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Abstract—In this work, the Parallel Fast Condensed Nearest Neighbor (PFCNN) rule, a distributed method for computing a consistent

subset of a very large data set for the nearest neighbor classification rule is presented. In order to cope with the communication

overhead typical of distributed environments and to reduce memory requirements, different variants of the basic PFCNN method are

introduced. An analysis of spatial cost, CPU cost, and communication overhead is accomplished for all the algorithms. Experimental

results, performed on both synthetic and real very large data sets, revealed that these methods can be profitably applied to enormous

collections of data. Indeed, they scale up well and are efficient in memory consumption, confirming the theoretical analysis, and

achieve noticeable data reduction and good classification accuracy. To the best of our knowledge, this is the first distributed algorithm

for computing a training set consistent subset for the nearest neighbor rule.

Index Terms—Classification, parallel and distributed algorithms, nearest neighbor rule, data condensation.
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1 INTRODUCTION

EVEN though the data collecting capabilities of organiza-
tions are increasing dramatically, often, they cannot

take advantage of these collections of potentially useful
information since ad hoc data mining algorithms may be
unavailable and traditional machine learning and data
analysis tools are practicable only on small data sets.

A very useful task is to build a model of the data so as to
obtain a classifier for prediction purposes. The nearest
neighbor (NN) rule [9], [28], [14] is one of the most extensively
used nonparametric classification algorithms, simple to
implement yet powerful, owing to its theoretical properties
guaranteeing that for all distributions, its probability of error
is bounded above by twice the Bayes probability of error.
The naive implementation of this rule has no learning phase,
in that it uses all the training set objects in order to classify
new incoming data. A number of training set condensation
algorithms have been proposed that extract a consistent
subset of the overall training set, namely, Condensed NN
(CNN), Modified CNN (MCNN), Structural Risk Minimiza-
tion using the NN rule (NNSRM), Fast CNN (FCNN), and
others [22], [19], [23], [13], [3], that is, a subset that correctly
classifies all the discarded training set objects through the
NN rule. These algorithms have been shown in some cases to
achieve condensation ratios corresponding to a small
percentage of the overall training set.

However, the performances of these algorithms may
degrade considerably, in terms of both memory and time
consumption, when they have to cope with huge data sets,

consisting of a very large number of objects, each of which
can have several attributes. Indeed, this amount of data can
be too large to fit into the main memory. Furthermore, the
execution time may become prohibitive.

Parallel and distributed computation can be exploited in
order to manage efficiently these enormous collections of
data. Furthermore, the emerging paradigm of grid comput-
ing [15] has chiefly provided access to large resources of
computing power and storage capacity. Typically, a user
can harness the unused and idle resources that organiza-
tions share in order to solve very complex problems.
Moreover, data reduction through the partitioning of the
data set into smaller subsets seems to be a good approach.
Unfortunately, to the best of our knowledge, no parallel or
distributed version of consistent subset learning algorithms
for the NN rule has been proposed in the literature.

This paper presents a distributed training set consistent
subset learning algorithm for the NN rule, exhibiting high
efficiency in terms of both time and memory usage. The
algorithm, called the Parallel FCNN (PFCNN) rule, is a
distributed version of the sequential algorithm FCNN [3],
which has been shown to outperform all the other training
set consistent subset methods. The distribution of data and
their consequent handling raise many problems that can be
faced in different ways if the usage of memory rather than
the scalability or the execution time is the main objective.
Thus, different clever variants of the basic distributed
method are proposed, which bear in mind these aspects.
The main contributions of our approach are the following:
1) PFCNN is the first distributed method for the condensed
NN rule, 2) it scales almost linearly and is efficient in
memory consumption, and 3) it permits the same model as
the sequential version to be computed.

The rest of the paper is organized as follows: First of all,
Section 2 briefly reviews the sequential FCNN rule. Section 3
describes the PFCNN algorithm. Successively, Section 4
derives space requirements and CPU and communication
costs of the methods. Section 5 discusses work related to
that here presented. Finally, Section 6 reports experimental
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results on both synthetic and real-life very large high-
dimensional data sets.

2 THE FCNN RULE

In this section, the sequential FCNN rule [3] is reviewed.
First of all, some preliminary definitions are provided.
T denotes a labeled training set from a space with

distance d. Let x be an element of T . Then, nnðx; T Þ denotes
the NN of x in T according to the distance d, and lðxÞ is the
label associated with x.

Given a labeled data set T and an element y of the space,
the NN rule NNðy; T Þ assigns to y the label of the NN of y in
T , that is, NNðy; T Þ ¼ lðnnðy; T ÞÞ [9].

A subset S of T is said to be a training set consistent subset
of T if for each x 2 T , lðxÞ ¼ NNðx; SÞ [22].

Let S be a subset of T and let y be an element of S.
V orðy; S; T Þ denotes the set

fx 2 T j 8y0 2 S; dðy; xÞ � dðy0; xÞg;

which is the set of the elements of T that are closer to y than
to any other element y0 of S, called the Voronoi cell of y in T

with respect to S.
Furthermore, we define as V orenðy; S; T Þ the set

fx 2 V orðy; S; T Þ j lðxÞ 6¼ lðyÞg, whose elements are called
Voronoi enemies of y in T with respect to S.
CentroidsðT Þ is the set containing the centroids of each

class label in T . The notion of centroid depends on the
nature of the considered space. In the following, we assume
to deal with the euclidean space. Given a set of points S
having the same class label, the centroid of S is the point of S
that is closest to the geometrical center of S.

The FCNN rule [3] relies on the following property: A
set S is a training set consistent subset of T for the NN rule
if and only if for each element y of S, V orenðy; S; T Þ is
empty.

The FCNN algorithm is shown in Fig. 1. The algorithm
initializes the consistent subset S with a seed element from
each class label of the training set T . In particular, the seeds
employed are the centroids of the classes in T . The
algorithm is incremental. During each iteration, the set S
is augmented until the stop condition, given by the property
above, is reached. For each element of S, a representative
element of V orenðy; S; T Þ with respect to y is selected and
inserted into S.

The behavior of two different definitions of a representa-
tive was investigated. FCNN1 is the name of the imple-
mentation of the FCNN rule using the first definition, which

selects as representative the NN of y in V orenðy; S; T Þ, that
is, the element nnðy; V orenðy; S; T ÞÞ of T . FCNN2 is the
name of the implementation of the FCNN rule using the
second definition, which selects as representative the class
centroid in V orenðy; S; T Þ closest to y, that is, the element
nnðy; CentroidsðV orenðy; S; T ÞÞÞ of T .

As far as the comparison between the two methods in the
sequential scenario is concerned [3], it can be said that the
FCNN2 rule appears to be a little sensitive to the complexity
of the decision boundary, since it rapidly covers regions of
the space far from the centroids of the classes and tends to
perform no more than few tens of iterations. FCNN1 is
slightly slower than FCNN2 since it may require more
iterations, up to a few hundreds. On the other hand,
FCNN1 is likely to select points very close to the decision
boundary and hence may return a subset smaller than that
of FCNN2.

As for the time complexity of the method, let N denote
the size of the training set T and let n denote the size of the
consistent subset S computed. Then, the FCNN1 rule
requires at most Nn distance computations to compare
the elements of T with the elements of S.

Despite the algorithm being fast, it must be said that
when it copes with very large data sets, the number of
distance computations may grow, and it might not meet the
requirements of real-time-like applications. In order to scale
up the method on very large data sets, a distributed
implementation can be exploited. Indeed, if the data set is
partitioned into disjoint subsets, each allocated on a
different node, by adopting a clever strategy, the total cost
of the method can be reduced by a factor ideally equal to
the number of nodes. In the following section, a distributed
architecture for FCNN and its implementation is introduced
and discussed.

3 THE PFCNN RULE AND ITS ARCHITECTURE

Despite the FCNN algorithm being fast, its time require-
ments grow with the size of the data set. When huge
collections of data have to be handled, it is interesting to
scale up the method. It will be shown that a distributed
implementation of the FCNN algorithm, called PFCNN,
whose architecture is introduced next, can cope with the
time and memory requirements of large data sets.

The general architecture of the PFCNN algorithms is
illustrated in Fig. 2. The architecture is composed of p nodes
P1; . . . ; Pp. The original training set T is partitioned in
p disjoint partitions T1; . . . ; Tp, each assigned to a distinct
node. PFCNN can also be used when the data set is already
distributed among nodes and cannot be moved (that is, for
privacy reasons). Each node i computes, in parallel, the
overall condensed set S using only its partition Ti of the
training set. Note that there is a copy of the entire
condensed data set S on each node. However, the size of
S corresponds to a very small percentage of the training set
(usually, it is some orders of magnitude smaller).

Communication among the different nodes is efficiently
implemented on a parallel environment using the message
passing interface (MPI) libraries [20] and on a grid comput-
ing environment using the MPICH-G2 libraries [24].

In the following, first of all, the two basic PFCNN
strategies, that is, the PFCNN1 and PFCNN2 rules, are
described. Then, different variants, namely, PFCNN-t,
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PFCNN-p, and PFCNN-b, which further improve the time
and memory consumption of the two basic rules, are
introduced.

The PFCNN1 rule is now described. For the reader’s
convenience, the symbols employed in the sequel of the
paper are summarized in Table 1.

3.1 PFCNN1 Rule

Fig. 3 shows the PFCNN1 algorithm. It should be recalled
that the PFCNN1 rule is the variant of the PFCNN rule
using the NN as representative of the Voronoi enemies of a
consistent subset element.

Let p be the number of nodes available. Each node is
identified by an integer number i such that 1 � i � p. The
pseudocode reported in Fig. 3 is executed on the generic
node i. The variables employed there are local to the node i,
except for those handled by parallel functions, which
instead come from different nodes. When it is necessary
to distinguish the node i from which a variable v comes
from, then the notation vi will be used.

There follows a description of the data structures

employed and of how data is located on the different nodes.
As already clarified, the overall training set T , containing

N objects, is randomly partitioned into p equally sized

disjoint blocks T1; . . . ; Tp and, then, each node i receives as

input the block Ti. Differently from the training set T , each

node maintains a local copy of the entire consistent subset S.
Furthermore, each node maintains two arrays: nearest

and rep. The array nearest, having size N
p , contains for each

point x in Ti its closest point nearest½x� in the set S. The

array rep contains for each point y in S, its representative

rep½y� of the misclassified points lying in the Voronoi cell of

y in Ti with respect to S.
Now, it is possible to comment on the code reported in

Fig. 3.
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Symbols Used throughout the Paper

Fig. 3. The PFCNN1 rule.



First of all, steps 1-3 compute the geometrical center of

each training set class, whereas steps 4 and 5 compute the

centroids C½1�; . . . ; C½m� of each class.
Two communication functions are employed in these

steps, that is, parallel�sum and parallel�min. The

parallel�sumðv1; . . . ; vpÞ is a parallel function that gathers

the p (arrays of) integer or real numbers v1; . . . ; vp from the

p nodes and then returns the sum v1 þ . . .þ vp of these

values. The parallel�minðhu1; v1i; . . . ; hup; vpiÞ is a parallel

function gathering the p values u1; . . . ; up, together with the

p integer or real numbers v1; . . . ; vp, and then returning the

value ui associated to the smallest number vi among

v1; . . . ; vp.
Once the centroidsC½1�; . . . ; C½m�of the training set classes

are computed, the set �S is initialized to fC½1�; . . . ; C½m�g, the

consistent subset S is initialized to the empty set, the closest

element nearest½x� in S of each element x in Ti is set to

undefined (steps 6-8) and, then, the iterative part of the

algorithm starts.
During each iteration, the arrays nearest and rep must be

updated since they represent, respectively, the partitioning

of the points of Ti into Voronoi cells and the points in the

new set �S.
Let �S be the set of points to be added to the set S

during the current iteration (at the first iteration, this set

coincides with the class centroids). To update the array

nearest, the training set points in ðTi � SÞ are compared

with the points in the set �S (step 9a). Clearly, it is not

necessary to compare the points in ðTi � SÞ with the points

in S, since this comparison was already done in the

previous iterations and the NNs so far computed are

currently stored in nearest.
After having computed the closest point nearest½x� in �S

of the points x in ðTi � SÞ, the array rep is updated

efficiently (step 9c) as follows: If the class of x is different

from the class of nearest½x�, then x is misclassified. In this

case, if the distance from nearest½x� to x is less than the

distance from nearest½x� to its current representative
rep½nearest½x��, then rep½nearest½x�� is set to x.

At the end of each iteration, for each y in S, the elements
repi½y� of each node i are exploited to find the representative
of the Voronoi enemies of y in the overall training set T
(step 9e). Indeed, for each y in S, its nearest enemy in T with
respect to S is the closest point among its nearest enemies
rep1½y�; . . . ; repp½p� with respect to, respectively, T1; . . . ; Tp.
This closest point can be retrieved efficiently by using the
parallel function parallel�min as shown in Fig. 3.

Once the true representatives of the Voronoi enemies of
each point in the current consistent subset S are computed
and stored into the array rep, the set �S is built with the
points stored into the entries of the array rep. Notice that
not all the entries of the array rep will be defined, since
there might be points in S whose Voronoi cell contains only
points of the same class.

3.2 PFCNN2 Rule

Fig. 4 shows the PFCNN2 algorithm. It should be recalled
that the PFCNN2 rule differs from PFCNN1 for the
definition of the representative of the Voronoi enemies. In
particular, the representative is defined as the closest class
centroid.

As for the data structures there employed, the training
set block Ti, the consistent subset S, and the arrays nearest
and rep have the same semantics as those described above.

Steps 1-8 are the same as that in the PFCNN1 rule,
whereas subsequent step 9 is the main iteration of the
algorithm.

During each iteration, first of all, each element x in ðTi �
SÞ is compared with the elements y of �S, and the entry
nearest½x� of the array nearest is updated to contain the
element of S that is closest to x (step 9a).

Once the elements in �S have been compared with all
the elements in Ti � S, the array rep can be updated. To this
aim, steps 9c-9e compute the centers c½y; j� of the points of
the Voronoi cell of y in T with respect to S having class
label j, whereas subsequent steps 9f-9g compute the
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centroids C½y; j� of the points of the Voronoi cell of y in T
with respect to S having class label j.

Finally, steps 10h-10k set the entries rep½y� of rep to the
centroid among C½y; 1�; . . . ; C½y;m� that is closest to y and
then build the new set �S.

In the following, three variants of the two above-
described basic rules, namely, the PFCNN-t, PFCNN-p,
and PFCNN-b rules, are introduced.

3.3 PFCNN-t

If the distance employed satisfies the triangle inequality, then
the number of distances computed by the PFCNN rules can
be reduced. Indeed, since at the beginning of each iteration,
the distance from each object x of Ti to its current closest
element nearest½x� in S is known, this information can be
exploited to compare each object x of T with a subset of �S
instead of the entire set �S, thus saving distance computa-
tions. This subset will be composed only of the elements of
�S candidate to be closer than nearest½x� to x.

To this aim, for each y in S, the distances from y to the
elements of �S are computed and, then, these elements are
sorted in order of increasing distance from y. Then, the
elements of the Voronoi cell of y in Ti with respect to S, that
is, the elements x of Ti such that nearest½x� ¼ y, are
compared with the elements z in �S having a distance
from y less than twice the distance from x and y. Indeed, by
the triangle inequality, they are all and the only elements of
�S candidate to be closer to x than y.

That is, by using this strategy, the generic element x of T
is not compared with the elements z of �S such that
dðz; yÞ � 2dðx; yÞ, where y ¼ nearest½x�. By the triangle
inequality, dðz; xÞ þ dðx; yÞ � dðz; yÞ; thus,

dðz; xÞ þ dðx; yÞ � 2dðx; yÞ and dðz; xÞ � dðx; yÞ:

Hence, the elements z of �S not compared with x cannot be
closer to x than y, and computing the distance dðx; zÞ has
the only effect of wasting time.

Notice that this strategy does not need to store together
all the distances in the set D ¼ fdðy; zÞjy 2 S; z 2 �Sg.
Indeed, while visiting the Voronoi cell of y 2 S, only the
distances among y and the elements of the set �S are
needed.

The method obtained by augmenting the PFCNN rule
with the strategy above depicted is called the PFCNN-t rule.
The PFCNN1-t and PFCNN2-t rules may reduce the

number of distances computed with respect to the PFCNN1
and PFCNN2 rules, respectively, thus accelerating their
execution time. However, since the sets S and �S are
identical in each node, it is the case that the same
computation, that is, the calculation of all the pairwise
distances in the set D, will be carried out in each node.
Although this strategy has the advantage of not requiring
additional communications, this replicated computation
may deteriorate the speedup of the algorithm.

3.4 PFCNN-p

The PFCNN-t rules can be scaled up by parallelizing the
computation of the distances in the set D and their sorting.
To this aim, each node i can compute a disjoint subset of the
distances in D, sort them, and then gather in a single
communication the distances computed by any other node.
Once the distances in the set D are available to all the nodes,
each node can compare the elements of Ti with the elements
of �S according to the strategy adopted by the PFCNN-t
rule. The PFCNN-t rule augmented with the strategy
depicted above is called the PFCNN-p rule. Unlike the
PFCNN-t rule, the PFCNN-p rule stores together all the
distances in the set D, and hence, depending on the
characteristics of the data set, it could require a huge
amount of memory. As an example, if jSj ¼ 105 and
j�Sj ¼ 104, then D is composed of one billion floating-point
numbers.

3.5 PFCNN-b

As noted while describing the PFCNN-t rule, the distances
in the set D are not needed together and, hence, the memory
consumption of the PFCNN-p rule can be alleviated, even if
at the expense of multiple communications. To this purpose,
S can be partitioned into bn blocks, named B1; . . . ; Bbn ,
having size bs each. Then, the strategy of the PFCNN-p rule
can be applied iteratively to each block Bh, h ¼ 1; . . . ; bn,
and at the end of each iteration, that is, after having used
them, the distances fdistðy; zÞjy 2 Bh; z 2 �Sg can be dis-
carded. The PFCNN-p rule modified as described above is
called the PFCNN-b rule.

Fig. 5 shows the computation of the distances between the
elements of Ti and the elements of �S carried out by the
PFCNN-b rule. This pseudocode must be substituted to
step 9a in Fig. 3 (Fig. 4, respectively) to obtain the PFCNN1-b
(PFCNN2-b, respectively) rule. A buffer of size 2bs must be
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allocated to store both the distances from the elements of the
block Bh and the elements of �S and the identifiers of the
elements of �S sorted according to their distance from each
element ofBh. The choice of the size of the buffer and, hence,
of the number of blocks bn ¼ jSjbs is a trade-off between the
memory consumption, the cost of communication, and the
cost of computing the distances. Indeed, if the buffer is too
small, then the cost of communication may overwhelm the
savings of CPU time obtained by exploiting the triangle
inequality. The effect of varying the size of the buffer on the
two strategies will be discussed in the experimental results
section.

4 COST ANALYSIS

The analysis of the complexity of parallel and distributed
programs must bear in mind the communication overhead.
In fact, even very efficient algorithms in terms of computa-
tion can degrade as the number of processors increase,
owing to the unbalancing of the ratio communication/
computation cost. Thus, in the following, both the CPU cost
and the communication cost of the algorithms will be
studied, along with the spatial cost of the method.

4.1 Spatial Cost

Space is measured per single node, and it is expressed in the
number of words, where a word is the number of bytes
required to store a floating-point number or an integer
number. It was assumed that each object is encoded as a
tuple of d words, where d� 1 words are employed to store
attribute values, and the remaining word, to store the class
label. Space complexities are summarized in Table 2.

The PFCNN1 requires space Nd
p to store the training set

block Ti and space nd to store the consistent subset S. In

addition, space 2N
p is needed to store both the identifier of

the closest element nearest½x� in S of each object x in Ti and

the distance from x to nearest½x�, whereas space 2n is

required to store both the identifier of the representative

rep½y� of the Voronoi enemies of each object y in S with

respect to Ti and the distance from y to rep½y�. Thus, the total

space required amounts to ðNp þ nÞðdþ 2Þ words.
The PFCNN2 rule requires, in addition to the PFCNN1

rule, nmd words to store the class centers/centroids of the
Voronoi cells associated with the elements in S.

In addition to the basic rule, the PFCNN-t rule requires

space 2 maxkf�nkg to store distances among a single

element of S and �S, whereas the PFCNN-p rule requires

space 2 maxkfnk�nkg to store distances among elements of

S and �S. Finally, the PFCNN-b rule requires a buffer of

size BUF to store the distances between the current block

Bh of elements of S and �S.

4.2 CPU Cost

The CPU cost is expressed as the number of distance

computations required by a single node, since the most

costly operation performed is the computation of the

distance between two objects.
The analysis of the CPU cost is summarized in Table 3

(the exact derivation of these formulas is reported in the

Appendix), where the parameter � 2 ð0; 1� takes into

account the fact that the triangle inequality may reduce

the comparisons between the elements of Ti and the

elements of �S. It represents the average fraction of points

of �S compared with each point of Ti.

Note that the temporal cost of the PFCNN1 and PFCNN2

strategies is approximately upper bounded by Nn
p . Further-

more, if the size n of the consistent subset S is small

compared to the size N of the overall training set T , then it

is the case that M is negligible with respect to Nn. In this

case, the temporal cost of all the strategies can be

approximated to Nn
p (this is true also for the worst case,

that is, � ¼ 1, of PFCNN-t). Note that this cost is, in terms of

distance computations, the best that can be achieved by a

parallel algorithm using p nodes.

4.3 Communication Cost

The notation s � c is used to denote the dispatching of

c blocks of data of s words each. Table 4 summarizes the

communication costs of the various methods. See the

Appendix for the derivation of the formulas reported in

Table 4 and for the definition of the cost C0 of computing

centroids. The communication cost per iteration of the

PFCNN1 rule is

C1ðkÞ ¼ 2n0kp � 1þ�nkþ1d � 1;

whereas the communication cost per iteration of the

PFCNN2 rule is
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C2ðkÞ ¼ n0kdmp � 1þ 2�nkþ1mp � 1þ�nkþ1md � 1:

From these formulas, it is clear that PFCNN1 exchanges
considerably less data than PFCNN2. Indeed, for each of the
n0k objects in the current subset Sk [�Sk, PFCNN1 ex-
changes only the distances from their nearest enemy on each
node (2p words), whereas PFCNN2 exchanges dmp words.
Furthermore, for each of the �nkþ1 objects in the set �Skþ1,
PFCNN1 exchanges d words, whereas PFCNN2 exchanges
2mpþmd words.

In addition, the PFCNN-p rule requires an exchange of
nk�nk distances between the elements of Ti and the elements
of �S and the associated identifiers. For PFCNN-b, the
2nk�nk words are sent in blocks of BUF words by
performing 2nk�nk

BUF communications.

4.4 Discussion

It is worth recalling that the FCNN rule requires approxi-
mately Nn distance computations, whereas it has already
been noticed that the temporal cost of all the strategies can
be approximated to Nn

p .

The methods exploiting the triangle inequality may
guarantee great savings with respect to this worst-case
complexity. In particular, as noted above, the PFCNN1-t
and PFCNN2-t methods require the same communica-
tions as those of the PFCNN1 and PFCNN2 methods,
respectively.

However, if the consistent subset becomes large, and
hence, the parameter M becomes significant, their perfor-
mance could deteriorate since each node has to compute
M distances.

On the contrary, the PFCNN1-p(-b) and PFCNN2-p(-b)
rules present a negligible overhead with respect to the
PFCNN1 and PFCNN2 methods, respectively, yet their
speedup in terms of computed distances is almost equal to
the number of nodes p (note that, from a theoretical point of
view, by parallelizing the computation carried out in step 9j
in Fig. 4, the cost mn to be paid by the PFCNN2 rule can be
broken down to mn

p ; it was preferred not to parallelize this
step as CPU computation savings do not offset the
additional communication overhead).

If the PFCNN1 and PFCNN2 strategies perform the same
number of iterations, then the former should perform better.
Indeed, if the communication cost is considered, it is clear
from Table 4 that the PFCNN1 rule is more advantageous
than the PFCNN2 rule in terms of the amount of data to be

exchanged. However, it has been observed [3] that the
FCNN2 rule always completes within some tens of
iterations, since it rapidly covers regions of the space far
from the centroids of the classes, whereas the PFCNN1 rule
may require, depending of the characteristics of the data,
either approximatively the same number of iterations of the
PFCNN2 rule or up to hundreds of iterations.

5 RELATED WORK

The literature related to this work can be classified in
different groups. First of all, there is the literature concern-
ing classification methods for large data sets (refer to [16], [21]
for details).

Several training set condensation algorithms have been
introduced in the literature [34], [8], [29], that is, instance-
based [2], lazy [1], memory-based [27], and case-based
learners [32]. These methods can be grouped into compe-
tence preservation, competence enhancement, and hybrid
approaches. Competence preservation methods compute a
training set consistent subset removing superfluous in-
stances that will not affect the classification accuracy.
Competence enhancement methods aim at removing noisy
instances in order to increase accuracy. Hybrid methods
search for a subset that simultaneously achieves both noisy
and superfluous instances elimination.

The concept of a training set consistent subset for the
NN rule was introduced in [22], together with an algorithm
called the CNN rule, to determine a consistent subset of the
original sample set. The CNN is order dependent, that is, it
has the undesirable property that the consistent subset
depends on the order in which the data is processed. Thus,
multiple runs of the method over randomly permuted
versions of the original training set should be executed in
order to determine the quality of its output [4]. The MCNN
rule [13] computes a training set consistent subset in an
incremental manner. Unlike the CNN rule, the MCNN rule
is order independent, that is, it always returns the same
consistent subset independent of the order in which the
data is processed. However, the method could require a lot
of iterations to converge. In order to compute a small
consistent subset S of the training set T , Karaçali and Krim
[23] proposed the algorithm NNSRM. Nevertheless, its time
complexity is quite high: OðjT j3Þ. The Reduced NN (RNN)
rule [19] is a postprocessing step that can be applied to any
other competence preservation method. Experiments have
shown that this rule yields a slightly smaller subset than the
CNN rule, but it is costly. Methods previously discussed
compute a training set consistent subset in an incremental
or decremental manner and have polynomial execution
time requirements. The Minimal Consistent Subset (MCS)
rule [11] aims at computing a minimum cardinality training
set consistent subset (an NP-hard task; see [33]). The
algorithm, based on the computation of the so-called
nearest unlike neighbors [12], is quite complex. Further-
more, counterexamples have been found to the conjecture
that it computes a minimum cardinality subset. Approx-
imate optimization methods such as tabu search, gradient
descent, evolutionary learning, and others have been used
to compute subsets close to the minimum cardinality one
[25]. Both the MCS and these algorithms can be applied in a
reasonable amount of time only to a small- or medium-
sized data set.
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TABLE 4
Total Amount of Data Exchanged by the PFCNN Strategies



It is the case to recall here that to the best of our
knowledge, no distributed method for computing a training
set consistent subset for the NN rule has been presented in
literature. This may be due to the fact that methods other
than the FCNN rule seem to have a structure that is not very
parallelizable, basically since operations executed during
each iteration must be necessarily executed in sequence,
whereas each iteration of the FCNN rule can be parallelized
very efficiently.

Finally, we mention two categories of methods that are
complementary to the task here considered.

The first category concerns methods for speeding up the
NN search [10], [18], [7], which may alleviate the cost of
searching for the NN of a query point. Basically, the goal of
these methods is to provide a data structure, often called
index or tree, storing the data set, which is able to speed up
the search for NNs during classification. These methods are
complementary to the task here considered since indexes
can be profitably used at classification time to speed up the
NN search either in the original training set or in a
consistent subset of it. In particular, both spatial and
temporal costs of index structures depend on the size of
the data set. Thus, using a consistent subset instead of the
whole training set is advantageous from the point of view of
computational resources to be employed.

The second category concerns methods for improving
classification accuracy or response time through the use of
multiple NN classifiers.

In [4], a method is proposed to train multiple condensed
NN classifiers on smaller training sets and to take a vote over
them. In [5], [6], the MFS algorithm is described, combining
multiple NN classifiers, each using only a random subset of
the features. In [31], the authors propose to use an ensemble
of multiple approximate (weak) NN classifiers to speed up
the classification time.

In [35], a modular k-NN classification method for
massively parallel text categorization is presented. The
method decomposes the overall problem into a number of
smaller two-class base subproblems and finally combines
their outputs by means of a Min-Max Modular neural
network model [26]. This approach has some relationship
with the Round Robin classification, which transforms an
m-class problem intoOðm2Þ two-class base subproblems [17].

If each base classifier can be allocated on a different
processor, since a grid or a large-scale cluster system is
available, then the speedup achievable by all the above
mentioned methods is equal to the number of base classifiers;
otherwise, the speedup is equal to the number of available
processors.

It is important to point out that also ensemble and
decomposition methods are complementary with respect to
the task of condensing the training set, since they can be used
on condensed training sets to obtain a better classifier or to
further speed up the response time. Indeed, although the
goal of condensation algorithms is to reduce the size of the
stored data maintaining the same classification accuracy as
the original training set, the goal of using multiple classifiers
is to improve classification accuracy time and/or elaboration
time. Again, both spatial and temporal costs of ensemble/
decomposition methods depend on the size of the data set,
and using a consistent subset instead of the whole training
set greatly reduces their computational requirements.

6 EXPERIMENTS

All the experiments were performed on a Linux cluster with
16 Itanium2 1.4-GHz nodes, each having 2 Gbytes of main
memory and connected by a Myrinet high-performance
network.

The experiments are organized as follows: First of all, in
order to compare the behavior of the different strategies, a
family of synthetically generated training sets was con-
sidered. Then, the methods were tested on three large high-
dimensional real data sets. Finally, the accuracy of the
PFCNN rule is compared with the accuracy of the NN rule
on some difficult classification tasks.

6.1 Synthetic Data Sets

A family of synthetic data sets, called Checkerboard data sets,
was considered. Each data set of the family is composed of
2D points into the unit square. A 4� 4 checkerboard, ideally
drawn onto the unit square, partitions the points into two
classes associated with the white and black cells of the board.
Data sets composed of 1 million points (each point is
encoded with three words, two representing point coordi-
nates, and the last one representing the class label for a total
of 11 Mbytes), 10 million points (114 Mbytes), 20 million
points (229 Mbytes), and 50 million points (573 Mbytes) are
taken into account.

In order to evaluate the scalability of the algorithms, the
largely used speedup parallel metric was employed. Let Tseq
denote the execution time of the sequential algorithm and
let Tp denote the execution time of the parallel algorithm on
p processors. Then, the speedup SupðpÞ on p processors is
defined as SupðpÞ ¼ Tseq

Tp
. If the algorithm scales ideally, its

speedup SupðpÞ is p for all values of p.
The analysis of the curse of the size of the set �S and of

the number of iterations of the different strategies, reported
in Fig. 6, is the starting point, since, as pointed out in
Section 4 (see Tables 2, 3, and 4), the course of �S is
fundamental to the understanding of the execution time,
scalability, and memory usage. In the PFCNN1 case, the
number of iterations increases from about 100 for one
million points to about 1,000 for 50 million points, whereas
the peak of j�Sj remains almost the same. As for PFCNN2,
on the contrary, the number of iterations remains almost
identical regardless of the data set size, whereas the peak of
j�Sj increases sensibly.

Consider the speedup curves in Fig. 7. It is worth
noticing that PFCNN1 and PFCNN2 scale almost linearly.
This confirms that the parallelization is very efficient. As for
the triangle inequality-based strategies, for all the data set
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Fig. 6. Checkerboard data set: Size of �S versus the iteration number

(note the vast difference in the horizontal and vertical scales).

(a) PFCNN1 and (b) PFCNN2.



sizes, PFCNN2-p outperforms PFCNN2-t. This is due to the
parallelization of the comparison among the elements of S
and �S as explained in Section 4. The same is not true for
PFCNN1-t and PFCNN1-p that require almost the same
amount of time (except for the smallest data set, where
PFCNN1-p is sensibly better than PFCNN1-t). This beha-
vior is due to the fact that the size of �S is small over all the
iterations, and distance computation savings do not offset
the additional communication overhead to be paid by
PFCNN1-p. Except for the PFCNN2 basic strategy, the other
PFCNN2 strategies scale worse than the corresponding
PFCNN1 strategies.

Since on average the set �S computed by PFCNN2 is
much larger than the same set computed by PFCNN1, it
was expected that the triangle inequality guarantees great
savings on the PFCNN2 rule and, hence, that the PFCNN2-t
and PFCNN2-p strategies are faster than the PFCNN1-t and
PFCNN1-p strategies, respectively. This behavior is con-
firmed by the execution time reported in Table 5. The same
behavior cannot be observed on PFCNN1 and PFCNN2. It
can be concluded that without the time savings guaranteed
by the triangle inequality, PFCNN2 is slower than PFCNN1.

Fig. 8 shows the size of the consistent subset computed
versus the data set size. It can be observed that the PFCNN1
algorithm guarantees a higher compression ratio than
PFCNN2, even if the former takes more time than the latter
when the triangle inequality is exploited.

Table 6 shows the memory usage per node, assuming
that 16 nodes are used. Interestingly, memory becomes
critical only for PFCNN2-p and when the data set consists
of 50 million points. In fact, as memory depends on the
factor jSj � j�Sj, the strategy reaches a peak of 1,788 Mbytes
of memory usage during the 19th iteration (see Fig. 6b).

Thus, this strategy is not practicable on larger data sets
on the employed architecture. In any case, the PFCNN2-b
strategy can be used. Fig. 9 shows the execution time of the
PFCNN1-b and PFCNN2-b strategies versus the dimension
BUF of the buffer on the data set composed of 50 million

points. In general, if the buffer is too small, then the
communication cost outweighs the advantages of a better
usage of the memory. Nonetheless, as soon as the size BUF
of the buffer becomes sufficiently large, that is, at least
16 Mbytes in the case considered, then the PFCNN1-b and
PFCNN2-b strategies reach their best behavior. In particu-
lar, PFCNN1-b exhibits the same execution time as that of
PFCNN1-p, since the buffer is sufficient to store all the
distances between the elements of S and the elements of
�S, the latter set being very small. Surprisingly, PFCNN2-b
performs better than PFCNN2-p. This can be explained
since the overhead due to additional communications is
offset by the efficient memory usage. As a result, the
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Fig. 7. Checkerboard data set: speedup.

Fig. 8. Checkerboard data set: consistent subset size.

TABLE 5
Checkerboard: Execution Time

(a) One million of points. (b) Ten millions of points. (c) Twenty millions of
points. (d) Fifty millions of points.



PFCNN2-b strategy terminates in about 750 sec, which is
the fastest time scored on this data set, with a buffer of
16 Mbytes and a total memory usage of 67 Mbytes.

6.2 Real-Life Data Sets

Three real data sets were considered, namely, the Extended

MIT Face data set, the US Defense Advanced Research Projects

Agency (DARPA) 1998 data set, and the Forest Cover Type

data set.
The MIT Face detection data set is an extended version of

the MIT face database, built by adding to the original data
set both novel nonface image examples and face image
examples obtained by applying various image transforma-
tions to the faces already present, as described in [30]. The
data set is composed of 471,914 objects of the class nonface
(96.43 percent of the total) and 17,496 of the class face
(3.57 percent of the total), each having 361 features, for a
total of 489,410 objects (676 Mbytes).

The DARPA 1998 intrusion detection evaluation data set1

consists of network intrusions simulated in a military
network environment. The Transmission Control Protocol
(TCP) connections have been elaborated to construct a data
set of 23 features, one of which identifies the kind of attack:
denial of service (DoS), remote to local (R2L), user to root (U2R),
and PROBING. The TCP connections from five weeks of
training data were used. The data set is composed of
458,301 objects (42 Mbytes) partitioned into two classes:
normal, representing normal data (456,320 objects), and attack,
associated with the different types of attack (1,981 objects).

The Forest Cover Type data set2 comprises data
representing forest cover types from cartographic variables
determined from the US Forest Service and from the US
Geological Survey. It is composed by 495,141 tuples, each
having 54 features (104 Mbytes), partitioned in two classes.

Fig. 10a, Fig. 10b, and Fig. 10c show the curse of the size
of �S versus the iteration number of PFCNN1 and
PFCNN2 for the three above-described data sets. Note that
for the first two data sets, the behavior of the two rules is
very similar. Indeed, they perform almost the same number
of iterations and reach a peak of about the same size, event
though on the DARPA 1998, PFCNN2 required less
iterations and presents a peak higher than that of PFCNN1.
On the other hand, on the Forest Cover Type data set,
PFCNN1 performs less than half as many iterations and
reaches a peak that is about three times as large as the peak
reached by the other rule. This will affect scalability and
execution time, as shown in the following section.

6.2.1 MIT Face

Experimental results concerning the MIT Face data set are
shown in Table 7. Note that in the sequential scenario,
PFCNN2 performs better than PFCNN1 and also that the
triangle inequality further reduces the execution time.
Nevertheless, as the number of processors increases,
although the speedup of PFCNN1 is excellent, the speedup
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TABLE 6
Checkboard Data Set: Maximum (Average in Parentheses)

Memory Usage per Node (in megabytes) with p ¼ 16

Fig. 9. Checkboard data set: execution time versus buffer dimension.

Fig. 10. Size of �S for the (a) MIT Face, (b) DARPA 1998, and

(c) Forest Cover Type data sets.
1. http://www.ll.mit.edu/IST/ideval/index.html.
2. http://kdd.ics.uci.edu/databases/covertype/covertype.html.



of PFCNN2 deteriorates, and as a result, PFCNN1 is faster if

all the 16 nodes are employed, even though in all cases, the

algorithms terminate in about 1 minute. It is interesting to

understand the reason why the speedup of PFCNN2

deteriorates. It was verified that this behavior is associated

with a high communication overhead, exhibited in corre-

spondence to the data exchanged in step 9d in Fig. 4, due to

the very high dimensionality of the data set. The maximum

and average memory usage is good for all the strategies

since the peak of j�Sj is very small.
On this data set, PFCNN1 computed, after 81 iterations, a

subset composed of a total of 3,362 objects (0.69 percent of

the whole training set), of which 3,108 are of the class

nonface (0.66 percent of the class objects) and 254 are of the

class face (1.45 percent of the class objects). PFCNN2

computed, after 78 iterations, a subset composed of a total

of 3,165 objects (0.65 percent of the whole training set), of

which 2,918 are of the class nonface (0.62 percent of the class

objects) and 247 are of the class face (1.41 percent of the class

objects).
Using a tenfold cross validation, PFCNN1 obtained an

accuracy of 99.92 percent on the class nonface and an

accuracy of 99.96 percent on the class face for a total

accuracy of 99.92 percent, whereas PFCNN2 obtained an

accuracy of 99.49 percent on the class nonface and an

accuracy of 99.73 percent on the class face for a total

accuracy of 99.50 percent. This result is comparable to that

obtained by the CNN (99.53 percent) and the MCNN

(99.45 percent) methods [22], [13]. To have an idea of the

improvement of the PFCNN algorithms, compare their

execution time with the 35,283 sec employed by the CNN

rule and the 40,102 sec employed by the MCNN rule to

complete the training phase on the MIT Face data set.

6.2.2 DARPA 1998

Table 8 reports the experimental results of the DARPA 1998
data set. It can be observed that the sequential execution
time is very small and almost the same for all the strategies.
Also, the methods scale very well, and the parallel
execution time on 16 nodes reduces to less than 3 sec in
all cases. Only PFCNN2-p does not scale so well. This can
be explained by noticing that the CPU cost is very small
and, hence, even few and small-sized additional commu-
nications may deteriorate the total execution time. The
maximum and average memory usage are low, owing to the
small average value of j�Sj. On this data set, PFCNN1
computed, after 29 iterations, a subset composed of a total
of 854 objects (0.19 percent of the whole training set), of
which 238 are attacks (12.01 percent of the class objects) and
616 are normal data (0.13 percent of the class objects).
PFCNN2 computed, after 24 iterations, a subset composed
of a total of 926 objects (0.20 percent of the whole training
set), of which 246 are attacks (12.42 percent of class objects)
and 680 are normal data (0.15 percent of the class objects).

Finally, using a tenfold cross validation, PFCNN1
obtained an accuracy of 99.99 percent on the class normal
and an accuracy of 93.83 on the class attack for a total
accuracy of 99.96 percent, whereas PFCNN2 obtained an
accuracy of 99.96 percent on the class normal and an
accuracy of 92.23 percent on the class attack for a total
accuracy of 99.50 percent.

6.2.3 Forest Cover Type

Table 9 reports the experimental results concerning the
Forest Cover Type data set. All the PFCNN rules are very
fast. However, even if the PFCNN1 basic strategy exhibits,
as usual, an excellent speedup, it must be said that the
speedup of PFCNN on this data set is worse than that
observed on the other data sets. This is especially evident
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TABLE 7
MIT Face Data Set: Experimental Results

(a) Execution time versus number of nodes. (b) Speedup. (c) Memory
usage, p ¼ 16 (in Megabytes).

TABLE 8
DARPA 1998 Data Set: Experimental Results

(a) Execution time versus number of nodes. (b) Speedup. (c) Memory
usage, p ¼ 16 (in Megabytes).



for the PFCNN-t strategies, due to the large size jDj of the
set D composed of the pairwise distances among the
elements of the current subset S and the elements of the
current incremental subset �S. Recall that in the PFCNN-t
strategy, the computation of the distances in the set D is not
parallelized. As a matter of fact, the maximum value
assumed by j�Sj is about 1,800 (8,000, respectively) for the
PFCNN1 (PFCNN2, respectively) rule. As a direct conse-
quence, the PFCNN-p strategies waste a lot of memory.
Obviously, the use of the PFCNN-b strategies would
improve the usage of memory.

PFCNN1 computed a subset composed of a total of
39,799 objects (8.04 percent of the whole training set),
whereas PFCNN2 computed a subset composed of 41,164 ob-
jects (8.31 percent). Using a tenfold cross validation,
PFCNN1 and PFCNN2 obtained an accuracy of 99.98 percent
and 99.96 percent, respectively.

6.3 Comparison with the Nearest Neighbor Rule

In order to validate effectiveness of the PFCNN rule, it is of
interest to compare the accuracy of the PFCNN rule with
the accuracy of the NN classifier using the whole training
set as the reference set during classification.

To this aim, the original MIT Face3 data set and the
KDD CUP 19994 data set were considered. These data sets
represent two difficult classification tasks, since the class
label distribution of the training set is rather different from
the class label distribution of the data set. The class label
distribution of these data sets is reported in Table 10. In
particular, the column TRAIN reports the number of
objects composing the training set, the column TEST
reports the number of objects composing the test set, the
column PFCNN1 reports the number of objects composing

the PFCNN1 condensed set, and the column PFCNN2
reports the number of objects composing the PFCNN2
condensed set.

The experiments pointed out the very good classification
accuracy associated with the PFCNN subset compared to
the classification associated with the whole training set. In
fact, the classification accuracy of the NN rule using the
whole training set as the reference set was 93.43 percent and
92.06 percent for the MIT Face and KDD CUP 1999 data sets,
respectively, whereas the classification accuracy achieved
by the PFCNN1 (PFCNN2) rule on these two data sets was,
respectively, 93.43 percent (93.48 percent) and 92.02 percent
(91.97 percent).

6.4 Discussion

Now, let us briefly point out the strengths and weakness of
the different strategies, based on the experimental results
and complexity analysis.

PFCNN1 presents a very low communication overhead.
The same holds for PFCNN2 provided that the data is not
very high dimensional. They scale almost linearly and are
suitable to massively parallel machines and to distributed
environments such as computational grids. The PFCNN2
strategies may be faster than PFCNN1s, but the latter
always scale better than the former, and they are preferable
when the data set is very high dimensional. The triangle-
inequality-based strategies (PFCNN-t, PFCNN-p, and
PFCNN-b) reduce execution time, even if they may scale
worse than the basic PFCNN. PFCNN-t is advantageous in
grid environments, in which communication is costly.
PFCNN-p is preferable in parallel environments and may
guarantee great time savings over PFCNN-t, but for data
sets with large values of j�Sj, it wastes enormous quantities
of memory. However, this problem is solved by PFCNN-b,
which, with an adequate dimension of the buffer, uses the
memory more efficiently and performs even better in terms
of total execution time.

7 CONCLUSIONS

A distributed algorithm for computing a consistent subset
of a very large data set for the NN decision rule has been
presented, and it is shown that it scales almost linearly. To
the best of our knowledge, this is the first distributed
algorithm for computing a training set consistent subset for
the NN rule.

The different strategies are validated on a class of
synthetic data sets and on three large real-world data sets.
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TABLE 10
Class Label Distribution of the Data Sets Used to Compare

Accuracy of the NN and PFCNN Rules

TABLE 9
Forest Cover Type Data Set: Experimental Results

(a) Execution time versus number of nodes. (b) Speedup. (c) Memory
usage, p ¼ 16 (in Megabytes).

3. http://cbcl.mit.edu/software-datasets/FaceData2.html.
4. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.



The two basic strategies, PFCNN1 and PFCNN2, scale
almost linearly and are suitable to a distributed environ-
ment as computational grids. Triangular-inequality-based
strategies (PFCNN-t, PFCNN-p, and PFCNN-b) further
reduce the execution time. PFCNN-t is advantageous in
grid environments, PFCNN-p is more adapt to parallel
architectures, and PFCNN-b uses the memory more
efficiently.

Experiments performed on a parallel architecture showed
that the algorithms scale well in terms of both memory
consumption and execution time. The algorithms were able
to manage very large collections of data in a small amount of
time, for example, about 12 minutes to process a data set of
about 0.6 Gbytes composed of 50 million objects or about
1 minute to process a data set of about 0.7 Gbytes composed
of half a million 361-dimensional objects. The subset
computed on the latter data set was composed of the
0.69 percent of the whole training set and exhibited
99.92 percent accuracy.

APPENDIX
Derivation of the CPU cost. The CPU cost is expressed as
the number of distance computations required by a single
node, since the most costly operation performed is the
computation of the distance between two objects.

First of all, note that jTijm distances are needed by every
method to find the centroids of each class.

As for the PFCNN1 rule, during each iteration, the
elements of Ti � ðSk \ TiÞ are compared with the ele-
ments of j�Skj. Thus, the distances computed are
jTijmþ

P
kðjTij � jSk \ TijÞj�Skj. Assuming that the ele-

ments of S are picked uniformly from each node and,
hence, that jSk \ Tij ¼ nk

p , this leads to a total temporal
cost NðnþmÞ

p � M
p .

As far as the PFCNN1-t rule is concerned, let � 2 ð0; 1� be
the average fraction of points of �S compared with each
point of Ti. The parameter � takes into account the fact that
the triangle inequality may reduce the effective number of
comparisons between the elements of Ti and the elements of
�S. Then, during each iteration, the elements of Ti � ðSk \
TiÞ are compared with �j�Skj elements of �Sk. Moreover,
during each iteration, the distances between the elements of
Sk and the elements of �Sk are computed. Summing up, the
temporal cost is

jTijmþ
X
k

½ðjTij � jSk \ TijÞ�j�Skj þ jSkk�Skj�;

that is, Nð�nþmÞp þ Mðp��Þ
p .

Consider now the PFCNN1-p rule. This time, each node
computes only a 1

p fraction of the distances between Sk and
�Sk. Thus, the distances are

jTijmþ
X
k

ðjTij � jSk \ TijÞ�j�Skj þ
jSkk�Skj

p

� �
;

which simplifies to Nð�nþmÞ
p þ Mð1��Þ

p .

As for the PFCNN2 rules, in order to compute the
representative of the Voronoi enemies of the points in
Sk [�Sk, these rules require, in the worst case, to compute
the distances between each element of Ti � ðSk \ TiÞ and the
geometrical center of the elements of its Voronoi cell having

the same class label and then the distances between each
element of Sk and the class label centroids of its Voronoi cell.

Thus, the time complexity of the FCNN2 rules can be
obtained by adding to the cost of the corresponding PFCNN1
rule the following number of distance computations:

X
k

½ðjTij � jSk \ TijÞ þ jSkjðm� 1Þ� ¼ jTij
X
k

1�
X
k

nk
p

þ ðm� 1Þ
X
k

nk ¼
Nt

p
þ n m� pþ 1

p

� �
� Nt

p
þ nm:

Derivation of the communication cost. The
parallel�sum and parallel�min methods are efficiently
implemented on a parallel environment using the MPI
libraries [20] and on a grid computing environment using
the MPICH-G2 libraries [24].

Consider the parallel function parallel�sumðv1; . . . ; vpÞ,
where v1; . . . ; vp are (arrays of) integer or floating-point
numbers. If d is the size of each vi and p is the number of
processors available, then this function exchanges
dp � 1 data.

To reduce the amount of data sent, the parallel function
parallel�minðhv1; c1i; . . . ; hvp; cpiÞ, where v1; . . . ; vp are (ar-
rays of) integers or floating-point numbers, and c1; . . . ; cp

are floating-point numbers, consists of two phases. During
the first phase, each node sends its identifier i, together with
the value ci. During the second phase, the node i� achieving
the value ci

� ¼ minfc1; . . . ; cpg sends the vector vi
�

to all the
other nodes. Thus, if d is the size of each vi, then this
function exchanges 2p � 1þ d � 1 data. Furthermore, it must
be said that if a parallel function is invoked multiple times
in a cycle on the elements of an array, in order to reduce the
number of communications and, consequently, the start-up
latency, which in a distributed environment may be very
consistent, the code is optimized so that all the data
involved in the various communications is sent together.

Thus, if the size of the array is L, then the parallel�sum
exchanges Ldp � 1 data, whereas the parallel�min ex-
changes 2Lp � 1þ Ld � 1 data.

Now, the communication costs of the various methods
are provided. To compute class centroids (Fig. 4: steps 1-8)
the nodes send the following data:

C0 ¼ mdp � 1þ 2mp � 1þmðd� 1Þ � 1;

where the term mdp � 1 concerns the sum of the elements of
each class (mðd� 1Þ words) plus the count of the elements
(m words), which must be multiplied for the number of
nodes, computed by employing the parallel�sum function,
and the term 2mp � 1þmðd� 1Þ � 1 concerns the centroids
of each class, computed by employing the parallel�min
function.

As far as the PFCNN1 rule is concerned, during each
iteration, it executes a parallel�min function to determine
the nearest enemy of each element of S [�S (step 9e).
Thus, the data sent per iteration is

C1ðkÞ ¼ 2n0kp � 1þ�nkþ1d � 1:

Note that only the representative of the Voronoi enemies of
the Voronoi cells containing at least a Voronoi enemy are
sent during the second phase of the parallel�min. Thus,
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the overall cost of the PFCNN1 (and also of the PFCNN1-t)
rule is C0 þ

P
k C1ðkÞ communications.

In addition, the PFCNN1-p rule requires exchanging the
nk�nk distances between the elements of Ti and the elements
of �S and the associated identifiers and, hence, the total cost
is C0 þ

P
kð2nk�nk � 1þ C1ðkÞÞ. Instead, for PFCNN1-b, the

2nk�nk words are sent in blocks of BUF words by
performing 2nk�nk

BUF communications. Hence, the total cost is
C0 þ

P
kð2n0kp � 1þ�nkþ1d � 1þBUF � 2nk�nk

BUF Þ.
Consider now the PFCNN2 rule. During each iteration,

it executes two calls to parallel functions. In particular,
data n0kdmp � 1 is exchanged by the parallel�sum in
step 9d in Fig. 4 to compute class centers of the Voronoi
cells, whereas data 2n0kmp � 1þ n0kmd � 1 is exchanged by
the parallel�min in step 9g to compute class centroids of
the Voronoi cells. In summary, the data exchanged during
each iteration is

C2ðkÞ ¼ n0kdmp � 1þ 2�nkþ1mp � 1þ�nkþ1md � 1:

As for the different PFCNN2 strategies, their cost can be
obtained analogously to that of the corresponding PFCNN1
strategy.
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