
Artificial Intelligence 151 (2003) 155–176

www.elsevier.com/locate/artint

Consistency-based search in feature selection

Manoranjan Dash a,∗, Huan Liu b

a Electrical and Computer Engineering, Northwestern University,
2145 Sheridan Rd, Evanston, IL 60208-3118, USA

b Department of Computer Science and Engineering, Arizona State University,
PO Box 875406, Tempe, AZ 85287-5406, USA

Received 7 March 2002; received in revised form 27 March 2003

Abstract

Feature selection is an effective technique in dealing with dimensionality reduction. For
classification, it is used to find an “optimal” subset of relevant features such that the overall accuracy
of classification is increased while the data size is reduced and the comprehensibility is improved.
Feature selection methods contain two important aspects: evaluation of a candidate feature subset
and search through the feature space. Existing algorithms adopt various measures to evaluate the
goodness of feature subsets. This work focuses on inconsistency measure according to which a
feature subset is inconsistent if there exist at least two instances with same feature values but with
different class labels. We compare inconsistency measure with other measures and study different
search strategies such as exhaustive, complete, heuristic and random search, that can be applied to
this measure. We conduct an empirical study to examine the pros and cons of these search methods,
give some guidelines on choosing a search method, and compare the classifier error rates before and
after feature selection.
 2003 Elsevier B.V. All rights reserved.

Keywords: Classification; Feature selection; Evaluation measures; Search strategies; Random search; Branch
and bound

1. Introduction

The basic problem of classification is to classify a given instance (or example) to one of
m known classes. A set of features presumably contains enough information to distinguish
among the classes. When a classification problem is defined by features, the number of

* Corresponding author.
E-mail address: manoranj@lilac.ece.nwu.edu (M. Dash).

0004-3702/$ – see front matter 2003 Elsevier B.V. All rights reserved.

doi:10.1016/S0004-3702(03)00079-1

156 M. Dash, H. Liu / Artificial Intelligence 151 (2003) 155–176

features can be quite large, many of which can be irrelevant or redundant. A relevant feature

is defined in [5] as one removal of which deteriorates the performance or accuracy of the
classifier; an irrelevant or redundant feature is not relevant. Because irrelevant information
is cached inside the totality of the features, these irrelevant features could deteriorate
the performance of a classifier that uses all features [6]. The fundamental function of a
feature selector is to extract the most useful information from the data, and reduce the
dimensionality in such a way that the most significant aspects of the data are represented
by the selected features [14]. Its motivation is three-fold: simplifying the classifier by
retaining only the relevant features; improving or not significantly reducing the accuracy of
the classifier; and reducing the dimensionality of the data thus reducing the size of the data.
The last point is particularly relevant when a classifier is unable to handle large volumes
of data. Research on feature selection has been done for last several decades and is still in
focus. Reviews and books on feature selection can be found in [11,26,27]. Recent papers
such as [2,9,16,17,22,43] address some of the existing issues of feature selection.

In order to select relevant features one needs to measure the goodness of selected
features using a selection criterion. The class separability is often used as one of the
basic selection criteria, i.e., when a set of features maximizes the class separability,
it is considered well suited for classification [37]. From a statistics view point, five
different measurements for class separability are analyzed in [14]: error probability, inter-
class distance, probabilistic distance, probabilistic dependence and entropy. Information-
theoretic considerations [45] suggested something similar: using a good feature of
discrimination provides compact descriptions of each class, and these descriptions are
maximally distinct. Geometrically, this constraint can be interpreted to mean that (i) such
a feature takes on nearly identical values for all examples of the same class, and (ii) it
takes on some different values for all examples of the other class. In this work, we use a
selection criterion called consistency measure that does not attempt to maximize the class
separability but tries to retain the discriminating power of the data defined by original
features. Using this measure, feature selection is formalized as finding the smallest set of
features that can distinguish classes as if with the full set. In other words, if S is a consistent
set of features, no two instances with the same values on S have different class labels [1].

Another aspect of feature selection is related to the study of search strategies to which
extensive research efforts have been devoted [5,11,41]. The search process starts with either
an empty set or a full set. For the former, it expands the search space by adding one feature
at a time (Forward Selection)—an example is Focus [1]; for the latter, it shrinks the search
space by deleting one feature at a time (Backward Selection)—an example is ‘Branch &
Bound’ [34]. Except these two starting points, the search process can start from a random
subset and continue either probabilistically (LVF [30]) or deterministically (QBB [12])
from there.

The contributions of this paper include:

• a detailed study of consistency measure vis-a-vis other evaluation measures;
• pros and cons of various search strategies (exhaustive, complete, heuristic, and

probabilistic) based on consistency measure;
• experimental comparison of different search methods; and
• guidelines about choosing a search method.

M. Dash, H. Liu / Artificial Intelligence 151 (2003) 155–176 157

In the rest of the paper, we describe the feature selection process in Section 2. Section 3

discusses consistency measure and compares with other measures. Section 4 describes
different search strategies for consistency measure and their pros and cons. Section 5 shows
some experimental results and Section 6 concludes the paper.

2. Feature selection process

In the rest of the paper we use the following notations. P is the total number of instances,
N denotes the total number of features, M stands for the number of relevant/selected
features, S denotes a subset of features, f1, . . . , fM are the M features, m denotes the
number of different class labels, and C stands for the class variable.

Ideally feature selection methods search through the subsets of features and try to find
the best subset among the competing 2N candidate subsets according to some evaluation
measure. But this procedure is exhaustive as it tries to find only the best one, and may
be too costly and practically prohibitive even for a medium-sized N . Other methods
based on heuristic or random search methods attempt to reduce computational complexity
by compromising optimality. These methods need a stopping criterion to prevent an
exhaustive search of subsets. There are four basic steps in a typical feature selection method
(see Fig. 1):

(1) a generation procedure to generate the next candidate subset for evaluation,
(2) an evaluation function to evaluate the candidate subset,
(3) a stopping criterion to decide when to stop, and
(4) a validation procedure to check whether the subset is valid.

The generation procedure uses a search strategy to generate subsets of features for
evaluation. It starts (i) with no features, (ii) with all features, or (iii) with a random subset
of features. In the first two cases features are iteratively added/removed, whereas in the last

Fig. 1. Feature selection process with validation.

158 M. Dash, H. Liu / Artificial Intelligence 151 (2003) 155–176

case, features are either iteratively added/removed or produced randomly thereafter during

search.

An evaluation function measures the goodness of a subset produced by some generation
procedure, and this value is compared with the previous best. If it is found to be better,
then it replaces the previous best subset. An optimal subset is always relative to a certain
evaluation function (i.e., an optimal subset chosen using one evaluation function may not
be the same as that using another evaluation function).

Without a suitable stopping criterion the feature selection process may run unneces-
sarily long or possibly forever depending on search strategy. Generation procedures and
evaluation functions can influence the choice for a stopping criterion. Examples of stop-
ping criteria based on a generation procedure include: (i) whether a predefined number of
features are selected, and (ii) whether a predefined number of iterations reached. Examples
of stopping criteria based on an evaluation function include: (i) whether further addition
(or deletion) of any feature produces a better subset, and (ii) whether an optimal subset
(according to some evaluation function) is obtained. The feature selection process halts by
outputting the selected subset of features which is then validated.

There are many variations to this feature selection process but the basic steps of
generation, evaluation and stopping criterion are present in almost all methods.

The validation procedure is not a part of the feature selection process itself. It tries
to test the validity of the selected subset by testing and comparing the results with
previously established results or with the results of competing feature selection methods
using artificial datasets, and/or real-world datasets.

3. Consistency measure

3.1. The measure

The suggested measure U is an inconsistency rate over the dataset for a given feature
set. In the following description a pattern is a part of an instance without class label. It
is a set of values of feature subset. For a feature subset S with nf1, nf2, . . . , nf|S| number
of values for features f1, f2, . . . , f|S| respectively, there are at most nf1 ∗ nf2 ∗ · · · ∗ nf|S|
patterns.

Definition. Consistency measure is defined by inconsistency rate which is calculated as
follows.

(1) A pattern is considered inconsistent if there exists at least two instances such that they
match all but their class labels; for example, an inconsistency is caused by instances
(0 1, 1) and (0 1, 0) where the two features take the same values in the two instances
while the class attribute varies which is the last value in the instance.

(2) The inconsistency count for a pattern of a feature subset is the number of times it
appears in the data minus the largest number among different class labels. For example,
let us assume for a feature subset S a pattern p appears in np instances out of which c1
instances has class label 1, c2 has label2, and c3 has label3 where c1 + c2 + c3 = np .

M. Dash, H. Liu / Artificial Intelligence 151 (2003) 155–176 159

If c3 is the largest among the three, the inconsistency count is (n − c3). Notice that the

sum of all nps over different patterns p that appear in the data of the feature subset S

is the total number of instances (P) in the dataset, i.e.,
∑

p np = P .
(3) The inconsistency rate of a feature subset S (IR(S)) is the sum of all the inconsistency

counts over all patterns of the feature subset that appears in the data divided by P .

The consistency measure is applied to the feature selection task as follows. Given a
candidate feature subset S we calculate its inconsistency rate IR(S). If IR(S) � δ where
δ is a user given inconsistency rate threshold, the subset S is said to be consistent. Notice
that this definition is an extension of the earlier definition used in [1]: the new definition
tolerates a given threshold error rate. This definition suits the characteristic of consistency
measure because real-world data is usually noisy and if δ is set to 0% then it may so happen
that no feature subset can satisfy the stringent condition.

By employing a hashing mechanism, we can compute the inconsistency rate approxi-
mately with a time complexity of O(P) [30]. By definition, consistency measure can work
when data has discrete valued features. Any continuous feature should be first discretized
using some discretization method available in the literature [25].

In the rest of the paper we use consistency measure and inconsistency rate interchange-
ably.

3.2. Other evaluation measures

In the following we briefly introduce different evaluation measures found in the
literature. Typically, an evaluation function tries to measure the discriminating ability of a
feature or a subset to distinguish the different class labels. Blum and Langley [5] grouped
different feature selection methods into two broad groups (i.e., filter and wrapper) based
on their dependence on an inductive algorithm (classifier) that will finally use the selected
subset. By their definition, filter methods are independent of an inductive algorithm,
whereas wrapper methods use an inductive algorithm as the evaluation function. Ben-
Bassat [3] grouped the evaluation functions till 1982 into three categories: information or
uncertainty measures, distance measures, and dependence measures. He did not consider
the classification error rate as an evaluation function. Considering these divisions and
latest developments, we divide the evaluation functions into five categories: distance,
information (or uncertainty), dependence, consistency, and classifier error rate. In the
following, we briefly discuss each of them (see [11] for more details).

(1) Distance measures. It is also known as separability, divergence, or discrimination
measure. For a two class problem, a feature fi is preferred to another feature fj if
fi induces a greater difference between the two-class conditional probabilities than
fj ; if the difference is zero then fi and fj are indistinguishable. Distance measure is
employed in [20,24,34,39].

(2) Information measures. These measures typically determine the information gain from
a feature. The information gain from a feature fi is defined as the difference between
the prior uncertainty and expected posterior uncertainty using fi . Feature fi is
preferred to feature fj if the information gain from feature fi is greater than that from

160 M. Dash, H. Liu / Artificial Intelligence 151 (2003) 155–176

feature fj [3]. An example of this type is entropy. Information measure is employed

in [2,8,23,40].

(3) Dependence measures. Dependence measures or correlation measures quantify the
ability to predict the value of one variable from the value of another variable.
Correlation coefficient is a classical dependence measure and can be used to find
the correlation between a feature and a class variable. If the correlation of feature
fi with class variable C is higher than the correlation of feature fj with C, then
feature fi is preferred to fj . A slight variation of this is to determine the dependence
of a feature on other features; this value indicates the degree of redundancy of the
feature. All evaluation functions based on dependence measures can be classified as
distance and information measures. But, these are still kept as a separate category
because, conceptually, they represent a different viewpoint [3]. Dependence measure
is employed in [31,33].

(4) Consistency measures. This type of evaluation measures are characteristically different
from other measures because of their heavy reliance on the training dataset and use
of Min-Features bias in selecting a subset of features [1]. Min-Features bias prefers
consistent hypotheses definable over as few features as possible. These measures find
out the minimal size subset that satisfies the acceptable inconsistency rate, that is
usually set by the user. Consistency measure is employed in [1,30,38].
The above types of evaluation measures are known as “filter” methods because of their
independence from any particular classifier that may use the selected features output
by the feature selection method.

(5) Classifier error rate measures. In contrast to the above filter methods, classifier error
rate measures are called “wrapper methods”, i.e., a classifier is used for evaluating
feature subsets [22]. As the features are selected using the classifier that later uses these
selected features in predicting the class labels of unseen instances, the accuracy level
is very high although computational cost is rather high compared to other measures.
Classifier error rate measure is employed in [14,15,18,29,32,42,44].

3.3. Consistency measure vis-a-vis other measures

Consistency measure has the following differences with other types of methods [13].

• Consistency measure is monotonic while most others are not. Assuming we have
subsets {S0, S1, . . . , Sn} of features, we have a measure U that evaluates each subset
Si . The monotonicity condition requires the following:

S0 ⊃ S1 ⊃ · · · ⊃ Sn ⇒ U(S0) � U(S1) � · · · � U(Sn).

Theorem 1. Consistency measure is monotonic.

Proof. A proof outline is given to show that the inconsistency rate measure is monotonic,
i.e., if Si ⊂ Sj , then U(Si) � U(Sj). Since Si ⊂ Sj , the discriminating power of Si can
be no greater than that of Sj . It is known that the discriminating power is inversely
proportional to the inconsistency rate. Hence, the inconsistency rate of Si is greater than or

M. Dash, H. Liu / Artificial Intelligence 151 (2003) 155–176 161

equal to that of Sj , or U(Si) � U(Sj). The monotonicity of the measure can also be proved

as follows. Consider three simplest cases of Sk(= Sj − Si) without loss of generality: (i)
features in Sk are irrelevant, (ii) features in Sk redundant, and (iii) features in Sk relevant.
If features in Sk are irrelevant, based on the definition of irrelevancy, these extra features
do not change the inconsistency rate of Sj since Sj is Si ∪Sk , so U(Sj) = U(Si). Likewise
for case (ii) based on the definition of redundancy. If features in Sk are relevant, that means
Si does not have as many relevant features as Sj . Obviously, U(Si) � U(Sj) in the case of
Si ⊂ Sj . It is clear that the above results remain true for cases that Sk contains irrelevant,
redundant as well as relevant features. ✷

• For the consistency measure, a feature subset can be evaluated in O(P) time. It is
usually costlier for other measures. For example, to construct a decision tree in order
to have predictive accuracy, it requires at least O(P logP).

• Consistency measure can help remove both redundant and irrelevant features; other
measures may not do so. For example, Relief [20] fails to detect redundant features.

• Consistency measure is capable of handling some noise in the data reflected as a
percentage of inconsistencies.

• Unlike the commonly used univariate measures (e.g., distance, information, and
dependence measures), this is a multivariate measure which checks a subset of features
at a time.

In summary, the consistency measure is monotonic, fast, multivariate, able to remove
redundant and/or irrelevant features, and capable of handling some noise. As with other
filter measures, it’s not clear that it also optimizes the accuracy of a classifier trained on
the data after feature selection. In the next section we describe different search strategies
for consistency measure.

4. Different search strategies

Search techniques are important as exhaustive search of the “optimal” subset is
impractical for even moderate N . In this section we will study and compare different search
strategies for consistency measure.

Five different algorithms represent standard search strategies: exhaustive—Focus [1],
complete—ABB [28], heuristic—SetCover [10], probabilistic—LVF [30], and hybrid of
complete and probabilistic search methods—QBB [12]. In the rest of this section we
examine their advantages and disadvantages, and at the end we give some guidelines about
which search strategy to be used under different situations.

4.1. Focus: Exhaustive search

Focus [1] is one of the earliest algorithms within machine learning. Focus starts with an
empty set and carries out breadth-first search until it finds a minimal subset that predicts
pure classes. If the full set has three features, the root is (0,0,0), its children are (0 0 1),
(0 1 0), and (1 0 0) where a ‘0’ means absence of the respective feature and ‘1’ means

162 M. Dash, H. Liu / Artificial Intelligence 151 (2003) 155–176

its presence in the feature subset. It is exhaustive search in nature and originally works on

binary, and noise-free data. With some simple modification of Focus, we have FocusM that
can work on non-binary data with noise by applying the inconsistency rate (defined earlier)
in place of the original consistency measure.

Below we give the FocusM algorithm where inConCal() function calculates inconsis-
tency rate of a given feature set S for a given dataset D.

Algorithm. FocusM
Input: Data D, feature set S

Output: Consistent Feature Subset
1. δ = inConCal(S,D)

2. For size = 0 to |S|
3. for all subsets S′ with |S′| = size
4. if inConCal(S′,D) � δ

5. return S′

As FocusM is exhaustive search it guarantees an optimal solution. However, a brief
analysis can tell that FocusM’s time performance can deteriorate fast with increasing M .
This issue is directly related to the size of the search space. The search space of FocusM
is closely related to the number of relevant features. For instance, taking a simple example
of four features, if one out of four features is relevant, the search space is

(4
1

) = 4; and if

all 4 features together satisfy consistency, the search space is
∑4

i=1

(4
i

) = 41. In general,
the smaller the number of relevant features M , the smaller the search space of FocusM and
higher its efficiency. But for data with small N −M FocusM is inefficient, and one requires
more efficient techniques. The following is such a technique.

4.2. ABB: Complete search

Branch & Bound for feature selection was first proposed in [34]. In contrast to Focus, it
starts with a full set of features, and removes one feature at a time. If the full set contains
three features, the root is (1 1 1) where ‘1’ means presence of the corresponding feature
and ‘0’ its absence. Its child nodes are (1 1 0), (1 0 1), and (0 1 1), etc. When there is
no restriction on expanding nodes in the search space, this could lead to an exhaustive
search. However, if each node is evaluated by a measure U and an upper limit is set
for the acceptable values of U , then Branch & Bound backtracks whenever an infeasible
node is discovered. If U is monotonic, no feasible node is omitted as a result of early
backtracking and, therefore, savings in search time do not sacrifice the optimality of the
selected subset, and hence it is a non-exhaustive yet complete search. As was pointed out
in [41], the measures used in [34] such as accuracy of classification have disadvantages
(e.g., non-monotonicity). As a remedy, the authors proposed the concept of approximate
monotonicity which means that branch and bound can continue even after encountering
a node that does not satisfy the bound. But the node that finally is accepted must satisfy
the set bound. In ABB (Automatic Branch and Bound) [28], we proposed an automated
Branch & Bound algorithm having its bound set to the inconsistency rate of the original
feature set. The algorithm is given below.

M. Dash, H. Liu / Artificial Intelligence 151 (2003) 155–176 163

Algorithm. ABB

Input: Data D, feature set S

Output: Consistent Feature Subset
1. δ = inConCal(S,D)

2. T = S

/* subset generation */
3. For all feature f in S

4. Sj = S − f /* remove one feature at a time */
5. j + +
6. For all Sj

7. if (Sj is legitimate ∧ inConCal(Sj ,D) � δ)
8. if inConCal(Sj ,D) < inConCal(T ,D)
9. T = Sj

/* recursion */
10. ABB (Sj , D)
11. return T

It starts with the full set of features S0, removes one feature from Sl−1
j in turn to generate

subsets Sl
j where l is the current level and j specifies different subsets at the lth level. If

U(Sl
j) > U(Sl−1

j), Sl
j stops growing (its branch is pruned); otherwise, it grows to level

l + 1, i.e., one more feature could be removed.
The legitimacy test is based on whether a node (subset) is a child node of a pruned node.

A node is illegitimate if it is a child node of a pruned one (which is already found to be
illegitimate). Each node is represented by a binary vector where 1’s stand for presence of
a particular feature in that subset and 0’s for its absence. The test is done by checking the
Hamming distance between the child node under consideration and pruned nodes. If the
Hamming distance with any pruned node is 1 (i.e., the difference of the two representative
binary vectors is 1), the child node is the child of the pruned node. Notice that by this way
at every level we are able to determine all the illegitimate nodes.

Example. Refer to Fig. 2 there are four features of which only the first two (underlined) are
relevant. The root S0 = (1 1 1 1) of the search tree is a binary array with four ‘1’s. Following
ABB, we expand the root to four child nodes by turning one of the four ‘1’s into ‘0’ (L2).
All four are legitimate: S1 = (1 1 1 0), S2 = (1 1 0 1), S3 = (1 0 1 1), and S4 = (0 1 1 1).
Since one of the relevant features is missing, U(S3) and U(S4) will be greater than U(S0)

where U is the inconsistency rate over the given data. Hence, the branches rooted by S3 and
S4 are pruned and will not grow further. Only when a new node passes the legitimacy test
will its inconsistency rate be calculated. Doing so improves the efficiency of ABB because
P (number of patterns) is normally much larger than N (number of features). The rest of
the nodes are generated and tested in the same way.

Since inconsistency is a monotonic measure, ABB guarantees an optimal solution.
However, a brief analysis suggests that time performance of ABB can deteriorate as the
difference (N −M) increases. This issue is related to how many nodes (subsets) have been
generated. The search space of ABB is closely related to the number of relevant features.

164 M. Dash, H. Liu / Artificial Intelligence 151 (2003) 155–176
Fig. 2.

For instance, taking a simple example of four features, if one out of four features is relevant,
the search space is 15 nodes which is almost exhaustive (the total is

∑n=4
i=0

(
n
i

) = 16 nodes).
And when all four features are relevant, it is 5 nodes, i.e., the root plus 4 child nodes.
In general, the more the number of relevant features, the smaller the search space due
to early pruning of the illegitimate nodes. See [28] for detailed results (the number of
subsets evaluated, the number of subsets pruned, etc.) of ABB over a number of benchmark
datasets.

The analysis of Focus and ABB shows the following:

• Focus is efficient when M is small, and
• ABB is efficient when N − M is small.

In other cases, the two algorithms can be inefficient. An immediate thought is whether we
can use the inconsistency measure in heuristic search and how it fares.

4.3. SetCover: Heuristic search

SetCover [10] exploits the observation that the problem of finding a smallest set of
consistent features is equivalent to ‘covering’ each pair of examples that have different
class labels. Two instances with different class labels are said to be ‘covered’ when there
exists at least one feature which takes different values for the two instances [35]. This
enables us to apply Johnson’s algorithm [19] for set-cover to this problem. Johnson’s
algorithms shows that the size of the resulting consistent feature subset is O(M logP).
However, experimental results show that these estimations are in fact much larger than the
obtained results, i.e., the size of the consistent subsets in the experiments is much less than
O(M logP).

The algorithm works as follows: The consistency criterion can be restated by saying
that a feature set S is consistent if for any pair of instances with different class labels, there
is a feature in S that takes different values. Thus including a feature f in S ‘covers’ all
those example pairs with different class labels on which f takes different values. Once all
pairs are ‘covered’ is the resulting set S consistent.

M. Dash, H. Liu / Artificial Intelligence 151 (2003) 155–176 165

Algorithm. SetCover

Input: Data D, feature set S

Output: Consistent Feature Subset
1. δ = inConCal(S,D)

2. S′ = φ

3. repeat
4. lowestInCon = C C is a large constant
5. for all features f ∈ S

6. S′′ = append(S′, f)

7. tempInCon = inConCal(S′′,D)

8. if tempInCon < δ

9. return S′′
10. else
11. if tempInCon < lowestInCon
12. lowestInCon = tempInCOn
13. lowestFeature = f

14. S′ = append(S′, f)

15. S = S − f

16. until lowestInCon � δ

In [10] we report extensive experimental results which show that SetCover is fast,
close to optimal, and deterministic.1 It works well for datasets where features are rather
independent of each other. It may, however, have problems where features are correlated.
This is because it selects the best feature in each iteration based on the number of instance-
pairs covered. So, any feature that is most correlated to the class label is selected first. An
example is the CorrAL dataset [21] which has 64 instances with six binary features and
two classes. Feature f5 is irrelevant to the target concept which is (f1 ∧ f2) ∨ (f3 ∧ f4).
Feature f6 is correlated to the target concept 75% of the time. SetCover first selects the
feature f6 due to the fact that among all six features f6 covers the maximum number of
instances (75%). Then it selects features f1, f2, f3, and f4; so, it selects the wrong subset
(f6, f1, f2, f3, f4) overall.

So, we found that exhaustive methods have inherent drawback because they require
large computational time. Heuristic methods such as SetCover, although very fast and
accurate, can encounter problems if the data has highly correlated features. Hence, a new
solution is needed that avoids the problems of exhaustive and heuristic search. Probabilistic
search is a natural choice.

1 In the literature for search techniques, there are many methods such as genetic algorithms, simulated
annealing, tabu search and estimation of distribution algorithm. Our choice of SetCover is mainly guided by
the requirement that a heuristic algorithm must be fast to complete and should return good results. So, although
the above mentioned search techniques are known to return good subsets, but they are not chosen due to their
known higher computational time requirement.

166 M. Dash, H. Liu / Artificial Intelligence 151 (2003) 155–176

4.4. LVF: Probabilistic search
Las Vegas algorithms [7] for feature subset selection can make probabilistic choices
of subsets in search of an optimal set. Another similar type of algorithm is the Monte
Carlo algorithm in which it is often possible to reduce the error probability arbitrarily at
the cost of a little increase in computing time [7]. In [29] we proposed a probabilistic
algorithm called Las Vegas Filter (LVF) where probabilities of generating any subset are
equal. LVF adopts the inconsistency rate as the evaluation measure. It generates feature
subsets randomly with equal probability, and once a consistent feature subset is obtained
that satisfies the threshold inconsistency rate (δ which by default is set to the inconsistency
rate of the original feature set), the size of generated subsets is pegged to the size of
that subset, i.e., subsets of higher size are not evaluated anymore. This is based on the
fact that inconsistency rate is monotonic, i.e., a superset of a consistent feature set is also
consistent. This guarantees a continuously diminutive consistent feature subsets as output
of LVF. LVF is fast in reducing the number of features in the early stages and can produce
optimal solutions if computing resources permit. In the following the LVF algorithm is
given.

Algorithm. LVF
Input: Data D, feature set S, MaxTries
Output: Consistent Feature Subset
1. δ = inConCal(S,D)

2. T = S

3. for j = 1 to MaxTries
4. randomly choose a subset of features, Sj

5. if |Sj | � |T |
6. if inConCal(Sj ,D) � δ

7. if |Sj | < |T |
8. T = Sj

9. output Sj

10. else
11. append Sj to T

12. output Sj as ‘yet another solution’
13. return T

In the algorithm ‘yet another solution’ means a solution of the same size as that of the
most recently found solution. By appending solutions of equal size the algorithm produces
a list of equal-sized feature subsets at the end. A more sophisticated version of LVF is
sampling without replacement. The number of features in each sampling is determined by
the size of the current smallest subset. This could speed up subset generation.

LVF performance. We conducted experiments to observe how the consistent feature
subset size (M ′) drops as the number of randomly generated feature sets increases. A total
of 10 benchmark datasets are taken from the UC Irvine machine learning repository [4].

M. Dash, H. Liu / Artificial Intelligence 151 (2003) 155–176 167

Table 1

LVF performance: The size of consistent feature subsets decreases sharply after several
initial runs

Dataset P N M ′ M # Subsets evaluated # Max subsets

LED-24 1200 24 12 5 230 224

Lung 32 56 19 4 155 256

Lymphography 148 18 8 6 215 218

Mushroom 7125 22 8 4 22 222

Par3+3 64 12 5 3 25 212

Promoters 106 57 15 4 187 257

Soybean 47 35 12 2 42 235

Splice 3190 60 19 9 284 260

Vote 435 16 13 8 215 216

Zoo 74 16 9 5 25 216

Table 1 describes the datasets where P is the number of instances, N is the original number
of features, M is the size of the smallest consistent subset, and M ′ is the intermediate size
of some consistent subsets output by LVF. The Par3+3 dataset is a modified version of the
original Parity3 dataset. The target concept is the parity of the first three bits. It contains
twelve features among which the first three are relevant, the next three are irrelevant, and
the other six are redundant (duplicate of the first six). Table 1 also shows the possible
maximum number of subsets (i.e., 2N) and the results (M ′) after several runs of LVF (each
run stands for an evaluation of a feature subset).

Analysis. The trend found in all the experiments is that M ′ drops sharply in the beginning
from N in a small number of runs (as shown in Table 1). Afterwards, it takes quite a long
time to further decrease M ′. Two typical graphs for Mushroom and Promoters datasets
are shown in Fig. 3. Some analysis can confirm this finding. At the beginning, each
feature subset has a probability of 1/2N to be generated, and many subsets can satisfy
the inconsistency criterion. As M ′ decreases from N to M , fewer and fewer subsets can
satisfy the criterion. However, the probability of a distinct set being generated is still 1/2N .
That explains why the curves have a sharp drop in the beginning and then become flat in
Fig. 3. The finding is that LVF reduces the number of features quickly during the initial
stages; after that LVF still searches in the same way (i.e., blindly) while the computing
resource is spent on generating many subsets that are obviously not good. This analysis
paves the way for the next algorithm which is a hybrid of LVF and ABB.

4.5. QBB: Hybrid search

QBB is a hybrid of LVF and ABB. Analyses showed that ABB’s performance is good
when N − M is small whereas LVF is good in reducing the size of consistent feature
subset very quickly in the early stages. QBB (Quick Branch and Bound) is a two phase
algorithm that runs LVF in the first phase and ABB in the second phase. In the following
QBB algorithm is given.

168 M. Dash, H. Liu / Artificial Intelligence 151 (2003) 155–176
Fig. 3. LVF performance over Mushroom and Promoters datasets: The size of the consistent feature subsets
decreases sharply but flattens afterwards.

M. Dash, H. Liu / Artificial Intelligence 151 (2003) 155–176 169

Algorithm. QBB

Input: Data D, feature set S, MaxTries
Output: Consistent Feature Subset
1. δ = inConCal(S,D)

2. T = S

3. S′ = LVF(S,MaxTries,D)

/* All consistent subsets which are output by LVF are in S′ */
4. MinSize = |S|
5. for each subset Sj in S′
6. T ′ = ABB(Sj ,D)

7. if MinSize > |T ′|
8. MinSize = |T ′|
9. T = Sj

10. return T

The rationale behind running LVF first is that a small number of runs of LVF from the
beginning output consistent subsets of small size. Similarly, running ABB on these smaller
subsets makes it very focused towards finding the smallest consistent subsets.

A performance issue. A key issue about QBB performance is: what is the crossing point
at which ABB takes over from LVF. We carried out experiments over the earlier reported
datasets by assigning a fixed total number of runs (a run means evaluation of a feature
subset) and by varying the cross-over point. It showed that dividing the total runs equally
between LVF and ABB is a robust solution and is more likely to yield the best results.
Details of the experiments are reported in [12]. A simple analysis shows that if the crossing
point is quite early, then consistent subsets output by LVF will be large in size for ABB to
perform well under time constraint, but if the crossing point is close to the total number
of runs, then LVF return very small size subsets which ABB may not be able to reduce
further.

4.6. Guidelines

Above we described five different search strategies for consistency measure and
discussed their pros and cons. In this section we provide guidelines for a user to select
the best algorithm under particular circumstances.

Theoretical analysis and experimental results suggest the following. If M—the size of
relevant features – is small, FocusM should be chosen; however if M is even moderately
large, FocusM will take a long time. If there are a small number of irrelevant and redundant
features (i.e., N − M is small), ABB should be chosen; but ABB will take a long time for
even moderately large N − M . Consider the dataset Parity3+3 which has three relevant
features out of twelve (see Table 1). In such cases FocusM is preferred over ABB as
M is very small. Similarly, consider the vote dataset (see Table 1) that has N = 16 and
M = 8. ABB due to its early pruning of inconsistent subsets, evaluates only 301 subsets to
output a subset of minimal size whereas FocusM has to evaluate 39,967 subsets to output
a subset of the minimal size. But for datasets with large numbers of features (large N)

170 M. Dash, H. Liu / Artificial Intelligence 151 (2003) 155–176

and moderate to large number of relevant features (moderate to large M), FocusM and

ABB should not be expected to terminate in realistic time. An example is the Letter dataset
(taken from UCI ML repository [4]) that has 20,000 instances (N = 16 and M = 11). Both
FocusM and ABB take very long time to find minimal size feature subsets. Hence, in such
cases one should resort to heuristic or probabilistic search for faster results. Although these
algorithms may not guarantee minimal size subsets but they will be efficient in generating
consistent subsets of size close to minimal in much less time. SetCover is heuristic, fast,
and deterministic but it may face problems for data having highly correlated features. An
example is CorrAL dataset that has a feature correlated to the class variable 75% of the time
(see Section 4.3 for discussion). Because of the correlated feature it outputs a wrong subset.
LVF is probabilistic, not prone to the problem faced by SetCover, but slow to converge in
later stages. As we have shown in Table 1 and Fig. 3, it reduces the feature subset size
quickly in the beginning but then it slows down afterwards. An example is Promoters
dataset that has N = 57 and M = 4. LVF requires to evaluate only 187 subsets to output
a subset of size 15, but for next 10’s of thousands of subsets its output subset size does
not further decrease. QBB, by design, captures the best of LVF and ABB. As verified by
experiments, it is reasonably fast (slower than SetCover), robust, and can handle features
with high correlation.

In summary,

(1) If time is not an issue, then FocusM and ABB are preferable because they ensure
smallest consistent subset. In addition, if the user has knowledge of M then if M is
small FocusM is preferable otherwise ABB is chosen. In the absence of any a priori
knowledge about M both can be run simultaneously until any one terminates.

(2) In the usual case of limited computing time a user is best off choosing from LVF,
SetCover and QBB. LVF is suitable for quickly producing small (yet not small enough)
consistent subsets. SetCover is suitable if it is known that features are not correlated.
Otherwise, QBB is a robust choice.

5. Further experiments

We carry out further experiments to examine (1) whether features selected using
consistency measure can achieve the objective of dimensionality reduction without
sacrificing predictive accuracy and (2) how the different algorithms fare in terms of time
and size of consistent subsets. The experimental procedure is to run ABB to get the
minimal size, compare the performance (average time and size of selected subsets) of
different algorithms; and compare the accuracy of two different classifiers (C4.5 [36] and
Backpropagation neural network [46]) before and after feature selection by QBB (which is
the most robust among all methods). Ten benchmark datasets, as reported earlier in Table 1,
are taken for the experiments.

5.1. Performance comparison

Fig. 4 shows the average time and average number of selected features over 10 datasets
of different algorithms. First, ABB is run over the 10 datasets to find the M (minimum

M. Dash, H. Liu / Artificial Intelligence 151 (2003) 155–176 171
Fig. 4. Comparison of different algorithms: Results of FocusM and ABB are out of bounds due to their very large
processing time.

number of relevant features) values for each dataset. Their average is 5 which is denoted
as Mavg. This value is used as a reference line (in the bottom of the graph) in Fig. 4. Out
of the 5 competing algorithms, FocusM, ABB and SetCover are deterministic, whereas
LVF and QBB are non-deterministic due to their probabilistic nature. As per the findings
of [12], QBB spends half of the time running LVF and the other half running ABB. For
LVF and QBB we show results for 5 different processing time in terms of total numbers of
subsets evaluated (1000 . . .5000). Each experiment was repeated 50 times for each dataset.
Notice that Focus and ABB are not shown in the graph as their average times fall outside
the range of the ‘processing time’ in the X-axis of the graph, although minimal sized
subsets are guaranteed in each case. For datasets having large differences between N and
M values such as Lung Cancer, Promoters, Soybean, and Splice, ABB takes very long
time (a number of hours) to terminate. For datasets having large N values and not very
small M values such as Splice dataset (N = 60, M = 9) FocusM takes many hours to
terminate. The comparison in Fig. 4 shows that QBB is more efficient both in average time
and number of selected features compared to LVF, FocusM, and ABB. The average size

172 M. Dash, H. Liu / Artificial Intelligence 151 (2003) 155–176

of the subsets produced by QBB is close to MAvg and it approaches to MAvg with time.

SetCover produces near optimal subsets in much less time. Between QBB and SetCover
we would say QBB is more robust while SetCover, although very fast and accurate, may
fail to deliver efficient subsets if some features are highly correlated.

5.2. Classification error

Predictive accuracy of a classifier is often used as a validation criterion. Classification
error holds a relationship with predictive accuracy as the sum of predictive accuracy and
error rate is 1. Among the different search strategies discussed in the paper, we choose
QBB due to its robustness in the following experiments. We choose C4.5 (a widely used
decision tree induction algorithm) [36] and Backpropagation neural networks [46] as two
classifiers for validation.

For C4.5, we use the default settings: apply it to datasets before and after feature
selection, and obtain the results of 10-fold cross-validation in Table 2. In the table we
report average tree size and average error rate for each dataset after pruning. As QBB is
non-deterministic, QBB is run 10 times for each dataset, i.e., 10 feature subsets are output
by QBB for each dataset. The average for “before feature selection” is over the 10-fold
cross-validation of C4.5, and the average for “after feature selection” is over the chosen
10 subsets of selected features and for each feature subset the 10-fold cross validation is
performed, i.e., average is taken the total 10 10-fold cross validation for C4.5. We estimate
the P-value using two-tailed t-test for two-sample unequal variances (α = 0.05). For the
t-test we test the null hypothesis that the means of the results “before feature selection”
and “after feature selection” are equal. The experiment shows the improvement or no
significant decrease in performance for most datasets (8 out of 10) in C4.5’s accuracy
after feature selection. For Led24 dataset the P-values show “divide by 0” because the tree
size is 19.0 for all folds both before and after feature selection, and similarly the error rate
is 0.0 for all folds. So we put “1” in the place for P-values.

For the experiments with Backpropagation, each dataset is divided into a training set
(two-third of the original size) and the rest one-third for testing. Running Backpropagation
is very time consuming and involves the setting of some parameters, such as the network

Table 2
C4.5 decision tree results of QBB

Datasets Tree size Error rate

Before After P-value Before After P-value

LED-24 19.0 19.0 1.0 0.0 0.0 1.0
Lung 17.8 12.9 0.013 66.7 54.5 0.253
Lymphography 26.9 19.5 0.001 20.8 19.7 0.757
Mushroom 30.8 40.5 0.0 0.0 0.0 0.057
Par3+3 15.6 15.0 0.638 31.4 0.0 0.0
Promoters 22.6 13.8 0.0 16.9 35.9 0.0
Soybean 7.1 8.0 0.0 4.0 0.2 0.57
Splice 207.7 535.0 0.0 5.6 31.2 0.0
Vote 16.0 16.9 0.48 4.4 4.4 1.0
Zoo 18.0 18.4 0.777 10.6 7.6 0.539

M. Dash, H. Liu / Artificial Intelligence 151 (2003) 155–176 173

Table 3

Backpropagation neural network results of QBB

Datasets Cycles Hidden Error rate

units Before After

LED-24 1000 12 0.06 0.0
Lung 1000 28 75.0 75.0
Lymphography 7000 9 25.0 25.0
Mushroom 5000 11 0.0 0.0
Par3+3 1000 6 22.2 0.0
Promoters 2000 29 46.8 25.0
Soybean 1000 18 10.0 0.0
Splice 6000 30 25.64 42.33
Vote 4000 8 6.7 4.0
Zoo 4000 8 10.3 3.4

structure (number of layers and number of hidden units), learning rate, momentum, number
of CYCLES (epochs). In order to focus our attention on the effect of feature selection by
QBB, we try to minimize the tuning of the parameters for each dataset. We fix the learning
rate at 0.1, the momentum at 0.5, one hidden layer, the number of hidden units as half
of the original input units for all datasets. The experiment is carried out in two steps: (1)
a trial run to find a proper number of CYCLES for each dataset which is determined by
a sustained trend where error does not decrease; and (2) two runs on datasets with and
without feature selection respectively using the number of CYCLES found in step 1. Other
parameters remain fixed for the two runs in step 2. The results are shown in Table 3 with
an emphasis on the difference before and after feature selection. In most cases, error rates
decrease (6 out of 10) or do not change (3 out of 10) after feature selection.

6. Conclusion and future directions

In this paper, we carry out a study of consistency measure with different search
strategies. The study of the consistency measure with other measures shows that it is
monotonic, fast, multivariate, capable of handling some noise and can be used to remove
redundant and/or irrelevant features. As with other filter measures, it is not clear that it
also optimizes the accuracy of a classifier used after feature selection. We investigate
different search strategies for consistency measure, which are: exhaustive, complete,
heuristic, probabilistic, and hybrid. Their advantages and shortcomings are discussed
and an experimental comparison is done to determine their relative performance. Some
guidelines are given to choose the most suitable one in a given situation.

The fact that the consistency measure does not incorporate any search bias with regards
to a particular classifier enables it to be used with a variety of different learning algorithms.
As shown in the second set of experiments with the two different types of classifiers,
selected features improve the performance in terms of lower error rates in most cases.
Features selected without search bias bring efficiency in later stage as the evaluation of
a feature subset becomes simpler than that of a full set. On the other hand, since a set
of features is deemed consistent if any function maps from the values of the features

174 M. Dash, H. Liu / Artificial Intelligence 151 (2003) 155–176

to the class labels, any algorithm optimizing this criterion may choose a small set of

features that has a complicated function, while overlooking larger sets of features admitting
simple rules. Although intuitively this should be relatively rare, it can happen in practice,
as apparent was the case for the Splice dataset where both C4.5 and Backpropagation’s
performance deteriorate after feature selection.

This work can be extended in various directions. We plan to explore a line of research
that focuses on comparison of different heuristic methods over consistency measure. We
discussed in Section 4 that there are other heuristic search techniques such as genetic
algorithms, simulated annealing, tabu search, and estimation of distribution algorithms.
SetCover was the choice of heuristic search based on the known fact that these above
algorithms are costly in computational time. However, the actual comparison results among
these techniques can as well be interesting from research point of view.

Acknowledgements

We would like to thank Amit Mandvikar for help in performing experiments. Our
understanding of the subject also enhanced by numerous discussions with Prof. Hiroshi
Motoda.

References

[1] H. Almuallim, T.G. Dietterich, Learning boolean concepts in the presence of many irrelevant features,
Artificial Intelligence 69 (1–2) (1994) 279–305.

[2] D.A. Bell, H. Wang, A formalism for relevance and its application in feature subset selection, Machine
Learning 41 (2000) 175–195.

[3] M. Ben-Bassat, Pattern recognition and reduction of dimensionality, in: P.R. Krishnaiah, L.N. Kanal (Eds.),
Handbook of Statistics, North-Holland, Amsterdam, 1982, pp. 773–791.

[4] C.L. Blake, C.J. Merz, UCI repository of machine learning databases, 1998, http://www.ics.uci.
edu/~mlearn/MLRepository.html.

[5] A.L. Blum, P. Langley, Selection of relevant features and examples in machine learning, Artificial
Intelligence 97 (1997) 245–271.

[6] A. Blumer, A. Ehrenfeucht, D. Haussler, M.K. Warmuth, Occam’s razor, in: J.W. Shavlik, T.G. Dietterich
(Eds.), Readings in Machine Learning, Morgan Kaufmann, San Mateo, CA, 1990, pp. 201–204.

[7] G. Brassard, P. Bratley, Fundamentals of Algorithms, Prentice Hall, Englewood Cliffs, NJ, 1996.
[8] C. Cardie, Using decision trees to improve case-based learning, in: Proceedings of Tenth International

Conference on Machine Learning, Amherst, MA, 1993, pp. 25–32.
[9] S. Das, Filters, wrappers and a boosting-based hybrid for feature selection, in: Proceedings of the Eighteenth

International Conference on Machine Learning (ICML), Williamstown, MA, 2001, pp. 74–81.
[10] M. Dash, Feature selection via set cover, in: Proceedings of IEEE Knowledge and Data Engineering

Exchange Workshop, Newport, CA, IEEE Computer Society, 1997, pp. 165–171.
[11] M. Dash, H. Liu, Feature selection methods for classification, Intelligent Data Analysis: An Internat. J. 1 (3)

(1997).
[12] M. Dash, H. Liu, Hybrid search of feature subsets, in: Proceedings of Pacific Rim International Conference

on Artificial Intelligence (PRICAI-98), Singapore, 1998, pp. 238–249.
[13] M. Dash, H. Liu, H. Motoda, Consistency based feature selection, in: Proceedings of Fourth Pacific-Asia

Conference on Knowledge Discovery and Data Mining (PAKDD), Kyoto, Japan, 2000, pp. 98–109.
[14] P.A. Devijver, J. Kittler, Pattern Recognition: A Statistical Approach, Prentice Hall, Englewood Cliffs, NJ,

1982.

M. Dash, H. Liu / Artificial Intelligence 151 (2003) 155–176 175

[15] J. Doak, An evaluation of feature selection methods and their application to computer security, Technical

Report, University of California, Department of Computer Science, Davis, CA, 1992.

[16] M.A. Hall, Correlation-based feature selection for discrete and numeric class machine learning, in:
Proceedings of Seventeenth International Conference on Machine Learning (ICML), Stanford, CA, Morgan
Kaufmann, San Mateo, CA, 2000, pp. 359–366.

[17] I. Inza, P. Larranaga, R. Etxeberria, B. Sierra, Feature subset selection by Bayesian network-based
optimization, Artificial Intelligence 123 (2000) 157–184.

[18] G.H. John, R. Kohavi, K. Pfleger, Irrelevant features and the subset selection problem, in: Proceedings of
the Eleventh International Conference on Machine Learning, New Brunswick, NJ, 1994, pp. 121–129.

[19] D.S. Johnson, Approximation algorithms for combinatorial problems, J. Comput. System Sci. 9 (1974) 256–
278.

[20] K. Kira, L.A. Rendell, The feature selection problem: Traditional methods and a new algorithm, in:
Proceedings of AAAI-92, San Jose, CA, 1992, pp. 129–134.

[21] R. Kohavi, Wrappers for performance enhancement and oblivious decision graphs, PhD Thesis, Department
of Computer Science, Stanford University, CA, 1995.

[22] R. Kohavi, G.H. John, Wrappers for feature subset selection, Artificial Intelligence 97 (1–2) (1997) 273–324.
[23] D. Koller, M. Sahami, Toward optimal feature selection, in: Proceedings of International Conference on

Machine Learning, Bari, Italy, 1996, pp. 284–292.
[24] I. Kononenko, Estimating attributes: Analysis and extension of RELIEF, in: Proceedings of European

Conference on Machine Learning, Catania, Italy, 1994, pp. 171–182.
[25] H. Liu, F. Hussain, C.L. Tan, M. Dash, Discretization: An enabling technique, J. Data Mining Knowledge

Discovery 6 (4) (2002) 393–423.
[26] H. Liu, H. Motoda (Eds.), Feature Extraction, Construction and Selection: A Data Mining Perspective,

Kluwer Academic, Boston, MA, 1998.
[27] H. Liu, H. Motoda, Feature Selection for Knowledge Discovery and Data Mining, Kluwer Academic,

Dordrecht, 1998.
[28] H. Liu, H. Motoda, M. Dash, A monotonic measure for optimal feature selection, in: Proceedings of

European Conference on Machine Learning, Chemnitz, Germany, 1998, pp. 101–106.
[29] H. Liu, R. Setiono, Feature selection and classification—A probabilistic wrapper approach, in: Proceedings

of Ninth International Conference on Industrial and Engineering Applications of AI and ES, 1996, pp. 419–
424.

[30] H. Liu, R. Setiono, A probabilistic approach to feature selection—A filter solution, in: Proceedings of
International Conference on Machine Learning, Bari, Italy, 1996, pp. 319–327.

[31] M. Modrzejewski, Feature selection using rough sets theory, in: P.B. Brazdil (Ed.), Proceedings of the
European Conference on Machine Learning, Vienna, Austria, 1993, pp. 213–226.

[32] A.W. Moore, M.S. Lee, Efficient algorithms for minimizing cross validation error, in: Proceedings of
Eleventh International Conference on Machine Learning, New Brunswick, NJ, Morgan Kaufmann, San
Mateo, CA, 1994, pp. 190–198.

[33] A.N. Mucciardi, E.E. Gose, A comparison of seven techniques for choosing subsets of pattern recognition,
IEEE Trans. Comput. C-20 (1971) 1023–1031.

[34] P.M. Narendra, K. Fukunaga, A branch and bound algorithm for feature selection, IEEE Trans. Comput.
C-26 (9) (1977) 917–922.

[35] A.L. Oliveira, A.S. Vincentelli, Constructive induction using a non-greedy strategy for feature selection,
in: Proceedings of Ninth International Conference on Machine Learning, Aberdeen, Scotland, Morgan
Kaufmann, San Mateo, CA, 1992, pp. 355–360.

[36] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, San Mateo, CA, 1993.
[37] T.W. Rauber, Inductive pattern classification methods—Features—Sensors, PhD Thesis, Department of

Electrical Engineering, Universidade Nova de Lisboa, 1994.
[38] J.C. Schlimmer, Efficiently inducing determinations: A complete and systematic search algorithm that uses

optimal pruning, in: Proceedings of Tenth International Conference on Machine Learning, Amherst, MA,
1993, pp. 284–290.

[39] J. Segen, Feature selection and constructive inference, in: Proceedings of Seventh International Conference
on Pattern Recognition, Montreal, QB, 1984, pp. 1344–1346.

176 M. Dash, H. Liu / Artificial Intelligence 151 (2003) 155–176

[40] J. Sheinvald, B. Dom, W. Niblack, A modelling approach to feature selection, in: Proceedings of Tenth

International Conference on Pattern Recognition, Atlantic City, NJ, Vol. 1, 1990, pp. 535–539.

[41] W. Siedlecki, J. Sklansky, On automatic feature selection, Internat. J. Pattern Recognition Artificial
Intelligence 2 (1988) 197–220.

[42] D.B. Skalak, Prototype and feature selection by sampling and random mutation hill-climbing algorithms,
in: Proceedings of Eleventh International Conference on Machine Learning, New Brunswick, NJ, Morgan
Kaufmann, San Mateo, CA, 1994, pp. 293–301.

[43] P. Soucy, G.W. Mineau, A simple feature selection method for text classification, in: Proceedings of IJCAI-
01, Seattle, WA, 2001, pp. 897–903.

[44] H. Vafaie, I.F. Imam, Feature selection methods: Genetic algorithms vs. greedy-like search, in: Proceedings
of International Conference on Fuzzy and Intelligent Control Systems, 1994.

[45] S. Watanabe, Pattern Recognition: Human and Mechanical, Wiley Interscience, New York, 1985.
[46] A. Zell, et al., Stuttgart Neural Network Simulator (SNNS), User Manual, Version 4.1, Technical Report,

1995.

