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Abstract—We experimentally evaluate bagging and seven other randomization-

based approaches to creating an ensemble of decision tree classifiers. Statistical

tests were performed on experimental results from 57 publicly available data sets.

When cross-validation comparisons were tested for statistical significance, the

best method was statistically more accurate than bagging on only eight of the

57 data sets. Alternatively, examining the average ranks of the algorithms across

the group of data sets, we find that boosting, random forests, and randomized

trees are statistically significantly better than bagging. Because our results

suggest that using an appropriate ensemble size is important, we introduce an

algorithm that decides when a sufficient number of classifiers has been created for

an ensemble. Our algorithm uses the out-of-bag error estimate, and is shown to

result in an accurate ensemble for those methods that incorporate bagging into the

construction of the ensemble.

Index Terms—Classifier ensembles, bagging, boosting, random forests, random

subspaces, performance evaluation.
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1 INTRODUCTION

BAGGING is one of the older, simpler, and better known techniques
for creating an ensemble of classifiers [1]. A number of other
randomization-based ensemble techniques have been introduced.
Some of the more prominent of these include boosting [2], [3], [4],
random subspaces [5], random forests [6], and randomized C4.5
[7]. We present the results of an experimental study aimed at
determining the extent to which any of these other techniques offer
an increase in accuracy over bagging.

This is the largest such experimental study to date, in terms of the

number of experimental data sets and the breadth of different
techniques considered. We compare boosting, random subspaces,
three variations of random forests, and randomized C4.5 against

standard bagging. We present experimental results on a total of
57 different data sets. This includes all the data sets used in previous

studies on boosting [3], random subspaces [5], random forests [6],
and randomized C4.5 [7], plus two additional data sets.

This is also the most rigorous such study to date, looking at
statistical significance based on the typical 10-fold cross-validation
evaluation method and contrasting this with significance based on

the improved 5� 2-fold cross-validation proposed by Dietterich
[8] and modified by Alpaydin [9]. A paired t-test on the results of a

10-fold cross-validation is the typical approach used in the
literature when statistical significance is reported. Dietterich notes
that the 10-fold cross-validation violates the assumptions of the

statistical test, in a way that results in an underestimate of the
variance, leading to results being declared statistically significant
more frequently than they should. Alpaydin notes that Dietterich’s
method can produce instability based on the order of the cross-
validations, and corrects for this using an F-test.

In [10], an approach based on average algorithm rank was
argued as the best way to evaluate multiple algorithms on multiple
data sets. It allows for a summary decision to be made on
statistically significant performance differences over the whole
group of data sets and we have applied it for that purpose.

This work extends our previous results [11] in several important
respects.

1. Results for boosting are now included in our evaluation.
2. The number of data sets used is greatly increased.
3. A much larger ensemble size is considered.
4. The statistical analysis includes the 5� 2-fold approach, as

well as the typical 10-fold cross-validation, and an average
rank analysis. These extensions have altered some previous
conclusions and made some additional insights possible.

5. A method to determine when to stop adding classifiers to
an ensemble is introduced.

2 RANDOMIZATION-BASED ENSEMBLE CREATION

TECHNIQUES

We report on an experimental evaluation that looks at bagging as a
baseline against which to compare other randomization-based
ensemble techniques. The other techniques considered here are
boosting, random subspaces, randomized C4.5, and random
forests. Bagging, boosting, and random subspaces are general
techniques that can be used with any type of base classifier.
However, the evaluation reported here focuses on using decision
trees as the base classifier.

Bagging creates an ensemble of classifiers by sampling with
replacement from the set of training data to create new training
sets called “bags” [1]. In the results reported here, as is the case for
most work on bagging, the number of items in each bag is the same
as the number of items in the set of training data and a separate
classifier is trained from each bag. We consider ensembles
consisting of up to 1,000 classifiers.

Ho’s random subspace technique selects random subsets of the
available features to be used in training the individual classifiers in
an ensemble [5]. Ho’s approach randomly selects one half of the
available features for each decision tree and creates ensembles of size
100. In one set of experiments, the random subspace technique gave
better performance than either bagging or boosting for a single
train/test split for four data sets. Another set of experiments
involved 14 data sets that were randomly split into halves for
training and testing. Ten random splits were done for each of the
14 data sets. For each data set, the minimum and maximum of the
10 accuracies were deleted and the remaining eight values averaged.
Qualitatively, it appears that random subspaces resulted in higher
accuracy than either bagging or boosting on about five of the 14 data
sets. The differences in accuracy were not evaluated for statistical
significance. Ho summarized the results as follows: “The subspace
method is better in some cases, about the same or worse in other cases
when compared to the other two forest building techniques [bagging
and boosting]” [5]. One other conclusion was that “the subspace
method is best when the data set has a large number of features and
samples, and that it is not good when the data set has very few
features coupled with a very small number of samples or a large
number of classes” [5].

Breiman’s random forest technique blends elements of random
subspaces and bagging in a way that is specific to using decision
trees as the base classifier [6]. At each node in the tree, a subset of the
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available features is randomly selected and the best split available
within those features is selected for that node. Also, bagging is used
to create the training set of data items for each individual tree. The
number of features randomly chosen (from n total) at each node is a
parameter of this approach. Following [6], we considered versions
of random forests created with random subsets of size 1, 2, and
blog2ðnÞ þ 1c. Breiman reported on experiments with 20 data sets, in
which each data set was randomly split 100 times into 90 percent for
training and 10 percent for testing. Ensembles of size 50 were
created for Adaboost and ensembles of size 100 were created for
random forests, except for the zip code data set, for which
ensembles of size 200 were created. Accuracy results were averaged
over the 100 train-test splits. The random forest with a single
attribute randomly chosen at each node was better than AdaBoost
on 11 of the 20 data sets. The random forest with blog2ðnÞ þ 1c
attributes was better than AdaBoost on 14 of the 20 data sets. The
results were not evaluated for statistical significance.

Dietterich introduced an approach that he termed randomized
C4.5 [7]. We will refer to this more generally as random trees. In
this approach, at each node in the decision tree, the 20 best tests are
determined and one of them is randomly selected for use at that
node. With continuous attributes, it is possible that multiple tests
from the same attribute will be in the top 20. Dietterich reported on
experiments with 33 data sets from the UC Irvine repository. For
all but three of the data sets, a 10-fold cross-validation approach
was followed. The other three used a train/test split as included in
the distribution of the data set. Random tree ensembles were
created using both unpruned and pruned (with certainty factor 10)
trees, and the better of the two was manually selected for
comparison against bagging. Differences in accuracy were tested
for statistical significance at the 95 percent level. With this
approach, it was found that randomized C4.5 resulted in better
accuracy than bagging six times, worse performance three times,
and was not statistically significantly different 24 times.

Freund and Schapire introduced a boosting algorithm [3] for
incremental refinement of an ensemble by emphasizing hard-to-
classify data examples. This algorithm, referred to as AdaBoost.M1,
creates classifiers using a training set with weights assigned to every
example. Examples that are incorrectly classified by a classifier are
given an increased weight for the next iteration. Freund and
Schapire showed that boosting was often more accurate than
bagging when using a nearest neighbor algorithm as the base
classifier, though this margin was significantly diminished when

using C4.5. Results were reported for 27 data sets, comparing the
performance of boosting with that of bagging using C4.5 as the base
classifier. The same ensemble size of 100 was used for boosting and
bagging. In general, 10-fold cross-validation was done, repeated for
10 trials, and average error rate reported. For data sets with a
defined test set, an average of 20 trials was used with this test set.
Boosting resulted in higher accuracy than bagging on 13 of the
27 data sets, bagging resulted in higher accuracy than boosting on
10 data sets, and there were 4 ties. The differences in accuracy were
not evaluated for statistical significance.

Table 1 shows a comparative summary of experiments and
results of this work with the previously discussed work.

3 EXPERIMENTAL DESIGN

In this work, we used the free open source software package
“OpenDT” [13] for learning decision trees in parallel. This program
has the ability to output trees very similar to C4.5 release 8 [14], but
has added functionality for ensemble creation. In OpenDT, like
C4.5, a penalty is assessed to the information gain of a continuous
attribute with many potential splits. In the event that the attribute
set randomly chosen provides a “negative” information gain, our
approach is to randomly rechoose attributes until a positive
information gain is obtained, or no further split is possible. This
enables each test to improve the purity of the resultant leaves. This
approach was also used in the WEKA system [15].

As AdaBoost.M1 was designed for binary classes, we use a
simple extension to this algorithm called AdaBoost.M1W [2] which
modifies the stopping criteria and weight update mechanism to
deal with multiple classes and weak learning algorithms. Our
boosting algorithm uses a weighted random sampling with
replacement from the initial training set, which is different from
a boosting-by-weighting approach where the information gain is
adjusted according to the weight of the examples. Freund and
Schapire used boosting-by-resampling in [3]. There appears to be
no accuracy advantage for boosting-by-resampling or boosting-by-
reweighting [16], [17], [18] though Breiman reports increased
accuracy for boosting-by-resampling when using unpruned trees
[19]. We use unpruned trees because of this and, in general, for
increased ensemble diversity [20]. Boosting-by-resampling may
take longer to converge than boosting-by-reweighting though.

We have made a modification to the randomized C4.5 ensemble
creation method in which only the best test from each attribute is
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allowed to be among the best set of 20 tests, from which one is

randomly chosen. This allows the algorithm to be less prejudiced

against discrete attributes when there are a large number of

continuous valued attributes. We call it the “random trees B”

approach. For this approach, we used a random test from the

20 attributes with maximal information gain.
In the random subspace approach, half ðdn=2eÞ of the attributes

were chosen each time. For the random forest approach, we used a

single attribute, two attributes, and blog2 nþ 1c attributes (which

will be abbreviated as random forests-lg in the following).
Fifty-seven data sets were used, 52 from the UC Irvine repository

[21], credit-g from NIAAD (www.liacc.up.pt/ML), phoneme from

the ELENA project (ftp.dice.ucl.ac.be/pub/neural-nets/ELENA/

databases), and several synthetic data sets from Breiman for which

source code may be found with the Delve package (http://

www.cs.utoronto.ca/~delve/data/datasets.html). The data sets,

described in Table 2, have from 4 to 256 attributes and the attributes

are a mixture of continuous and nominal values.

3.1 Experiments

For each data set, a stratified 10-fold cross-validation was

performed. A stratified n-fold cross-validation breaks the data set

into n disjoint subsets each with a class distribution approximating

that of the original data set. For each of the n folds, an ensemble is

trained using n� 1 of the subsets, and evaluated on the held out

subset. As this creates n nonoverlapping test sets, it allows for

statistical comparisons between approaches to be made.
For each data set, we also performed a set of five stratified two-

fold cross-validations. In this methodology, the data set is randomly

broken into two halves. One half is used in training and the other in

testing and vice versa. This validation is repeated five times, each

with a new half/half partition. Dietterich’s experiments used a t test

to evaluate statistical significance [8]. In Alpaydin’s method, the

t test is abandoned in favor of an F test for reasons of stability [9].

Specifically, rather than using the difference of only one test set, the

difference of each test set is considered in the F test used here.
For each approach we use 1,000 trees in our ensemble, though

we examine boosting with both 50 and 1,000 trees. Breiman often

used only 50 trees in his research [1], [6], and Schapire has used as

many as 1,000 [22].

3.2 Statistical Tests

We used three approaches to testing the statistical significance of

the observed differences in accuracy. One approach is a t test on

the results of a 10-fold cross-validation. This is the most widely

used approach for this type of experiment. While the 10 folds of the

cross-validation have independent test sets, the training data is

highly overlapped across folds, and use of the t test assumes

independent trials. Dietterich points out that this results in an

elevated level of Type I error, which can be corrected for by his

5� 2 cross-validation. This relies on the idea that learning curves

rarely cross for algorithms as training set size varies.
We applied the Bonferroni correction, a calculation which raised

the critical value necessary for determining significance, in order to

compensate for the number of methods used in our experiments. In

the Bonferroni correction, the � value of an entire set of

n comparisons is adjusted by taking the � value of each individual

test as�=n [23]. In our experiments, we define � ¼ 0:05 and n ¼ 7. In

the case of the 10-fold cross-validation, the t-critical value is 3.47 and

for the 5� 2-fold cross-validation, the F-critical value is 11.66.
A recent paper [10] suggests that the best way to compare

multiple algorithms across multiple data sets is to compare their

average ranks. In our case, one could rank the algorithm by average

accuracy over a cross-validation experiment from 1-the best to 8-the
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worst. If, for example, two algorithms tied for third, they would each

get a rank of 3.5. After obtaining the average ranks the Friedman test

can be applied to determine if there are any statistically significant

differences among the algorithms for the data sets. If so, the Holm

step-down procedure was used to determine which might be

statistically significantly different from bagging. It was argued [10]

that this is a stable approach for evaluating many algorithms across

many data sets and determining overall statistically significant

differences.

4 EXPERIMENTAL RESULTS

Table 3 shows the results of our experiments. Statistical wins

against bagging are designated by a plus sign and losses by a

minus sign. If neither a statistical win nor statistical loss is

registered, the table field for that data set is omitted. We separate

the results of the 10-fold cross-validation and the 5� 2-fold cross-

validation with a slash. Table 4 shows a summary of our results.
For 37 of 57 data sets, considering both types of cross-

validation, none of the ensemble approaches resulted in a

statistically significant improvement over bagging. On one data

set, zip, all ensemble techniques showed statistically significant

improvement under the 10-fold cross-validation approach. The

best ensemble building approaches appear to be boosting-1,000

and random forests-lg. Each scored the most wins against bagging

while never losing. For both random subspaces and random

forests-1 there were a greater number of statistical losses to

bagging than statistical wins. Boosting with only 50 trees and

random forests using only two attributes also did well. Random

trees-B had a high number of statistical wins in the 10-fold cross-

validation but also a high number of losses. Interestingly, in the

5� 2-fold cross-validation, it resulted in very few wins and losses.
In comparing the differences between the 10-fold cross-

validation and the 5� 2-fold cross-validation, the primary differ-

ence is the number of statistical wins or losses. Using the 5� 2-fold

cross-validation method, for only 12 of the 57 data sets was there a

statistically significant win over bagging with any ensemble

technique. This can be compared to the 10-fold cross-validation

where for 18 of the 57 data sets there was a statistically significant

win over bagging. Under the 5� 2-fold cross-validation, for no

data set was every method better than bagging.
The average ranks for the algorithms are shown in Table 4. It was

surprising to see that random forests when examining only two

randomly chosen attributes had the lowest average rank. Using the
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Friedman test followed by the Holm test with a 95 percent

confidence level it can be concluded that there was a statistically

significant difference between bagging and all approaches except

for random subspaces using the average accuracy from a 10-fold

cross-validation. Using the 5� 2 cross-validation results, there was

a statistically significant difference between bagging and all

approaches except for boosting 50 classifiers and random sub-

spaces. The approaches were often not significantly more accurate

than bagging on individual data sets. However, they were

consistently more accurate than bagging.

5 DISCUSSION

Since many papers compare their approaches with bagging and

show improvement, it might be expected that one or more of these

approaches would be an unambiguous winner over bagging. This

was not the case when the results are looked at in terms of

statistically significant increases in accuracy on individual data

sets. Of the 57 data sets considered, 37 showed no statistically

significant improvement over bagging for any of the other

techniques, using either the 10-fold or 5� 2 cross-validation.

However, using the Friedman-Holm tests on the average ranks, we

can conclude that several approaches perform statistically sig-

nificantly better than bagging on average across the group of data

sets. Informally, we might say that while the gain over bagging is

often small, there is a consistent pattern of gain.
There are three data sets, letter, pendigits, and zip, for which

nearly everything improves on the accuracy of bagging. Each of

those data sets involves character recognition. We conducted

experiments that attempt to increase the diversity of an ensemble

of bagged classifiers, hypothesizing that the diversity created by

bagging on the letter and pendigits data sets was insufficient to

increase the accuracy of the ensemble. This was performed by

creating bags of a smaller size than the training set, these sizes

ranging from 20 percent to 95 percent in 5 pecent increments. The

highest ensemble accuracy obtained on the letter data set, with

95 percent bags, was only marginally higher than the result with

100 percent bags. This difference was not statistically significant.

The pendigits data set showed no improvement at any size. Zip was

not tested due to running time constraints.
The raw accuracy numbers show that random subspaces can be

up to 44 percent less accurate than bagging on some data sets. Data

sets that perform poorly with random subspaces likely have

attributes which are both highly uncorrelated and each individu-

ally important. One such example is the krk (king-rook-king) data

set which stores the position of three chess pieces in row#, column#

format. If even one of the attributes is removed from the data set,

vital information is lost. If half of the attributes are dismissed (e.g.,

King at A1, Rook at A?, and King at ??) the algorithm will not have

enough information and will be forced to guess randomly at the

result of the chess game.
Boosting-by-resampling 1,000 classifiers was substantially

better than with 50 classifiers. Sequentially generating more

boosted classifiers resulted in both more statistically significant

wins and fewer statistically significant losses. If processing time

permits additional classifiers to be generated, a larger ensemble

than 50 is worthwhile.
Random forests using only two attributes obtained a better

average rank than random forests-lg in both cross-validation

methods but did worse in terms of number of statistically significant

improvements. Experimentation with the splice data set resulted in

statistically significant wins for random forests-lg and statistically

significant losses for random forests-2 with a 6 to 9 percent difference

in accuracy. Thus, while testing only two random attributes is likely

sufficient, testing additional attributes may prove beneficial on

certain data sets. Breiman suggested using out-of-bag accuracy to
determine the number of attributes to test [6].

There are other potential benefits aside from increased accuracy.
Random forests, by picking only a small number of attributes to test,
generates trees very rapidly. Random subspaces, which tests fewer
attributes, can use much less memory because only the chosen
percentage of attributes needs to be stored. Recall that since random
forests may potentially test any attribute, it does not require less
memory to store the data set. Since random trees do not need to
make and store new training sets, they save a small amount of time
and memory over the other methods. Finally, random trees and
random forests can only be directly used to create ensembles of
decision trees. Bagging, boosting, and random subspaces could be
used with other learning algorithms, such as neural networks.

6 AN ADVANTAGE OF BAGGING-BASED METHODS FOR

ENSEMBLE SIZE

We used an arbitrarily large number of trees for the ensemble in the
preceding section. The boosting results, for example, show that an
increase in the number of trees provides better accuracy than the
smaller ensemble sizes generally used. This suggests a need to know
when enough trees have been generated. It also raises the question of
whether approaches competitive with boosting-1,000 may (nearly)
reach their final accuracy before 1,000 trees are generated. The easiest
way of determining when enough trees have been generated would
be to use a validation set. This unfortunately results in a loss of data
which might otherwise have been used for training.

One advantage of the techniques which use bagging is the ability
to test the accuracy of the ensemble without removing data from the
training set, as is done with a validation set. Breiman hypothesized
that this would be effective [6]. He referred to the error observed
when testing each classifier on examples not in its bag as the “out-of-
bag” error, and suggested that it might be possible to stop building
classifiers once this error no longer decreases as more classifiers are
added to the ensemble. The effectiveness of this technique has not
yet been fully explored in the literature. In particular, there are
several important aspects which are easily overlooked, and are
described in the following section.

6.1 Considerations

In bagging, only a subset of examples typically appear in the bag
which will be used in training the classifier. Out-of-bag error
provides an estimate of the true error by testing on those examples
which did not appear in the training set. Formally, given a set T of
examples used in training the ensemble, let t be a set of size jT j
created by a random sampling of T with replacement, more
generally known as a bag. Let s be a set consisting of T � ðT \ tÞ.
Since s consists of all those examples not appearing within the bag,
it is called the out-of-bag set. A classifier is trained on set t and
tested on set s. In calculating the voted error of the ensemble, each
example in the training set is classified and voted on by only those
classifiers which did not include the example in the bag on which
that classifier was trained. Because the out-of-bag examples, by
definition, were not used in the training set, they can be used to
provide an estimate of the true error.

Only a fraction of the trees in the ensemble are eligible to vote on
any given item of training data by its being “out-of-bag” relative to
them. For example, suppose out-of-bag error was minimized at
150 trees. These 150 trees are most likely an overestimate of the “true
number” because for any example in the data set, it would need to be
out-of-bag on 100 percent of the bags in order to have all 150 trees
classify that example. Therefore, the OOB results most likely lead to
a larger ensemble than is truly needed.

Our experimentation with algorithms to predict an adequate
number of decision trees is further complicated by out-of-bag error
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estimate quirks on data sets with a small number of examples. Small

data sets (number of examples < 1,000) can often have a very low

error estimate with a rather small number of decision trees (50 to

100), but then the addition of more trees results in a greater error rate

in both the out-of-bag error and the test set error, as might be shown

in a 10-fold cross-validation. This behavior is contrary to many

experiments which have shown that test set error steadily decreases

with an increasing number of classifiers until it plateaus. We

speculate that this is a result of instability in the predictions leading

to a “lucky guess” by the ensemble for such data sets. Since the

decision to stop building additional classifiers is more effective, in a

time-saving sense, for large data sets, we believe it is more important

to concentrate on data sets with a larger number of examples.
We have developed an algorithm which appears to provide a

reasonable solution to the problem of deciding when enough

classifiers have been created for an ensemble. It works by first

smoothing the out-of-bag error graph with a sliding window in

order to reduce the variance. We have chosen a window size of 5

for our experiments. After the smoothing has been completed, the

algorithm takes windows of size 20 on the smoothed data points

and determines the maximum accuracy within that window. It

continues to process windows of size 20 until the maximum

accuracy within that window no longer increases. At this point, the

stopping criterion has been reached and the algorithm returns the

ensemble with the maximum raw accuracy from within that

window. The algorithm is shown in Algorithm 1.

Algorithm 1 Algorithm for deciding when to stop building

classifiers

1: SlideSize( 5, SlideWindowSize( 5, BuildSize( 20

2: A½n� ( Raw Ensemble accuracy with n trees

3: S½n� ( Average Ensemble accuracy with n trees over the

previous SlideWindowSize trees

4: W ½n� ( Maximum smoothed value

5: repeat

6: Add (BuildSize) more trees to the ensemble

7: NumTrees ¼ NumTreesþBuildSize
//Update A½� with raw accuracy estimates obtained from

out-of-bag error

8: for x( NumTrees�BuildSize to NumTrees do

9: A½x� ( VotedAccuracy(Tree1 . . .Treex)

10: end for

//Update S½� with averaged accuracy estimates

11: for x( NumTrees�BuildSize to NumTrees do

12: S½x� ( Average(A½x� SlideSize� . . .A½x�)
13: end for

//Update maximum smoothed accuracy within window

14: W[NumTrees=BuildSize� 1]

( maxðS½NumTrees�BuildSize� . . .S½NumTrees�)
15: until ðW ½NumTrees=BuildSize� 1� �

W ½NumTrees=BuildSize� 2�Þ
16: Stop at tree argmaxjðA½j�jj 2 ½NumTrees� 2 �

BuildSize� . . . ½NumTrees�BuildSize�Þ

6.2 Experiments

We compare the stopping points and the resulting test set accuracy
of ensembles built out to 2,000 trees using Random Forests-lg and a
10-fold cross-validation. For this comparison we examine 1) the
stopping point of our algorithm, 2) the stopping point by taking the
minimum out-of-bag error over all 2,000 trees, and 3) an oracle
algorithm which looks at the lowest observed error on the test set
over the 2,000 created trees (as trees are added sequentially).
Thirteen of the previously used data sets with greater than
1,000 examples are used. The results are shown in Table 5.

For most data sets, the out-of-bag error continues to decrease
long into the training stage. This often does not result in any
improvement of test set performance. Across all 13 data sets the total
gain by using the minimum out-of-bag error rather than our
algorithm was only 0.06 percent on average. Comparing our
algorithm to the oracle, the accuracy loss is less than 0.25 percent
per data set. In comparing the number of trees used, our method
uses many fewer trees than the other methods. On average, we use
1,140 fewer trees compared to the minimum out-of-bag error and
755 fewer trees compared to the oracle method. While these
numbers are clearly influenced by the maximum number of trees
chosen to build, it is also evident that looking at the maximum out-
of-bag accuracy causes the algorithm to continue building a large
number of trees.

We have also tested this method on the bagged trees without the
use of random forests. We generated half (1,000) the number of the
trees used in the previous experiment in order to shorten the
previously observed large over estimation on the number of trees
using the minimum out-of-bag error alone and to reduce the
training time. The results for this experiment are shown in Table 5.
The use of our algorithm results in an average net loss of 0.12 percent
per data set compared to the minimum out-of-bag error, while using
431 fewer trees. Compared to the oracle method, there is a net loss of
0.25 percent per data set (consistent with the previous experiment)
while using 442 fewer trees.
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Based on these results, we believe it is possible to choose an
acceptable stopping point while the ensemble is being built. In
experiments with our algorithm, it has not shown itself to be overly
sensitive to the parameters of the sliding window size and the
building window size. On average, the number of trees built in
excess for the purpose of choosing the stopping point in our
algorithm, will be half of the building window size.

When bagging a data set, the probability of any particular
example being included in the bag is slightly less than two-thirds,
meaning only about one-third of the examples are out-of-bag. Put
another way, for each example in the training set, only about one-
third of the trees in the ensemble vote on that example. Therefore,
the number of trees we have chosen to stop at may be as many as
three times the amount necessary for equivalent performance on a
test set consisting of all unseen examples. For this reason, we
include the accuracy results obtained by using a random one-third
of the number of trees chosen to stop with in the previous
experiments. These results are shown in Table 6. Figs. 1 and 2
demonstrate the relationship of out-of-bag error and test set error
for a given number of trees in the full ensemble. Fig. 2 is a worst-
case result, with oob error decreasing but overall error being
minimal early and higher with more trees before stabilizing.

Looking at the accuracy with one-third of the number of trees
shows mixed results. Though there are some data sets unaffected
by the change, other data sets, especially the larger sized ones,

benefit from the greater number of trees. We believe that our

algorithm, which stops at the first window at which accuracy no

longer increases, compensates for what might otherwise require

three times the number of trees to decide.

7 CONCLUSIONS

This paper compares a variant of the randomized C4.5 method

introduced by Dietterich [7], random subspaces [5], random forests

[6], AdaBoost.M1W [2], and bagging. A 10-fold cross validation and

5� 2-fold cross validation are used in the comparison. The accuracy

of the various ensemble building approaches was compared with

bagging using OpenDT to build unpruned trees. The comparison

was done on 57 data sets. This is the largest comparison of ensemble

techniques that we know of, in terms of number of data sets or

number of techniques. This is also the most rigorous comparison, in

the sense of employing the cross-validation test suggested by

Alpaydin in addition to the standard 10-fold cross-validation and

the Friedman-Holm test on the average rank.

We found that some of the well-known ensemble techniques

rarely provide a statistically significant advantage over the

accuracy achievable with standard bagging on individual data

sets. We found that boosting-by-resampling results in better

accuracy with a much larger ensemble size than has generally
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TABLE 6
Test Set Accuracy Results Using a Third of the Trees Chosen in Table 5

Fig. 1. Out-of-bag accuracy versus test set accuracy results as classifiers are

added to the ensemble for satimage.

Fig. 2. Out-of-bag accuracy versus test set accuracy results as classifiers are

added to the ensemble for segment.
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been used, and that at this larger ensemble size it does offer some

performance advantage over bagging. However, the increase in

accuracy is statistically significant in only a fraction of the data sets

used. Random forests-lg and random forests-2 show some

improvement in performance over bagging. The accuracy im-

provement with these random forests algorithms is perhaps not

quite as big as with boosting-1,000, however they have the

advantage that the trees can be created in parallel.
An evaluation approach using the average ranking (by cross-

validation accuracy) of the algorithms on each data set [10] has

recently been argued to be the best approach for comparing many

algorithms across many data sets. When we calculated the average

ranks and then used the Friedman test followed by the Holm test,

boosting 1,000, randomized trees, and random forests were

statistically significantly better than bagging using the 5� 2-fold

cross-validation accuracies. With the 10-fold cross-validation

accuracies, boosting-50 was also statistically significantly better

than bagging. We conclude that for any given data set the

statistically significantly better algorithms are likely to be more

accurate, just not by a significant amount on that data set. So,

performance/accuracy trade-offs may make sense in some cases.
We also showed a way to automatically determine the size of the

ensemble. The stopping criteria we presented showed that it is

possible to intelligently stop adding classifiers to an ensemble using

out-of-bag error, as hypothesized by Breiman. Our experiments

show this clearly applies to bagging and random forests-lg, which

makes use of bagging. In particular, our results demonstrate that it is

possible to stop much earlier than the minimum out-of-bag error

would dictate, and still achieve good accuracy from the ensemble.
The raw accuracy results for the 10-fold and the 5� 2-fold cross-

validations are contained in an appendix. The Appendix can be

found at http://computer.org/tpami/archives.htm.
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