GNH@olation of Assumption Al)]. This can be overcome by

(x| 1) = %lcl) + %102), if [z1sin(z1) — 1.6] < z2 < [#sin(x) + 1.6] (22)
0, otherwise.
0 if [21sin(z1) — 1.6] < 22 < [z sin(z1) + 1.6]
(X | 2) = {P(D:JCH) + P(>§)|202)7 otherwise. (23)
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Fig. 9. (a) Homogeneous and (b) nonhomogeneous groups.

increasingn,,. In all the above examples we assumed that
p(x) is decomposable op(x | C1) andp(x | Cs). Therefore,

in the postsupervised model, the sources of “nonoptimality”
of the GNPC are potentially two: the inexact representation
of p(x) [Assumption Al)], and neglecting the dependency of

Pr(i | C;,x) on x [Assumption A2)].

IV. PRESUPERVISEDGNPC DESIGN

Instead of (6) we approximate the class-conditional PDF’s
on separate sets of prototypes. This approach has been u
for constructing a sparsely connected RBF network [5] but
general, the more popular design is the postsupervised OEFI%

Let the set of prototypes be arranged as follows:

t=1,---,¢ jo = 0; jo = np. Assumption A1) now takes the
form that the conditional PDF in (4) can be approximated by

Ji

pxld~ Y

k=j;—1y+1

P(Cy)p(x | Cy,). (27)

Since the prototypes are uniquely connected with the classes,
assumption A2) is not needed here. Therefore, in presuper-
vised mixture modeling for GNPC design the only source
of nonoptimality is imprecision in approximating the class-
conditional densities by decomposition on finite sets of kernel-
based components.

Recalling that4 in (14) is the maximal PDF value and
using the discriminant functions

Gi(x) = —— P(i)p(x | i)

npA
1 & . p(x | Cx
=— Y, POP) ( L )
P k=ji;_1y+1
i=1,c (28

one possible Bayes-optimal presupervised GNPC design is

GNPC})re =
V={v;h
Ly = [l(vl),---,l(vnp)]
L = {P(i)P(Ck)a if jon+1<k<y;

j:l’...’np

(29)

0, otherwise
s(A(x,v;);0;) = (x| C5)/A
7 = product

S = average

the presupervised design we have oolye type (the
ecomposition) of assumption, but it must hold &k class-
nditional PDF’s. Thus, we need assumptions to hold.
erefore, the number of prototypes required can be greater
than that for GNPG,,;. With more prototypes, GNRG;; can

(Vi Vo, Vi Vil Vs V1 Vb also overcome the “nonhomogeneity” problem becaus€fise
(26) can be restricted to small parts of the feature space where the
class-conditional PDF’s might be practically homogeneous.
where the subseV[i] = {v;, ,4+1,---,v;,} € V is used By increasing the number of prototypes the decomposition

to approximatep(x | ¢), the ith class-conditional density, assumption will be less likely to be violated. Asymptotically
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Fig. 10. Scatterplot of the six classes on features # 17 (horizontal) and 18 (vertical).

this leads to approximation of the true class-conditional (and order in the database. Here we used only features 17-20,
the unconditional) PDF’s. as recommended by the designers of the database. The
first 200 vectors were used for training and the remaining
6235 for testing. Fig. 10 shows scatterplots of the six
satimage classes on features 17 and 18.

Our objective is to experimentally compare particular presu-
pervised and postsupervised GNPC designs. At the beginning
of Section Il we assumed that we had a satisfactory algorithm

. roxim he mixtur nsities. Practicall lassifier
* The “satimage”data from ELENA database. The data to appro atg t € . ture de §tes actically, classifiers
. . ased on explicit mixture modeling are seldom used. Thus,

can be obtained by anonymous ftp at ftp.dice.ucl.ac.be, di-". . L . .
e imprecision of the approximation algorithm may spoil the

rectory pub/neural-nets/ELENA/databases. Fhém- . | q h e f h
age data is generated from Landsat Multispectral Scanngpmparison. Instead, we chose one representative from eac

image data. It consists of = 6435 feature vectors 9r0up of GNPC's (in boldface in Fig. 1).

with 36 attributes (four spectral bands nine pixel * OLS RBF (Presupervised GNPC)[4]. This RBF net-
intensities per 3x 3 window). The data are classified work is considered because the prototypes to be retained
into six physical classes, and are presented in random are selected from the training data on the basis of a score

V. EXPERIMENTAL RESULTS

To illustrate the two designs we used the following data sets.
¢ The 2-D data (case D) The training set consists of 200
points and the test set of 2000 points#3, all drawn

from the distribution (22) and (23).
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Fig. 11. Test versus training error rates for the presupervised and postsupervised GNPC designs with the 2-D data.

calculated using data labels. A parameter that must beFor comparison we also used the following classifiers from
specified in advance isc the “scaling factor” in the [9]:
denominator of the power of the kernel exponent. It
corresponds to the smoothing paramétem (8) and has parametric Linear discriminant classifier (LDC)
the same value for all prototypes. We tried five different Quadratic discriminant classifier (QDC)
values ofscwith each data set, vizsc= 0.5,1.0,1.5,2.0 o
and 2.5 for the 2-D data andc = 4,6,8,10 and 12 for i . Nea.re.st mear.l 'classn‘ler (NMC)
the satimage data. semiparametric Logistic classifier (LOGC)

* NNLS RBF (Postsupervised GNPC)[19]. This design  nonparametric Nearest neighbor (1-nn)

is postsupervised because the prototypes are found by Parzen windows classifier (Parzen).
clustering the whole data set, disregarding the class labels.
To obtain the similaritys we use We carried out one hold-out experiment with each data set
because we observed that the training and the test error rates
1 correlate well. This is shown in Figs. 11 and 12 which plot
s(Ag(x,v)) = exp<——AE(x, v)2> (30) the test versus training error rates for the runs with one of
v the OLS RBF’s (withsc = 2.0 for the 2-D data andc= 12
with the satimage data) and with the NNLS RBF. A well-
wherew is the “nearest neighbor heuristic,” as suggestétesigned classifier will have the same training and test error
in [19]. The label matrixLy- is then found by a nonneg- rates and will be a dot on the diagonal. In the best case, these
ative least squares procedure (see the Matlab refere@&eor rates will be zero or close to the left bottom corner. The
books, MathWorks, Inc., and the reference recommendéigures show that the presupervised designs produce smaller
there [16]). NNLS is a version of the least squaregfror rates with both data sets and that for the smallest error
method in which the resultant vector (a row bf/) is rates they are likely to overtrain. This is indicated by the points
nonnegative. Although less accurate, NNLS was adopt€f the two left-hand plots that are above the diagonal (i.e., the
because we wish to keep the interpretatiorLgf as soft test error rate is higher than the training error rate), especially
class labels for the prototypes (negative labels do néith the 2-D data. The postsupervised designs show better
make sense). NNLS yields the best possible match fatatch, i.e., the test error rates are even a little bit lower than
Ly under the nonnegativity constraint. the training rates (right-hand plots). _
For the OLS RBF we used the Neural-Network Toolbox for Fig- 13 shows the test error rates with the two GNPC
Matlab and for the NNLC RBF, thé-means clustering code d€Signs:
from the pattern recognition package PRTOOLS for Matlab * Presupervised (OLS RBF) We show the error rate on
[9]. With the 2-D datan, was varied from two to 30 (29 the test data using thex value that produced the smallest
values) and with the Satimage data, from six to 30 (26 values). resubstitution error on the training datc = 2 with the
Since the OLS RBF is a deterministic algorithm, for a specific  2-D data, andsc = 12 with the satimage data.
sc we ran it once for each,, i.e., 29 (or 26) runs. The < Postsupervised (NNLS RBF)The plain lines in Fig. 13
NNL RBF depends on the initialization of the hakemeans, show the averaged error rates of the runs with different
and therefore it was run ten times starting from different initializations and the same number of prototypes.
initializations for each number of prototypes, (clusters), The figure shows that the presupervised design provides lower
i.e., total 290 (260) runs. error rates. Looking at the training-test plots (Fig. 12) with the
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Fig. 12. Test versus training error rates for the presupervised and postsupervised GNPC designs satiméige  data.
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Fig. 13. Best case error rates for the postsupervised and presupervised GNPC's.

satimage data we see that although the presupervised GNPC'’s TABLE |
reach lower training error, the best-case test error is as high ERROR RATES IN [%] ON THE TEST DATA SETS
as that of the postsupervised GNPC's. This is observed for LDC | QDC | NMC [ LOGC | I-nn | Parzen

high », and is caused by overtraining of the presupervised 2-d 24.00 | 19.15 | 28.25 | 2345 | 6.85 | 10.25
. . . i 5

GNPC'’s. The postsupervised design seems more robust since>52timage || 1838 | 16.98 | 2512 | 19.50 | 2002 | 14.74

the training and test error rates correlate well and are of the

same magnitude (Figs. 11 and 12). For small numbers of . .
prototypes the supervised design is clearly better. The g\§61ere more than one classifier achieves the same lowest

between the accuracies of the two designs is more clear witining error rate all test error rates are shown. We display
the 2-D data. Even with the high overtraining for small traininf’® results for all five OLS RBF’s as a function st The
errors (highn,,) displayed in Fig. 11 the presupervised desigﬂumbers in boldface indicate what test error we would have
shows bettetestaccuracy than the postsupervised design. THiswe chose the classifier with the globally minimal training
is probably due to the specific structure of the data (@se error. The two GNPC designs compare favorably to the set
which makes the supervised design a more reasonable choffeconventional classifiers (Table I). For the 2-D data, the
Tables Il and IlI display the minimal error rates found by thaverageerror rate for the six classifiers in Table | is 18.66%,
two designs. Hererhinimal’ means that we take the smallestvhereas the average error in Table Il (best case) for the 6
error on the training data and show tkerrespondingtest GNPC designs is 11.5%. For the satimage data the Table |
error. The number of prototypes used is shown in parenthesagerage is 19.12% whereas the GNPC average from Table I
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TABLE I
BEST Case (MINIMAL ) ERROR RaTES oF GNPC IN [%] wiTH THE 2-D DaTA
NNLS RBF OLS RBF
s¢=05 [ sc=1.0 [ sc=15 ] sc=20 [ sc=25
Training 12.50 5.50 3.00 1.50 1.50 6.50
Test 13.20 (22) || 12.10 (28) | 11.70 (23) | 9.10 (25) | 10.50 (27) | 12.95 (29)
12.05 (29) | 12.25 (24) 10.00 (28)
10.55 (29)
TABLE 11l
BEST Case (MINIMAL ) ERROR RATES OF GNPC IN [%] WITH THE SATIMAGE DATA
NNLS RBF OLS RBF
sc=4 [ sc=6 | sc=8 [ sc=10 | sc=12
Training 15.50 24.50 10.50 10.50 10.00 10.00
Test 15.91 (20) | 27.07 (29) | 18.36 (27) | 15.80 (27) | 15.17 (29) | 15.72 (28)
15.87 (21) 16.18 (28)
15.37 (22)
15.00 (23)

is 17.85%—not as dramatic an improvement as for the 24esupervised design seems a better choice for “difficult” data
data—but better than the Table | results. sets. Splitting the training data into training and validation sets
Tables Il and Ill show that the value of the scaling parametean help prevent overtraining, and is always recommended as
can be crucial for good performance. On the other hanal,good engineering practice. With respect to the experimental
initialization of crisp k-means clustering did not seem tgart, we agree that we cannot make firm conclusions and give
have much effect on classification performance: scatterploe&zommendations based on experiments only. Here we report
of the test versus training errors with both data sets for tlomly what our experimentshave shown. We are aware that
postsupervised design grouped along the bisectrix ofitse there will always be data sets for which our conclusions will
guadrant. This means that the presupervised design is moeot hold, and we assume that the reader is aware of this too.
sensitive to initialization. But this design takes less time, and,
since the training algorithm is deterministic, it is easier to
check the possible choices and selsct REFERENCES
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