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Comparing Human and Automatic
Face Recognition Performance

Andy Adler and Michael E. Schuckers

Abstract—Face recognition technologies have seen dramatic im-
provements in performance over the past decade, and such systems
are now widely used for security and commercial applications.
Since recognizing faces is a task that humans are understood to
be very good at, it is common to want to compare automatic face
recognition (AFR) and human face recognition (HFR) in terms
of biometric performance. This paper addresses this question by:
1) conducting verification tests on volunteers (HFR) and commer-
cial AFR systems and 2) developing statistical methods to support
comparison of the performance of different biometric systems.
HFR was tested by presenting face-image pairs and asking sub-
jects to classify them on a scale of “Same,” “Probably Same,”
“Not sure,” “Probably Different,” and “Different”; the same
image pairs were presented to AFR systems, and the biometric
match score was measured. To evaluate these results, two new
statistical evaluation techniques are developed. The first is a new
way to normalize match-score distributions, where a normalized
match score t̂ is calculated as a function of the angle from a
representation of [false match rate, false nonmatch rate] values in
polar coordinates from some center. Using this normalization, we
develop a second methodology to calculate an average detection
error tradeoff (DET) curve and show that this method is equiv-
alent to direct averaging of DET data along each angle from the
center. This procedure is then applied to compare the performance
of the best AFR algorithms available to us in the years 1999, 2001,
2003, 2005, and 2006, in comparison to human scores. Results
show that algorithms have dramatically improved in performance
over that time. In comparison to the performance of the best AFR
system of 2006, 29.2% of human subjects performed better, while
37.5% performed worse.

Index Terms—Biometrics, detection error tradeoff, face recog-
nition, performance analysis.

I. INTRODUCTION

B IOMETRIC technologies allow automatic (i.e., computer
based) verification of individuals based on their behavioral

or biological characteristics [32]. Recent years have seen sig-
nificant technical advances in such technologies, and systems
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to recognize biometrics features, such as face, fingerprint, and
iris images, are being implemented in many national security,
police, and commercial applications. Of all such technologies,
the one most commonly compared to human capabilities is
automatic face recognition (AFR). AFR differs from fingerprint
and iris recognition systems, for which few, except trained
experts, are able to properly interpret images to determine
identity. Face recognition, on the other hand, is a task which
almost all people use almost everyday. The value of face
recognition for the task of identification is illustrated by the
early use (1840s) of photographs by police [10].

AFR technology compares an enrolled image of a person
to a (newly captured) test image and calculates a match score
(or similarity score), which is a measure of the similarity
between the images—biometric comparisons with higher match
scores are more likely to be from the same individual. In a
biometric verification system, an application-specific threshold
is chosen; match scores above the threshold are taken to indicate
a match (images are from the same person) and scores below the
threshold indicate a nonmatch (images from different people).
Such an assessment can result in two possible errors: A false
match—the system declares a match when the images are from
different people, and a false nonmatch—the system declares a
nonmatch with images of the same person. The performance
of the biometric verification system may be quantified by the
rates of each error, measured by the false match rate (FMR)
and the false nonmatch rate (FNMR). Typically, a detection
error tradeoff (DET) curve is calculated as the graph of FMR
versus FNMR for different values of the threshold. The FMR,
FNMR terminology is preferred [21] to that of false accept
and false reject rates since the latter also includes application
errors (i.e., reject after three attempts) and errors due to a failure
to acquire.

AFR technology has made significant progress over the past
15 years. While the possibility of face recognition by computer
was being investigated as early as the 1960s [10], the field was
invigorated by the work of Turk and Pentland [30] in the early
1990s. Since then, many companies and academic groups have
developed software for AFR [33]. The performance of AFR
systems has been measured by a series of tests conducted by
the U.S. NIST, such as FERET [25] and the FRVT 2000 [2],
FRVT 2002 [27], and the FRVT 2006 [35].

While AFR has been subject to detailed and careful per-
formance testing, the capabilities of human face recognition
(HFR) have been investigated in very different ways. The
primary goal of HFR research has been to understand how
the brain recognizes and processes face images (e.g., [9], [13],
[24], and [29]), while the actual level of performance has been
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of less interest. Gong et al. [12] and Zhao et al. [33] review
recent work in the cognitive mechanisms of HFR.

While, previously, little work has been done to quantify
HFR performance, this has now become an important question.
Many government and other security agencies are looking to
implement AFR systems for applications such as border control
and passport issuance, and they need to know how such systems
perform in comparison to the staff they currently employ to
do similar tasks. A direct comparison of HFR versus AFR
was performed by Burton et al. [5] using variants of principal-
component-analysis-based face recognition algorithms (based
on [30]). In [4], human subjects were asked to perform a
biometric identification among ten subjects and results showed
that AFR accuracies outperform human results. This paper
is limited by its use of older and lower performance AFR
systems. In addition, the database chosen appears to have little
age changes between images, which may give an advantage to
automatic systems, which have significant difficulty with age
changes [27].

Several studies of HFR capabilities have been performed
[4], [6], [19], yielding widely different performance levels. In
addition to studies published in the open literature, we are
also aware that several governments have conducted classified
studies of this nature. Kemp et al. [19] analyzed the abil-
ity of supermarket cashiers to identify shoppers from pho-
tos on credit cards and discovered overall poor performance.
Bruce et al. [4] investigated the ability to recognize faces from a
database of young white male police trainees. The subjects were
motivated students and were given no time limit for the task.
Overall, results were judged to be “highly error prone” (correct
responses of 68%–79%). Liu et al. [6] analyzed the ability
of people to match poor-quality video footage against high-
quality photographs and showed a 75% success rate. One of
the difficulties in measuring HFR capabilities is that the results
depend strongly on many external factors, such as motivation,
fatigue, training, and required processing speed. For example,
a difference in motivation may help explain the difference in
performance between the results in the study in [6] and [19].
The supermarket cashiers studied in [19] were not rewarded
for face recognition performance and were, thus, likely to
concentrate their effort on other tasks.

In this paper, we describe an approach to measure and
compare AFR and HFR performance. The paper is organized
as follows. First, we describe our experimental protocol for
HFR and AFR performance (Section II). Next, we develop a
new set of statistical methods that can be used to compare bio-
metric algorithm performance (Section III). Finally, we com-
pare AFR and HFR results and comment on their significance
(Section IV).

II. METHODS: FACE RECOGNITION TESTS

A test protocol was developed to allow direct comparison of
HFR to AFR performance. In order to clarify our terminology,
we use the term “system under test” or “face recognizer” to
refer to either the software or human volunteer, as appropriate.
We use the term “performance” to refer only to match perfor-
mance in terms of error rates. We do not consider match speed,
throughput, or other performance measures in this paper. The

Fig. 1. Screenshot of the software application for the testing of HFR per-
formance. After logging into the application, participants were presented a
series of pairs of images and were required to choose one of the selections.
Instructions were to strive for “accuracy,” and no time limit was given.

common feature offered by all AFR systems is the ability to
compare two input images of frontal faces, while some are able
to use more information, such as multiple enrollment images,
different poses, video data from a subject, or 3-D information.
Thus, to be able to test all AFR systems available to us, we
limited the test to consider comparison of two frontal face
images. We designed the test to present two unfamiliar images
and required the system under test to make a decision as to
whether they were the same person. Thus, our system models
biometric verification, as opposed to the identification process
(e.g., [5]).

A. Test Database

Images were obtained from the NIST Mugshot Identification
Database (MID) [23] using the section of the database with
multiple images of subjects, which provides overall 338 frontal
images of 131 different subjects. The MID is a collection of
frontal and profile poses taken by law enforcement officials;
it is considered to be one of the more difficult for AFR
[26], [31] largely because of the variability in image quality
and the large age range over which different image of in-
dividuals are acquired. Each MID image is a large (at least
600 × 600 pixel) scan of a grayscale photograph of the subject.
The image quality ranges between excellent and very poor. The
pose of the subjects is full frontal, with very little variability.
Subjects are almost entirely male (327 of 338 images or 126 of
131 subjects). The age in years of each subject at the time of
photo capture is provided with the database. The average age
is 32.2, with a minimum of 17, and a maximum of 60. The
average age difference between images for each subject is 6.55,
with a minimum of zero and a maximum of 37. A set of sample
images of the same person from the MID is shown in Fig. 1,
illustrating how large age differences make identity verification
difficult.
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Pairs of frontal-pose face images were randomly created
from this database, subject to the constraint that 2/3 of the
pairs were impostors (images of different persons), and 1/3
were genuine (different images of the same person). A total of
540 image pairs were created (356 impostors and 184 gen-
uines). Since the MID provides up to five images of each
subject, there were no duplicate genuine images used. No
special effort was made to select images of the same gender
or ethnicity for the impostor pairs. This decision differs from
[9], in which gender- and ethnicity-matched pairs were used.
Our reasoning is that such matching is effectively an unfair
help to the AFR algorithms—the human test designers are
performing a presorting task, which the human subjects will
have no difficulty with but may help the algorithms.

B. HFR Performance

In order to estimate an upper bound to HFR performance,
we designed a test to measure results for motivated interested
people who were not under time performance pressure.

1) Test Design: The test was designed to allow participants
to use an Internet browser. Test software was written in Perl
using the Apache web server. Participants would first log in
to the application and would then be presented a set of test
screens, in which an image pair was presented and a set of
response buttons provided. No time limit was imposed for the
test. Tests were presented in a random order to each participant
(with no repetition), and no feedback on the accuracy of choices
was given. Each response and the timing of the response was
measured and recorded in the application database.

An example test-screen image is shown in Fig. 1. In each
case, an image pair was presented, and the participant was
required to select among the choices of “Same,” “Probably
Same,” “Not Sure,” “Probably Different,” and “Different.” The
participant’s choice was converted to a match-score value, such
that “Same” = 5 and “Different” = 1, with the other values
distributed between these values.

2) Instructions: Participants were recruited using an intro-
ductory presentation on the test and its overall goal: “to test
human versus machine face recognition performance.” They
were shown how to log into the system and given an example
of the test screen (Fig. 1). Participants were instructed to strive
for “accurate responses” and to complete as much of the test
as possible, but without fatigue. The distinction between false
match and false nonmatch was not discussed, and the goal of
“accuracy” was not further clarified. Specifically, no guidance
was given as to whether to prefer false matches or false non-
matches. Participants were not compensated, except with the
encouragement that “you will be helping the understanding of
face recognition technology.”

3) Subjects: Participants were employees of AiT corpo-
ration (currently 3M Security Systems Division) who were
invited to be tested during a company meeting. Tests were
unsupervised and performed in each participant’s office, us-
ing the Internet browser on their office PC. Tests were per-
formed in July 1999. There are 21 people (16 male, 5 female)
that participated in the experiments. They were predomi-
nantly Caucasian and in the age range of 20–40. On average,

123 tests were completed by each participant. Participants took
on average of 10.0 s per image pair, with a standard deviation
of 7.7 s.

C. AFR Performance

Between 1999 and the time of writing, we have had the
opportunity to test 15 different commercial AFR software
packages from seven different vendors. Each AFR system was
tested on the data set described in Section II-A. Each pair of
images was presented to each AFR software package and the
algorithm match score calculated using the verification mode of
the software if a choice was available. Software was developed
as required to support these tests; in some cases, vendors
supplied command-line test software; in other cases, software
was written to interface with SDKs; while in other cases, web
or GUI automation tools were developed. Some AFR software
packages require a database of face exemplars for training of
the feature extraction or segmentation algorithms. For those
software packages, images were provided from the portion of
the MID that was not part of the test, including landmark
locations (for eyes, nose, and mouth positions, if required)
selected manually.

Based on this protocol, each face recognizer, whether human
or software, could be analyzed in the same way. Each system
was presented a collection of genuine and impostor image pairs
and outputs a match-score value for each pair. The match score
was either an integer in the range of 1–5 (for humans) or a real
number over each software package’s match-score range.

III. METHODS: STATISTICAL

In this section, we develop novel statistical tools that are
necessary in order to analyze the data measured in the previous
section. The key challenge is that each system under test calcu-
lates match scores according to a different scale. For example,
one AFR system scores on the range of 0–10, with a decision
threshold at the equal error rate (EER) of about 7.0, while
another scores on 0–1 with a corresponding threshold of 0.85.
Some human testers would almost never be certain of a match
(score = 5); others would tend to use “not sure” (= 3), where
another would put “probably different” (= 2). Because of these
differences, it is not statistically correct to directly compare
score values between two systems. To address this problem,
we develop methods to calculate normalized scores and then
perform tests on those values.

One common way to represent the performance of a
biometric-classification algorithm is the DET curve. A sample
population containing matching (genuine) and nonmatching
(impostor) image pairs is presented to the biometric algorithm,
and the match score t is calculated to estimate the genuine
g(t) and impostor f(t) match-score distributions. From these
distributions, the DET is typically plotted as the FMR on the
x-axis against the FNMR on the y-axis by varying a thresh-
old τ and calculating FMR(τ) =

∫ ∞
τ f(x)dx and FNMR(τ) =∫ τ

−∞ g(y)dy. The DET summarizes the verification perfor-
mance of the biometric algorithm on the sample population
on which it is calculated. These data can also be represented
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by a variant of the DET, the receiver operating characteristic
(ROC), which plots the true match rate (TMR = 1 − FNMR)
versus the FMR. Technology evaluations, such as the FRVT
[22] and FpVTE [27] tests, use the DET or ROC to describe
their biometric-verification results.

In this paper, we are specifically motivated by how to average
the separate DET curves of human volunteers who were asked
to perform face recognition tasks. Because a DET is inherently
a 2-D curve, it is difficult to average the curves in a way that
properly maintains the importance of both dimensions. In order
to address this problem, we develop a technique to calculate
an average DET based on regeneration of normalized match
scores and distributions. We then show that this is equivalent
to a geometrical averaging directly on the DET curves.

Here, we are motivated to develop methods for a composite
DET curve given classification pairs (FMR(τ), FNMR(τ))
from multiple sources, in which the original genuine and im-
postor distributions are either lost, or the match-score values t
are calculated in different spaces. Four types of DET or ROC
averaging have been proposed. Bradley [3] suggests using an
average based upon the ith ordered threshold in DET space.
However, this method leads to difficulties when the number of
thresholds tested varies greatly from curve to curve. Vertical
averaging (along the FMR) has been suggested by Provost et al.
[28], but this method is only appropriate if one of the error
rates is more important for some a priori reason. When the
data to be averaged have very different error rates, this method
can produce very nonintuitive results, such as if one system
reaches FNMR = 1.0 at nonzero FMR. Fawcett [8] proposes
averaging at the thresholds; however, this method fails when the
systems use different match-score scales. Finally, Karduan and
Karduan [18] proposed averaging the log-odds transformation
of one error rate given the other. In this paper, we propose a new
method for averaging based on the radial-sweep methodology
of Macskassy and Provost [20]. This approach, as described
below, transforms each curve from the (FMR, FNMR) space
to polar coordinates.

A collection of J biometric score distributions are available.
Each distribution j is measured with a different biometric
algorithm and provides Ng

j genuine match scores G
(j)
i , 1 ≤

i ≤ Ng
j , and Nf

j impostor match scores, F
(j)
i , 1 ≤ i ≤ Nf

i .
There are no conditions on the match scores other than they be
real scalar and increase with match likelihood. Each algorithm
is characterized by its own incompatible match score tj . The
continuous genuine f (j)(tj) and impostor g(j)(tj) distributions
for algorithm j are calculated

g(j)(tj) =
1

Ng
j

Ng
j∑

i=1

δ
(
tj − G

(j)
i

)
(1)

f (j)(tj) =
1

Nf
j

Nf
j∑

i=1

δ
(
tj − F

(j)
i

)
(2)

where δ represents the Dirac delta function. We formulate the
distributions over a continuous match score in order to clarify

Fig. 2. Calculation of FMR and FNMR from sample distributions and the
regeneration of match score t using polar coordinates. Given the discrete
genuine and impostor distributions shown on the left, the DET curve on the right
is calculated. From a center at (cx, cy), an angle θ and distance r is calculated
to each FMR, FNMR point. A normalized match score t is then calculated from
θ. In this example, the distributions are discrete, and the DET curve uses a linear
interpolation between points.

the regenerated distributions in the normalized match-score
space. Based on these distributions, the FMR (FMRj) and
FNMR (FNMRj) for biometric system j may be calculated as

FMRj(τ) =

∞∫
τ−

f (j)(t)dt = 1 −
τ+∫

−∞

f (j)(t)dt (3)

FNMRj(τ) =

τ−∫
−∞

g(j)(t)dt (4)

by varying the threshold τ . This calculation is illustrated in
Fig. 2. Here, it is important that the calculation of either FMR
or FNMR, but not both, include the distribution value at τ ; we
include it in the FMR. Without loss of generality, this assumes
that the decision process is to accept if the match score is greater
than or equal to the threshold τ .

A. Normalized Match Scores via Polar Coordinates

In order to perform further analysis on multiple DET curves,
it is necessary to calculate a normalized match score common
to all curves. In this section, we describe an approach, based
on representing the curve in polar coordinates, as illustrated
in Fig. 2.

We have FMR, FNMR coordinate pairs (x(j)
i , y

(j)
i ), i =

1, . . . , Nj ; j = 1, . . . , J , where Nj = Ng
j + Nf

j , for a series
of J DET curves. By the monotonicity of the DET curves, we
know that x

(j)
1 ≤ x

(j)
2 ≤ · · · ≤ x

(j)
Nj

and y
(j)
1 ≥ y

(j)
2 ≥ · · · ≥

y
(j)
Nj

. For any point (x, y) on a DET curve, we calculate an
angle θ and distance r from a center point (cx, cy) (we later
recommend cx = cy = 1)

θ = tan−1

(
cx − x

cy − y

)
(5)

r =
√

(cx − x)2 + (cy − y)2. (6)
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We define an angle with respect to the bottom right of the DET,
since, at τ = −∞, FMR = 1 and FNMR = 0. The DET curve
moves left and upward with increasing τ . The limits for θ are
θmin = tan−1((cy − 1)/cx) and θmax = tan−1(cy/(cx − 1)).
Since we wish to calculate a normalized match score t̂ in
the range 0, . . . , 1 from θ, we define the normalized match
score t̂ as

t̂ =
θ − θmin

θmax − θmin
. (7)

B. Comparison of DET Curves

As explained above, it is not possible to directly compare
the performance of two biometric algorithms from match-score
data, since the algorithm match scores are incompatible. One
application of the normalized match score is to compare relative
algorithm error performance, in order to decide if one is better
than the other. In order to test at a match score t̂, we calculate r
for each algorithm. If the radial spoke does not intersect the
DET curve, then we linearly interpolate between the closest
two points. From r, we calculate FNMR(t̂) = cy − r cos θ and
FMR(t̂) = cx − r sin θ, where θ = θmin + (θmax − θmin)t̂.

In order to simply test if algorithm A performs better than B,
we can compare if rA > rB at match score t̂. However, rather
than simply considering performance at a single match score,
it is normally useful to consider a range of scores, t̂min ≤ t̂ ≤
t̂max. Over this range, we may say algorithm A is better than
B if rA > rB throughout the range, and vice versa. However,
if neither rA > rB or rB > rA is always true throughout the
range, we conclude that neither algorithm outperforms the other
(the better algorithm is indeterminate).

C. Distributions From DET Curves

In this section, we use the polar-coordinate representation to
reconstruct candidate genuine ĝ(t̂) and impostor f̂(t̂) distribu-
tions. Based on (3) and (4), for each DET curve j

f (j)(t̂ ) = − dFMRj

dt̂
(8)

g(j)(t̂ ) =
dFNMRj

dt̂
. (9)

Fig. 3 illustrates the calculations. Since FMR and FNMR data
are not continuous but are sampled from the DET, the distrib-
utions must be defined in terms of discrete approximations to
the derivative. One consequence of using this approximation
is that ĝ and f̂ may be noisy, but this does not matter for this
application.

Using this calculation, we now have a collection of distri-
butions ĝ(j), f̂ (j) for j = 1, . . . , J , which are all based on
compatible match scores t̂. It is thus possible to combine the
distributions, which are weighted by the number of samples in
each (if known). If the number of samples is unknown, all Nf

j

Fig. 3. Reconstructed genuine ĝ(t̂ ) and impostor f̂(t̂ ) distributions. From
the DET curve of Fig. 2, the (upper left) FMR and (lower left) FNMR are
calculated as a function of the normalized match score t̂. From these curves,
the (upper right) impostor and (lower right) genuine distributions are calculated
as −(d/dt̂ )FMR and (d/dt̂ )FNMR, respectively.

and Ng
j values are assumed to be equal for all j. The average

genuine f̄ and impostor ḡ distributions are

f̄(t̂ ) =
1

Nf

J∑
j=1

Nf
j f̂j(t̂) (10)

ḡ(t̂ ) =
1

Ng

J∑
j=1

Ng
j ĝj(t̂ ) (11)

where Nf =
∑

Nf
j and Ng =

∑
Ng

j are the total number of
impostor and genuine samples.

However, this expression may be shown to be equivalent to a
direct averaging of the DET curves in (FMR, FNMR) space, as
follows:

ˆFNMR(t̂ ) =

τ−∫
−∞

ḡ(t)dt

=

τ−∫
−∞

1
Ng

J∑
j=1

1
dt

dFNMRj(t)dt

=

τ−∫
−∞

1
Ng

J∑
j=1

Ng
j

1
dt

dFNMRj(t)dt̂

=
1

Ng

J∑
i=1

Ng
j

(
FNMRj(t̂) − FNMRj(−∞)

)

=
J∑

j=1

Ng
j

Ng
FNMRj(t̂ ). (12)

Similarly

ˆFMR(τ) =
J∑

j=1

Nf
j

Nf
FMRj(t̂ ). (13)

Thus, the average DET at each angle θ may be calculated by
an (possibly weighted) average of the distance of each curve
from (cx, cy).
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Fig. 4. DET curve for HFR and software face recognition performance.
Human results are shown as a function of match-score threshold. The average
DET for human face recognizers is the dotted line. Continuous curves show
results for the highest performing AFR software available to us in the years
1999, 2001, 2003, 2005, and 2006. Line symbols indicate resampled normal-
ized match-score values.

IV. RESULTS

Tests for face recognition performance were conducted for
21 human participants and 15 face recognition algorithms using
the protocol outlined. Using these data, DET curves were
calculated for each system, and results are shown in Fig. 4.
AFR DET curves were resampled using cx = cy = 1 to calcu-
late a normalized match score t̂ sampled at 100 points (shown
at line symbols). This choice of center is discussed below. In
order to compare AFR performance to average human results,
the approach of Section III-C was used to calculate the average
DET curve for all human scores (Fig. 4). This average curve is
shown to be strongly affected by the small number of very poor
human face recognizers.

There was wide variability in the results from AFR sys-
tems and certain of the poorer performing systems achieved
performances close to random. We are not able to publish all
AFR results and vendor names as is required by the nature
of the license agreements with some AFR vendors. Instead,
Fig. 4 shows the best AFR results available to us in each
test year, independent of the vendor of the software. Overall,
AFR performance has shown marked improvement over the
last eight years, with significant improvements in each year
measured.

Results for human participants also varied dramatically. The
best face recognizers had an order of magnitude lower error
rates than the poorest face recognizers. There does not appear
to be a significant difference in error rates between male and
female participants, although female participants showed more
of a tendency to choose false nonmatches over false matches
in comparison to males. Since the MID database consists
primarily of male faces, the improved capability of females to
recognize female faces [15] is not evident in these data. AFR
software did tend to have a lower FMR at high FNMR than
human scores. This may be due to the tuning of AFR systems
to give good FMR performance for biometric-identification
applications.

In order to compare the relative recognition performance
between HFR and AFR results, we used the technique of
Section III-B to compare the best AFR DET in each year to
each HFR curve. The comparison range was selected to be

TABLE 1
HFR PERFORMANCE IN COMPARISON TO BEST

AFR PERFORMANCE FOR EACH YEAR

0.4 ≤ t̂ ≤ 0.6, corresponding to the segment of the DET curve
between FMR = 0.15 and FNMR = 0.15. The fraction of HFR
curves that were better (lower errors), worse (higher errors),
and indeterminate are shown in Table I. The ratio of HFR
performance that is better than AFR to HFR that is worse than
AFR is also shown. This ratio has dramatically decreased over
the years of this study; in 1999, very few participants performed
worse than AFR, while current results are competitive to or
better than median human performance.

V. DISCUSSION

In this paper, we have developed an approach to compare
the performance of face recognition by humans against that of
automatic software systems. Face recognition experiments were
designed and conducted on human participants and software
algorithms, and novel statistical methods were developed to
analyze the results.

The choice of face image database was based on the “three
bears” criterion [21]; it was necessary to have a sufficiently
difficult database in order for error levels to be sufficiently large
to make meaningful comparisons. Initially, we considered that
it may be necessary to artificially chose a subset of the MID
[23], which was more difficult, but this proved to be unneces-
sary. Humans are able to perform well on poor-quality images,
images with nonfrontal pose, poor lighting, and outdoors (not
been addressed is this paper). Clearly, humans are able to use
extra information efficiently, as shown by the improved ability
to recognize familiar faces (whether of famous people or of
close acquaintances) [33]. Since the MID is public, it probable
that AFR algorithms vendors use images from the MID (among
thousands of others) in internal development and evaluation of
these algorithms. We are unable to quantify the significance
of this effect; however, since the images used in this paper
are a tiny fraction of all of the publically available face-
recognition test images, we feel that the level of this effect
would be low.

This paper presents a preliminary study of complex phe-
nomenon; it has studied the abilities of untrained motivated
human volunteers, working with single frontal images of unfa-
miliar persons. Since human performance varies dramatically
depending on the task context, we attempted to establish an
upper bound for performance by creating a context in which
participants would be motivated and unhurried. However, sev-
eral important issues are left unanswered by this paper, such
as follows: How do humans perform as familiarity increases?
What is the effect of motivation? What is the effect of routine
and boredom? Do experts outperform untrained recognizers?
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What characterizes good recognizers from poor ones? Are there
specific image types on which humans (or algorithms) perform
better than the other?

In this paper, we have also presented a new methodology in
combining and averaging DET or ROC curves. This approach
was motivated by the need to create a composite DET curve
for human evaluators of human faces. This methodology was
developed independently of [20]; however, it uses the same
basic technique of radially sweeping across the DET curve
to create a normalized match score. This permits the creation
of normalized distributions for FMR and FNMR that are a
composite of individual DET curves. This normalization is a
significant advancement in and of itself and adds to a growing
body of methods for this purpose [17]. We have used this
normalization to average and compare normalized radial match
scores. Given its ubiquity, it is perhaps somewhat surprising
that few statistical methods have been proposed for analysis
and interpretation of DET data in biometric classification. On
the other hand, there is a large body of research in the statistical
literature, e.g., Zhou et al. [34], and a growing body of work
in the machine-learning/artificial-intelligence literature, e.g.,
Hernández-Orallo et al. [16] and Drummond and Holte [7].
ROC analysis is used in a wide variety of classification settings
including radiography, human perception, and industrial quality
control. Zhou et al. [34] provide an excellent overview of this
paper. One limitation of inferential tools for ROCs is the com-
mon assumption of Gaussian distributions for g(t) and f(t),
e.g., Green and Swets [11]. The methodology we propose here
does not depend on any distributional assumptions. Another
focal area for this research has been the area under the curve or
AUC, e.g., Hanley and McNeil [14]. Biometric authentication
has emphasized the EER as an overall summary of system
performance rather than the AUC.

Several issues arise from radial sweeping of DET curves. The
first is where to locate the center of the sweeping. Because we
would like the averaging to not depend on which error rate is
on which axis, we limited possible center points to (c, c) for
some constant c = cx = cy . It is clear that choosing a center
along the FMR = FNMR line results in an average curve that
is independent of the selection of axes and preserves EER. We
considered three possible values for c: 0, 1, and ∞. Choosing
c = 0 often resulted in composite or average curves that were
counter-intuitive because of the acute angles near the axes. This
is particularly important for biometric systems, which are often
placed in settings where low FMR’s are required. There was
little difference between the curves when c = 1 and c = ∞.
However, we prefer c = 1 because the radial angles match the
typical curvature of a DET curve and, hence, are more likely to
be perpendicular to such curves. The choice of c = ∞ results
in averaging across parallel 45◦ lines.

The question of inferential methods based on the radial mean
DET is one that is important for future study. Here, we are
interested in creating confidence bands for an individual curve
(as in [20]), as well as being able to create a confidence band for
the difference of two DET curves. It would also be of interest to
test a single observed DET against a hypothetical DET curve.
This last case may take the form of a Kolmogorov–Smirnov
type test.

VI. CONCLUSION

This paper has proposed an approach to measure and com-
pare the abilities of HFR and AFR (software) systems based on
the comparison of frontal-pose images. In order to analyze these
results, we have introduced novel statistical techniques for the
analysis of DET curves. From the comparison of human and
automatic performance, we make the following conclusions:
1) There is a wide variability in the face recognition ability
of humans. Differences in error rates of an order of magnitude
were observed. 2) Over the last eight years, AFR technology has
shown dramatic improvements. The best performing systems
in 1999 were at the level of the poorest performing human
participants. However, in comparison to the performance of the
best AFR system of 2006, 29.2% of human subjects performed
better, while 37.5% performed worse.
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