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Abstract 

This paper proposes various methods for constructing a compact fuzzy classification system consisting of a small 
number of linguistic classification rules. First we formulate a rule selection problem of linguistic classification rules with 
two objectives: to maximize the number of correctly classified training patterns and to minimize the number of selected 
rules. Next we propose three methods for finding a set of non-dominated solutions of the rule selection problem. These 
three methods are based on a single-objective genetic algorithm. We also propose a method based on a multi-objective 
genetic algorithm for finding a set of non-dominated solutions. We examine the performance of the proposed methods by 
applying them to the well-known iris data. Finally we propose a hybrid algorithm by combining a learning method of 
linguistic classification rules with the multi-objective genetic algorithm. High performance of the hybrid algorithm is 
demonstrated by computer simulations on the iris data. © 1997 Elsevier Science B.V. 
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1. Introduction 

Fuzzy systems based on fuzzy if-then rules have 
been applied to various control problems [19, 28]. 
Fuzzy if-then rules in those fuzzy systems were 
usually derived from human experts. Recently, sev- 
eral approaches have been proposed for automati- 
cally generating fuzzy if-then rules from numerical 
data without domain experts (see, for example 
[29, 32, 35]). Genetic algorithms [3, 5] have been 
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widely used for generating fuzzy if-then rules and 
tuning the membership functions of antecedent and 
consequent fuzzy sets. For example, Thrift [33], 
Feldman [1], and Kropp and Baitinger [18] em- 
ployed genetic algorithms for generating fuzzy if- 
then rules. Membership functions were adjusted by 
genetic algorithms in Karr [15], Karr and Gentry 
[16], Surmann et al. [30], and Herrera et al. [4]. 
Both the generation of fuzzy if-then rules and the 
tuning of membership functions were performed by 
genetic algorithms in Kinzel et al. [17], Satyadas 
and Krishnakumar [26], Homaifar and McCor- 
mick [6], and Park et al. [24]. The number of 
fuzzy if-then rules was also determined by genetic 
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algorithms in Nomura  et al. [22], Liska and Mel- 
sheimer [21], Lee and Takagi [20], and Ishigami 
et al. [14]. Hierarchical structures of fuzzy if-then 
rules were determined by genetic algorithms in 
Shimojima et al. [27]. In those genetic-algorithm- 
based approaches, a rule set (i.e., a rule table) of 
fuzzy if-then rules was coded as an individual. On 
the other hand, a single fuzzy if-then rule was coded 
as an individual in fuzzy classifier systems of Valen- 
zuela-Rendon [34] and Parodi and Bonelli [25]. 

The above-mentioned approaches were mainly 
applied to fuzzy control problems such as cart 
centering problems [ 1,4, 6, 15, 17, 18, 20, 33], a pH 
control problem [16], a spacecraft attitude control 
problem [26], a truck backing problem [6], and 
a dc series motor  control problem [24]. Some ap- 
proaches were applied to function approximation 
problems [14, 21, 22, 25, 27, 30, 34]. 

Fuzzy systems based on fuzzy if-then rules have 
also been applied to pattern classification prob- 
lems. Ishibuchi et al. [11] proposed a generation 
method of fuzzy if-then rules from numerical data 
for pattern classification problems, and Nozaki  
et al. [23] proposed a learning method of the gener- 
ated fuzzy if-then rules. Genetic algorithms were 
used in Ishibuchi et al. [12, 13] for selecting a small 
number  of fuzzy if-then rules with high classifica- 
tion performance. In genetic-algorithm-based rule 
selection methods [12, 13], the following fuzzy if- 
then rules were used as candidate rules for an 
n-dimensional pattern classification problem: 
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Fig. 1. Various antecedent fuzzy sets. 
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Rule R j: If Xpl is / l  j l  and ... and xp,, is Aj, 

then xp is Class Cj 

with CF= CFj, .j= l,2 . . . . .  N, (1) 

where Rj is a label of rule, xp = (Xpl . . . . .  xr,  ) is an 
n-dimensional pattern vector, Aji is an antecedent 
fuzzy set on the i-th axis of the pattern space, Cj is 
a consequent class, CFj is the grade of certainty, 
and N is the total number  of candidate rules. Be- 
cause various fuzzy sets shown in Fig. 1 were used 
as antecedent fuzzy sets in the rule selection 
methods [12, 13], the linguistic interpretation of 
selected fuzzy if-then rules was not always easy. 

In order to select fuzzy if-then rules that can 
always be interpreted linguistically, Ishibuchi et al. 

Membership 

0.0 0.5 1.0 

Fig. 2. Antecedent fuzzy sets of linguistic classification rules 
(DC: don't  care, S: small, MS: medium small, M: medium, ML: 
medium large, and L: large). 

[7, 8] restricted the antecedent fuzzy sets of candi- 
date fuzzy if-then rules to the six linguistic values 
shown in Fig. 2. That  is, the antecedent fuzzy set 
Aji was one of the six linguistic values in [7, 8]. 



H. lshibuchi et al. / Fuzzy Sets" and Systems 89 (1997) 135-150 137 

Fuzzy if-then rules with linguistic values in their 
antecedent part  were referred to as "linguistic clas- 
sification rules" in [7, 8]. 

The rule selection problem of the linguistic classi- 
fication rules in [7,8], which is also discussed in 
this paper, has the following two objectives: 

(i) To maximize the number  of correctly classi- 
fied training patterns by selected rules. 

(ii) To minimize the number  of selected rules. 
These two objectives were combined into a single 
scalar fitness function using constant weights in 
[7,8]. An idea of a multi-objective genetic algo- 
rithm was proposed to find a set of non-dominated 
solutions of the rule selection problem with the 
above two objectives in [9]. A fuzzy classifier sys- 
tem [10] was proposed to handle a rule selection 
problem with only the first objective for multi- 
dimensional pattern classification problems involv- 
ing many  features. 

The main aim of this paper  is to propose several 
methods for finding a set of non-dominated solu- 
tions of the rule selection problem with the above 
two objectives. First we briefly describe the formu- 
lation of the rule selection problem of linguistic 
classification rules. Next we propose three methods 
based on a single-objective genetic algorithm for 
finding the non-dominated solutions of the rule 
selection problem. We also propose a method 
based on a multi-objective genetic algorithm. Fi- 
nally we propose a hybrid algorithm by combining 
a learning method [23] of linguistic classification 
rules with the multi-objective genetic algorithm. 
The performance of the proposed methods are 
examined by applying them to the classification 
problem of the iris data (see, for example, [2]). 

2. Rule selection problem of linguistic classification 
rules 

2. 1. Pattern classification problem 

We assume that m patterns Xp = ( X p l  . . . . .  Xpn),  

p = 1, 2 . . . . .  m from c classes are given as training 
data in an n-dimensional pattern space [0,1]". 
Thus, our pattern classification problem is a c-class 
problem in the n-dimensional hyper-cube [0, 1]". 
We show an example of the pattern classification 

problem in Fig. 3 where m = 121, c = 2 and n = 2. 
In Fig. 3, training patterns from Class 1 and Class 
2 are shown by closed circles and open circles, 
respectively. 

We also assume that linguistic values are given 
for each axis of the pattern space. While we use the 
six linguistic values in Fig. 2 for formulating the 
rule selection problem in this paper, we can use 
arbitrary linguistic values such as five values in 
Fig. 4 when we apply our approach to a specific 
pattern classification problem. The selection of 
linguistic values and the determination of their 
membership functions should be done by human 
experts. If no human experts can specify linguistic 
values for each axis of the pattern space, we may 
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Fig. 3. An example of the pattern classification problem. 
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Fig. 4. Example of a set of alternative linguistic values (DC: 
don't care, S: small, M: medium, L: large, and VL: very large). 
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use typical linguistic values such as the six linguistic 
values in Fig. 2 for all the n axes of  the pat tern  
space. 

linguistic rules are over lapping in the pat tern  space. 
This means  that  some of the 36 linguistic rules in 
Fig. 5 m a y  be redundant  for the classification task. 

2.2. F u z z y  par t i t i on  o f  a p a t t e r n  s p a c e  2.3. R u l e  g e n e r a t i o n  

When we use the six linguistic values in Fig. 2 for 
each axis of the n-dimensional  pa t tern  space, 
N = 6" linguistic classification rules can be gener- 
ated f rom the training pat terns  Xp = (xp~ . . . . .  Xp,), 
p = 1, 2, . . . ,  m because each antecedent  fuzzy set 
A;i in (1) may  assume one of the six linguistic 
values. Fo r  example,  62 = 36 linguistic classifica- 
t ion rules can be generated for the two-dimens ional  
pa t tern  space [0, 1 ] 2 of the classification p rob lem in 
Fig. 3. In this case, 36 fuzzy subspaces  are generated 
in the pat tern  space [0, 1] 2 as shown in Fig. 5, and 
a linguistic classification rule is assigned to each 
fuzzy subspace.  F r o m  Fig. 5, we can see that  several 

The  consequent  C; and the grade of certainty CF;  
of each linguistic classification rule in (1) can be 
determined by the given training pat terns  xp = 
(xpl, . . . ,  xp,), p = 1,2 . . . . .  m in the same manne r  as 
in the rule generat ion me thod  of fuzzy if-then rules 
in [11]. First  let us define the grade of compat ibi l i ty  
o f x p  to t h e j t h  linguistic classification rule R~ in (1) 
a s  

[.~j(Xp) = ~Ajl (Xp l )  . . . . .  ]AAi,,(Xpn), ( 2 )  

where #Aj,(Xpi) is the member sh ip  function of the 
antecedent  fuzzy set A;~. Thus  the total  grade of 
compat ib i l i ty  to the j th  rule R~ is calculated for 
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Fig. 5. Fuzzy par t i t ions  of the two-d imens iona l  pa t te rn  space by the six l inguis t ic  values. 
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each class as 

/JClass h ~- 2 #j(Xp) = Z #A,,(XP 1) 
xp ~ Class h x,, e Class h 

. . . . .  #A,.'(Xp,), h = 1,2 . . . .  ,c, (3) 

where flClassh is the total  grade of compat ib i l i ty  of  
the given pat terns  in Class h to the j t h  rule Rj in (1). 

The  consequent  Cj is de termined as the class 
with the m a x i m u m  total  grade of compatibi l i ty .  
Tha t  is, C~ is de termined as Class/~ by 

/~Class/~ = m a x  {flclas~ 1, flClass 2 . . . . .  /~C1 . . . .  }- (4)  

If Class/~ is not  de termined uniquely (i.e., if two or 
more  classes have the same m a x i m u m  value in (4)), 
we assign ~b to Cj where ~b means  an empty  class. 

For  example,  the consequent  class Cj is determined 
as Class 1 in Fig. 6(a)-(c) while q~ is assigned to 
Cj in Fig. 6(d). The  consequent  C~ also becomes 
~b when tiC,a, h = 0 for all classes. This means  that  
a linguistic classification rule with ~b in the conse- 
quent  par t  is generated when there are no pat terns  
compat ib le  with that  rule. In this paper ,  linguistic 
classification rules with ~b in the consequent  par t  
are referred to as " d u m m y  rules" because those 
rules have no effect on the classification of new 
patterns.  

The  grades of  cer ta inty of all d u m m y  rules are 
specified as CF~ = 0. F o r  n o n - d u m m y  rules, the 
grade of certainty CFj  is de termined as 

flClass/~ - -  f l  
C F j  = c (5)  
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Fig. 6. Antecedent fuzzy sets and training patterns. 
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where 

( /' f i =  2flClas~h / ( c - - l ) .  (6) 
h:~ h / I  

The grade of cer ta inty CFj is m a x i m u m  (i.e., 
CFj = 1) when flcl,s~ ~ > 0 and fiCXa~ h = 0 for h :/:/~. 
Tha t  is, if all the pat terns  compat ib le  with the j t h  
linguistic classification rule Rj belong to the same 
class, the grade of cer ta inty CFj of this rule is equal  
to 1 (the m a x i m u m  certainty). On the contrary ,  if 
the total  grades of compat ib i l i ty  for the c classes are 
similar to one ano ther  (i.e., /~Class 1 ~ " ' "  ~ /~C1 . . . . .  ), 

the grade of cer ta inty is nearly equal  to 0 (the 
m i n i m u m  certainty). A m o n g  the four si tuations in 
Fig. 6, the grade of cer ta inty CFj is m a x i m u m  in 
Fig. 6(a), and it is m i n i m u m  in Fig. 6(d). The  grade 
of cer ta inty CFj in Fig. 6(b) is larger than that  in 
Fig. 6(c). 

By applying the rule generat ion me thod  de- 
scribed above  to all the linguistic classification rules 
in (1), we have N = 6" linguistic classification rules 
including d u m m y  rules. Let  us denote  the set of the 
genera ted N linguistic classification rules by SALE: 

SAL L = {Rule Rj [j = 1,2 . . . . .  N}. (7) 

All the linguistic classification rules in SALL are used 
in the rule selection p rob lem as candidate  rules. 

(i.e. Xp is left as an unclassifiable pattern),  else assign 
x v to Class/~ determined by (9). 

In this procedure,  a new pat tern  x v = 
(xvl . . . . .  xp,) is classified by the linguistic classifica- 
tion rule that  has the m a x i m u m  produc t  of #j(xp) 

and CFi. 

2.5. Formulation of  the rule selection problem 

O u r  rule selection p rob lem is to select a small 
n u m b e r  of linguistic classification rules f rom the 
rule set SALL to construct  a compac t  classification 
system S with high classification performance.  
Therefore  our  p rob lem can be writ ten as follows: 

Maximize  NCP(S) and minimize [S I, (10) 

subject to S ___ SALL, (1 1) 

where NCP(S) is the n u m b e r  of  correct ly classified 
t raining pat terns  by linguistic classification rules in 
a rule set S, and IS[ is the n u m b e r  of the linguistic 
classification rules in S. 

3. Single-objective genetic algorithm for the rule 
selection problem 

3.1. A single-objective genetic algorithm 

2.4. Fuzzy reasoning 

Let us denote  a subset  of  SALL by S. Tha t  is, S is 
a set of  linguistic classification rules. A new pat tern  
xp = (xpl . . . . .  x;,)  is classified by linguistic classi- 
fication rules in S as follows: 

Step 1: Calculate  C~Cla~sh for h = 1,2, ... ,c  as 

eClassh = max  {#j(Xp) • CFjICj  

= Classh  and Rule Rj e S}, (8) 

where #j(xv) is the grade of compat ib i l i ty  of  xp to 
the j t h  linguistic classification rule R j, which is 
defined by (2). 

Step 2: Find the m a x i m u m  value of C~Class h as 

(~Class/~ : max  {~c,a~s 1 . . . . .  aCl . . . .  }" (9) 

If two or more  classes take the same m a x i m u m  
value in (9), then the classification o f x p  is rejected 

A single-objective genetic a lgor i thm was applied 
to the rule selection p rob lem (10), (11) for selecting 
a small n u m b e r  of linguistic classification rules 
f rom a large number  of candidate  rules in SALL in 
Ishibuchi  et al. [7,8].  In their genetic a lgori thm, 
each rule set S is t reated as an individual. A scalar 
fitness value of S is defined f rom the two objectives 
in (10) using cons tant  weights as follows [7, 8]: 

f(S) = WNce" NCP(S) - Ws. ISI, (12) 

where WNcp and Ws are cons tan t  posit ive weights 
assigned to the two objectives NCP(S)  and [SI, 
respectively. 

Each individual  (i.e. each rule set S) is repre- 
sented by a string as S = sl s2 ... SN, where N is the 
n u m b e r  of  the linguistic rules in SALE and 
sj = 1, -- 1 or  0 denotes  the following: 

(i) sj = l means  that  the j th  rule R~ is included 
in the rule set S, 
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(ii) sj = - 1  means that the j th  rule Rj is not 
included in the rule set S, 

(iii) sj = 0 means that the j th  rule Rj is a dummy 
rule. 
Since dummy rules have no effect on the classifica- 
tion of new patterns, they should be excluded from 
a rule set S. Therefore the special coding (sj = 0) is 
assigned to dummy rules in order to prevent S from 
including them. A string S = sls2 ... sN is decoded 
as  

S = {RuleRj ls j  = 1;j = 1,2, ... ,N}. (13) 

A set of strings (i.e., a set of rule sets) is treated as 
a population (i.e., as a generation) in the genetic 
algorithm. 

An extended version of the single-objective 
genetic algorithm in Ishibuchi et al. [7, 8] can be 
written as follows: 

Step 0 (Initialization): Generate an initial popu- 
lation containing Npop strings where Npop is the 
number  of strings in each population. In this opera- 
tion, each string S is generated by assigning 0 to 
dummy rules and randomly assigning 1 or - 1  to 
each of the other rules with the probability of 0.5. 

Step 1 (Rule elimination): Classify all the given 
training patterns by linguistic classification rules 
included in each string S. Exclude non-active rules 
from S. That  is, if a linguistic classification rule in 
S is not used for classifying any pattern, that rule is 
excluded from S. This rule elimination procedure is 
applied to all strings in the current population. 
Thus, every string consists of only active rules after 
this rule elimination procedure. 

Step 2 (Selection): Select 1 ~Npop pairs of strings 
from the current population. The selection prob- 
ability P(S) of a string S in a population 7' is 
specified as 

f ( S )  - - fmin (~  rj) 
P(S) Es~q,{f(S) --Ymi. (~)} '  (14) 

where 

fmln(T) = min [ f (S)]S  e 71}. (15) 

Step 3 (Crossover): For  each selected pair, ran- 
domly choose bit positions. Each bit position is 
chosen with probabili ty 0.5. Interchange the bit 
values at the chosen positions in the selected pair. 

Step 4 (Mutation): For  each bit value of the gen- 
erated strings by the crossover operation, apply the 
following mutat ion operation: 

sr = 1 ~ sr = -- 1 with probabili ty Pm(1 ~ - -  1), 

s, = -- 1 -~ sr = 1 with probabili ty P m ( - -  1 ~ 1). 

Step 5 (Elitist strategy): Randomly remove one 
string from the Npop strings generated by the above 
operations, and add the string with the maximum 
fitness value in the previous population to the 
current one. 

Step 6 (Termination test): If a pre-specified stop- 
ping condition is not satisfied return to Step 1. The 
total number  of generations is used as a stopping 
condition in this paper. 

The rule elimination procedure in Step 1 is added 
to the genetic algorithm in our former work [7, 8]. 
The crossover operation in Step 3 was called the 
uniform crossover in Syswerda [31]. In Step 4, 
different mutat ion probabilities Pm(1 ~ - - 1 )  and 
Pro(-- 1 ~ 1) are assigned to the mutations from 1 to 
- 1 and from - 1 to 1, respectively. A larger prob- 

ability is usually assigned to Pro(1 ~ -  1) than to 
Pm(-- 1 ~ 1) in order to reduce the number  of lin- 
guistic classification rules in each individual. 

The genetic algorithm was applied to the classi- 
fication problem in Fig. 3 with the following para- 
meter specifications: 

Weights in the fitness function: WNCP = 5, Ws = 1, 

Population size: Npop = 20, 

Crossover probabilities: Pm(1 -* --1) = 0. l, 
Pro(-- 1 --, t) = 0.001, 

Stopping condition: 1000 generations. 

First we generated 62 = 36 linguistic classifica- 
tion rules corresponding to the fuzzy partitions in 
Fig. 5. Then the genetic algorithm was applied to 
the rule selection problem for selecting a small 
number  of significant rules from the generated 36 
rules. By the genetic algorithm, the following three 
linguistic classification rules were selected: 

If Xpl is don't care and xp2 is don't care 

then Class 1 with CF = 0.19, 
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If Xpl is don't care and xp2 is large 

then Class 2 with CF = 0.84, 

If xpl is medium and xp2 is don't care 

then Class 2 with CF = 0.75. 

The classification boundary obtained by the se- 
lected three linguistic classification rules is shown 
in Fig. 7. F rom Fig. 7, we can see that all the given 
patterns are correctly classified by the selected 
rules. 

Since the grade of certainty of the first linguistic 
classification rule is very small (i.e., 0.19), this rule is 
employed in the classification of a new pattern only 
when other rules do not have large grades of com- 
patibility to the new pattern. Therefore we have the 
following classification rule from the above three 
rules by ignoring "don' t  care" attributes. 

If x1 is medium or x2 is large 

then Class 2, else Class 1. 

From the configuration of the given patterns in Fig. 
7, we can see that this classification rule agrees with 
our intuitive recognition of the given patterns. 

We also applied the genetic algorithm to the 
well-known iris data (see, for example, [8]) for 
selecting linguistic classification rules. The pattern 
classification problem of the iris data is a three- 
class problem with four attributes. In each class, 50 
patterns are given (total 150 patterns) as training 
patterns. Since the iris data has four attributes, 
64 = 1296 linguistic classification rules were gener- 
ated as candidate rules. Thus our rule selection 

problem is to find a compact  rule set from the 1296 
rules. The total number of possible rule sets is 
21296 ~ 1.36 x 10390. 

By the genetic algorithm with the same para- 
meter specifications as the above computer  simula- 
tion, five linguistic rules in Fig. 8 were selected. The 
last column (CA of patterns) in Fig. 8 shows the 
number  of training patterns that were correctly 
classified by each rule. Therefore we can see that 
147 patterns (98% of the given 150 patterns) are 
correctly classified by the selected five rules. By 
ignoring "don' t  care" attributes denoted by rec- 
tangles in Fig. 8, we have the following linguistic 
classification rules from the selected rules: 

If x3 is 

If x 3 is 

then 

I f  x 2 is 

then 

If xl is 

then 

If xl is 

then 

small then Class 1 with CF = 1.00, 

medium and x4 is medium 

Class 2 with CF = 0.95, 

medium small and x4 is medium large 

Class 3 with CF = 0.78, 

medium and x2 is medium and x4 is large 

Class 3 with CF = 1.00, 

large and x2 is medium 

Class 3 with CF = 1.00. 

3.2. Searching for non-dominated solutions 
using variable weights 

In the single-objective genetic algorithm de- 
scribed in the last subsection, the weights WNce and 
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Fig. 7. Classification boundary by the selected three rules. 
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3 1.00 14 

3 1.00 7 

Selected linguistic classification rules for the iris data. 
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f2(') : To be minimized 

• Final solution 

0 
f l( ' )  : To be maximized 

Fig. 9. Search direction of the single-objective genetic algo- 
rithm. 

Ws were constant. Thus the search direction of the 
genetic algorithm was fixed as shown in Fig. 9. This 
means that the choice of the weight values in (12) 
has a significant effect on the final solution (i.e., 
selected linguistic classification rules) obtained by 
the genetic algorithm. Because the importance of 
each objective in the rule selection problem de- 
pends on the preference of human users, it is not 
easy to assign constant values to the weights 
WNcp and Ws in advance. 

The basic approach to multi-objective optimiza- 
tion problems is to try to find not a single solution 
but a set of non-dominated solutions. The final 
solution should be determined by decision makers 
(i.e., human users in our rule selection problem) 
from the non-dominated solutions depending on 
their preference. Thus we propose several methods 
for searching for the non-dominated solutions of 
the rule selection problem. 

One simple method for searching for non-domin- 
ated solutions is to employ variable weights. That  
is, the execution of the single-objective genetic algo- 
rithm is repeated using various values of the 
weights WNCP and Ws. The single-objective genetic 
algorithm was applied to the iris data with the same 
parameter specification as in the last subsection 
except for the weight values. The following ten 
pairs of the weight values were employed: 

(WNcP, Ws) = (0.1, 1), (0.5, 1), (1, 1), (5, 1), (10, 1), 

(50, 1), (100, 1), (500, 1), 

(lOOO, 1), (5000, 1). 

Table 1 
Solutions obtained by the single-objective 
genetic algorithm with various weight 
values 

WNcp Ws NCP(S) ISI 

0.1 1 142 3 
0.5 1 146 4 
1 1 147 5 
5 1 147 5 

10 1 147 7 
50 1 147 5 

100 1 147 6 
500 1 146 4 

1000 1 146 4 
5000 1 146 4 

The single-objective genetic algorithm described in 
the last subsection was applied to the iris data using 
each pair of the weight values. From these ten trials, 
ten solutions in Table 1 were obtained. From 
Table 1, we can see that the following solution are 
non-dominated: 

{(NCP(S), IS I)} = {(142, 3), (146, 4), (147, 5)}. 

The final solution should be selected from these 
three non-dominated solutions by human users de- 
pending on their preference. 

3.3. Introducing a constraint condition 
on the number of rules 

We can also search for the non-dominated solu- 
tions of the rule selection problem by introducing 
a constraint condition on the number of rules (i.e., 
a constraint condition on JSI). For  example, if we 
want to maximize the number of correctly classified 
training patterns (i.e., to maximize NCP(S)) using 
five linguistic classification rules at best, the rule 
selection problem can be written as 

Maximize NCP(S), (16) 

subject to ISI ~< 5, (17) 

S ~ SAL L. (18) 

We formulate the following fitness function by in- 
troducing a large penalty when the constraint 



144 H. lshibuchi et al. /Fuzzv  Sets and Systems 89 (1997) 135 150 

condi t ion (17) is not  satisfied: 

f (S)  = WNC P " NCP(S)  -- Ws. max {0, ISI - 5}, (19) 

where the weights WNcp and Ws are specified as 
WNCP ~ Ws in order  to a t tach a large penal ty  to the 
fitness function when the constra int  condi t ion (17) 
is not satisfied. Using different values in the right- 
hand side of  the constra int  condi t ion (17), we can 
search for the non -domina t ed  solution of the rule 
selection p rob lem in (10), (11). 

Let Nrule be the r ight -hand side cons tant  of  the 
const ra in t  condi t ion (17), then we have the follow- 
ing fitness function: 

f (S)  = WNcp. NCP(S)  - 14,~. max {0, IS[ - -  Nrule }. 

(20) 

The  non -domina t ed  solutions of  the rule selection 
p rob lem in (10), (11) can be ob ta ined  using this 
fitness function with var ious  values of Nrule. 

The  single-objective genetic a lgor i thm described 
in Subsect ion 3.1 was applied to the iris da ta  using 
each of the following ten values of Nrul~: 

Nr~l~ = 3,4, 5 ,6 ,7 ,8 ,9 ,  10, 11, 12. 

By the ten trials of the genetic a lgor i thm with 
WNcp = 1 and Ws = 100, ten solutions in Table  2 
were obtained.  We can see that  the following solu- 
tions are non -domina t ed  in Table  2. 

{(NCP(S), IS])} = {(142, 3), (146, 4), (147, 5)}. 

Table 2 
Solutions obtained by the single-objec- 
tive genetic algorithm with a constraint 
condition on the number  of selected 
linguistic classification rules 

Constraint  NCP(S)  I Sl 

ISI ~< 3 142 3 
IsI ~< 4 146 4 
ISI ~< 5 147 5 
ISI ~ 6 147 6 
ISI ~< 7 147 5 
ISI ~ 8 147 8 
ISI ~ 9 147 6 
LSI ~< 10 147 5 
[SI ~< 11 146 6 
[SJ <~ 12 146 10 

3.4. Introducing a constraint condition 
on the number o f  correctly classified patterns 

In the last subsection, we int roduce a constra int  
condi t ion on the n u m b e r  of  selected linguistic clas- 
sification rules. In a similar manner ,  we can in- 
t roduce  a constra int  condi t ion on the number  of 
correct ly classified training patterns.  Let  us assume 
that  the number  of correct ly classified training pat-  
terns should be larger than or equal  t o  Npatt . . . .  (e.g., 
Npa,,crn = 145 in the appl ica t ion to the iris data). In 
this case, our  rule selection p rob lem can be writ ten 
a s  

Minimize ISI, (21) 

subject to NCP(S) >~ Np,,, . . . .  (22) 

S _~ SaLe. (23) 

We formulate  the following fitness function by in- 
t roducing a large penal ty  when the const ra in t  con- 
dit ion (22) is not  satisfied: 

J(S) = - WNCP" max {0, Npatter n - -  N C P ( S ) }  

- -  W s .  I S [, (24) 

where the weights WNcp and Ws are specified as 
W, vcp >> Ws in order  to a t tach  a large penal ty  to the 
fitness function when the const ra in t  condi t ion (22) 
is not  satisfied. The  non -domina t ed  solutions of  the 
rule selection p rob lem in (10), (I 1) can be obta ined  
using this fitness function with var ious values of 

Npattern. 
The single-objective genetic a lgor i thm described 

in Subsect ion 3.1 was applied to the iris da ta  using 
each of the following ten values of  N p a t t e r n :  

Npatt~rn = 141,142,143,144,145,146,147,148,  

149,150. 

By the ten trials of  the genetic a lgor i thm with 
WNce = 100 and Ws = 1, ten solutions in Table  3 
were obtained.  We can see that  the following solu- 
tions are non -domina t ed  in this table. 

{(NCP(S), IS 1)} = {(142, 3), (146, 4), (147, 6)}. 
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Table 3 
Solutions obtained by the single-objec- 
tive genetic algorithm with a constraint  
condition on the number  of correctly 
classified training patterns 

Constraint  NCP(S) IS] 

NCP(S) >1 141 141 3 
NCP(S) >1 142 142 3 
NCP(S) >- 143 144 4 
NCP(S) >1 144 144 4 
NCP(S) >~ 145 145 4 
NCP(S) >1 146 146 4 
NCP(S) >7 147 147 6 
NCP(S) >~ 148 147 6 
NCP(S) >~ 149 147 6 
NCP(S) >>. 150 147 6 

4. Two-objective genetic algorithm for the rule 
selection problem 

In the last section, we have proposed three 
methods for searching for the non-dominated solu- 
tions of the rule selection problem by the single- 
objective genetic algorithm. The single-objective 
genetic algorithm was repeated with different para- 
meter specifications (e.g., different weight values) in 
each method. In this section, we propose a multi- 
objective genetic algorithm for searching for the 
non-dominated solutions more directly. 

A rule set S is treated as a string S = sls2 ... sN in 
the multi-objective genetic algorithm as in the 
single-objective algorithm described in the last sec- 
tion. Crossover and mutation operators in the 
multi-objective genetic algorithm are also the same 
as those of the single-objective algorithm. Our 
multi-objective genetic algorithm differs from the 
single-objective algorithm in its selection procedure 
and elitist strategy. In our multi-objective genetic 
algorithm, the selection probability P(S) in (14) is 
determined by the fitness function f (S)  in (12) with 
randomly specified weight values. That is, when 
a pair of parent strings are selected, the values of 
the weights WNcp and Ws are assigned as 

WNcp: a random real number in [0, 1], (25) 

Ws: Ws = 1 -- WNCP. (26) 

f 2 ( ' )  : To be minimized 

0 

• No"-dom "oat:d 

f a ( ' )  : To be maximized 

Fig. 10. Search direction of the multi-objective genetic algo- 
rithm. 

The random weight values are given by (25), (26) for 
each selection of a pair of parent strings. That  is, 
b e c a u s e  ½Npo p pairs of parent strings are selected in 
each generation, 1 ~Npop values are randomly speci- 
fied to each weight in each generation. Thus we can 
see that the selection procedure in each generation 
of our multi-objective genetic algorithm drives the 
search of the algorithm in various directions in 
Fig. 10. 

In the execution of the multi-objective genetic 
algorithm, a tentative set of non-dominated solu- 
tions is externally preserved. This means that there 
are two sets of strings in each generation: one is 
a current population and the other is a tentative set 
of non-dominated solutions. A certain number of 
strings (say, Nelite strings) are randomly selected 
from the tentative set of non-dominated solutions, 
and the selected strings are added to the current 
population as elite solutions in our multi-objective 
genetic algorithm. 

Our multi-objective genetic algorithm can be 
written as follows: 

Step 0 (Initialization): Generate an initial popu- 
lation containing Npop strings in the same manner 
as the single-objective genetic algorithm in the last 
section. 

Step 1 (Rule elimination): Classify all the given 
training patterns by linguistic classification rules 
included in each string S. Exclude non-active rules 
from S. This rule elimination procedure is applied 
to all strings in the current population. 

Step 2 (Evaluation): Calculate the values of the 
two objectives NCP(S)  and ISI for the generated 
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strings. Update the tentative set of non-dominated 
solutions. 

Step 3 (Selection): Calculate the fitness value of 
each string using random weight values in (25), (26). 
Select a pair of strings from the current population 
according to the selection probability P(S) in (14). 

1 This procedure is repeated for selecting y Nvo p pairs 
of parent strings. 

Step 4 (Crossover): For each selected pair, apply 
the uniform crossover operation to generate two 
strings in the same manner as the single-objective 
genetic algorithm. 

Step 5 (Mutation): For each bit value of the gen- 
erated strings by the crossover operation, apply the 
mutation operation in the same manner as the 
single-objective genetic algorithm. 

Step 6 (Elitist strategy): Randomly remove 
Nente strings from the generated Npo p strings, and 
add N~lit~ strings that are randomly selected from 
the tentative set of non-dominated solutions. 

Step 7 (Termination test): If a pre-specified stop- 
ping condition is not satisfied, return to Step 1. 

We applied the proposed multi-objective genetic 
algorithm to the iris data. In order to compare the 
multi-objective genetic algorithm with the single- 
objective algorithm in the last section under the 
same computation load, the execution of the multi- 
objective algorithm was repeated ten times. The 
number of elite solutions Nelite was specified as 
Nc~i~e = 3. By the ten trials of the multi-objective 
algorithm, the following non-dominated solutions 
were obtained: 

{(NCP(S), ISI)} = {(0, 0), (50, 1), (100, 2), (142, 3), 

(146,4),(147,5),(148,6)}. (27) 

Here we summarize the non-dominated solu- 
tions obtained by each method in the last section 
(see Tables 1-3): 

(1) By the method based on variable weights in 
Subsection 3.2: 

{(NCP(S), IS[)} = {(142, 3), (146, 4), (147, 5)}. (28) 

(2) By the method based on the constraint condi- 
tion [sI < Nrule in Subsection 3.3: 

{(NCP(S), IS[)} = {(142,3),(146,4),(147,5)}. (29) 

(3) By the method based on the constraint condi- 
tion NCP(S) >>- Npatter n in Subsection 3.4: 

{(NCP(S),ISI)} = {(142,3),(146,4),(147,6)}. (30) 

From the comparison of the result in (27) by the 
multi-objective algorithm with these results in 
(28) (30) by the single-objective algorithm, we can 
see that a slightly better set of non-dominated solu- 
tions was obtained by the multi-objective genetic 
algorithm. For  example, a rule set that can cor- 
rectly classify 148 patterns was not found by any 
method based on the single-objective genetic algo- 
rithm in the last section (see (28) (30)). 

5. Extension to a hybrid algorithm 

As Nozaki et al. [23] demonstrated, the classi- 
fication performance of a fuzzy classification sys- 
tem can be improved by adjusting the grade of 
certainty CFj of each linguistic classification rule. 
In this section, we propose a hybrid algorithm by 
combining the learning method of CFj in Nozaki 
et al. [23] with the multi-objective genetic algo- 
rithm in the last section. 

5.1. Learning method 

From the fuzzy reasoning procedure for classify- 
ing a pattern xp = ( X p l  , . . .  , X p n  ) in Subsection 2.4, 
we can see that Xp is classified by a linguistic classi- 
fication rule R~ that satisfies the following relation: 

pj(xp). C~ - = max {#j(xp). CFjIRule R~ ~ S }. (31) 

If the consequent class Ci of this rule is the same as 
the actual class of xp, xp is correctly classified, 
otherwise Xp is misclassified. 

When Xp is correctly classified by the linguistic 
classification rule R], the grade of certainty CFy of 
this rule is increased as the reward of the correct 
classification [23]: 

CF~ cw = CF~ la + ~h" (1 -- CF~a), (32) 

where ~/1 is a positive learning constant for increas- 
ing the grade of certainty. On the contrary, when 
xp is miselassified by the linguistic classification rule 
R i, the grade of certainty CF? of this rule is 
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decreased as the punishment  of the misclassifica- 
tion [-23]: 

CF~ ew CF °Id CV °ld (33 t 
= I - -  q 2  " j , 

where q2 is a positive learning constant  for decreas- 
ing the grade of certainty. 

5.2. Hybrid algorithm 

The learning method  of the grade of certainty 
CFj is combined with our  multi-objective genetic 
algorithm. Since the learning me thod  is applicable 
to any rule set S, we apply it to all the rule sets (i.e., 
all the strings) generated by the crossover  and 
muta t ion  operat ions  in the multi-objective genetic 
algorithm. That  is, the following procedure  is in- 
serted between Step 6 and Step 7 of the multi- 
objective genetic a lgori thm described in Section 5: 

Step 6.5 (Learninq): Apply the learning method  
to each rule set S generated by the crossover and 
muta t ion  operations. The learning for each rule set 
S is iterated N~ . . . .  ing times for all the training 
patterns. 

5.3. Simulation result 

The proposed  hybrid algori thm was applied to 
the iris da ta  using the same parameter  specifica- 
tions as the multi-objective genetic algori thm in 

Section 4. The learning rates ql and ~]2 were speci- 
fied as r/1 = 0.001 and g/2 = 0.1. We examined four 
specifications of  g I . . . .  ing, i.e., NI . . . .  i.g = 0, 1, 2, 10. 
Table 4 shows non-domina ted  solutions by ten 
trials of the hybrid a lgor i thm with each specifica- 
tion of N~ .. . .  i.g. For  example, we can see from 
Table 4 that the following non-domina ted  solutions 
were obtained by specifying Nl . . . .  i n g  as N 1 . . . .  ing = 10: 

{(NCP(S), I S 1)} = {(0, 0), (50, 11, (100, 2), (145, 3), 

(147, 4), (148, 5) }. (34) 

F r o m  Table 4, we can see that  the classification 
performance of the selected linguistic rules was 
improved by combining the learning method  into 
the multi-objective genetic algorithm. For  example, 
three linguistic classification rules selected by the 
non-hybr id  algori thm with no learning (i.e., 
N I  . . . .  ing = 0) correctly classified 142 patterns while 
145 patterns were correctly classified by three rules 
selected by the hybrid algori thm with N~ . . . .  ing ---- 2 
and N~ . . . .  ing = 10. In Fig. 11, we show rule sets with 
three linguistic classification rules obtained by the 
non-hybr id  algorithm. The five rule sets in Fig. 11, 
which has the same classification performance (i.e., 
which can correctly classify 142 patterns), were 
obtained by the ten trials of the non-hybr id  algo- 
rithm. On  the other  hand, three rule sets with three 
linguistic classification rules that  can correctly clas- 
sify 145 patterns were obtained by the ten trials of 

Table 4 
Solutions obtained by the hybrid algorithm with various specifications of the number of iterations of 
the learning method (i.e., N~e,rni.gJ. The non-hybrid multi-objective genetic algorithm corresponds to 
the case of Nlearn ing  = 0 .  " * "  denotes that a non-dominated solution with the corresponding number 
of selected rules was not obtained 

The number of selected 
rules: I S I 

The number of correctly classified training patterns: NCP(S) 

Nlea rn ing  = 0 Nlearn lng  = 1 Nlearn ing  = 2 Nlearn ing  = 10 

0 0 0 0 0 
1 50 50 50 50 
2 100 100 100 100 
3 142 143 145 145 
4 146 147 147 147 
5 147 * 148 148 
6 148 148 149 * 
7 * 149 * * 
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# of 
No. XI X2 X3 X4 Class CF patterns 

mm.~l,.OO ~o 

m m ~ ~  ~ 0 . .  43 

3 mm~,m 3 0 5 7  49 

# of 
No. X l ~2 X3 X4 Class CF 3atterns 

, m m ~ ~  1 , 0 0  , 0  

2 m m ~ £ ~  2 0.42 47 

, mm~,m 3 0.14 48 

No. 

1 

2 

3 

XI X2 X3 X4 Class 

m m e e ,  
m m ~ m  2 

m m m a  3 

# of 
CF patterns 

1.00 50 

0.79 47 

0.70 45 

# of 
No. X:I X2 X3 X4 Class CF patterns 

, m m m ~  1 1.00 50 
: m m ~ ~  : 0.42 47 

3 m m ~)(~d m 3 0.14 48 

# of 
No. Class CF patterns 

m m ~ m  , , 0 o  ~o 

2 m m m ~ ) ~  2 0.83 47 

3 m m ~ o ( ~ m  3 0.59 45 

~t X2 X3 X4 

No. 

1 

2 

3 

XI X2 X3 X4 

m m m ~  
m m ~ m  
m m a m  

# of 
Class CF ~atterns 

1 1.00 50 

2 0.79 44 

3 0.59 48 

# of 
i No. Xt ~2 X3 X4 Class CF patterns 

, m m ~ m  1 1.00 50 

m m ~ ~  2 0.42 47 

3 m m ~)(~d m 3 0.14 48 

Fig. 12. Rule sets obtained by the hybrid algorithm. 

the hybrid algorithm (Fig. 12) with N1 . . . .  i n g  = 10. 
The first rule set in each figure consists of the same 
three linguistic classification rules except for their 
grades of certainty (i.e., C F  in each figure). 

#of 
No. X 1 X'2 X73 3f4 Class CF patterns 

, mm~m,,.oo ~o 

m m ~ m  : o.~9 47 
3 m m m a ,  o.~o 4~ 

Fig. 11. Rule sets obtained by the non-hybrid algorithm. 

6. Conclusions 

In this paper, we proposed genetic-algorithm- 
based methods for constructing a compact fuzzy 
classification system with a small number of lin- 
guistic classification rules. We first formulated 
a rule selection problem of linguistic classification 
rules with two objectives: to maximize the number 
of correctly classified training patterns and to min- 
imize the number of selected rules. Then we pro- 
posed three methods based on a single-objective 
genetic algorithm for finding a set of non-domin- 
ated solutions of the rule selection problem. We 
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also p r o p o s e d  a m e t h o d  based  on a mul t i -ob jec t ive  
genetic a lgor i thm.  By c o m p u t e r  s imula t ions  on the 
iris da ta ,  we showed that  a s l ightly bet ter  set of  
n o n - d o m i n a t e d  so lu t ions  was ob t a ined  by the 
mul t i -ob jec t ive  genetic a lgo r i thm than  the single- 
object ive  genetic a lgor i thm.  F ina l ly  we p r o p o s e d  
a hybr id  a lgo r i thm by combin ing  a learn ing  
m e t h o d  of  l inguist ic  c lassif icat ion rules with the 
mul t i -ob jec t ive  genet ic  a lgor i thm.  By c o m p u t e r  
s imula t ions  on the iris da ta ,  we showed tha t  the 
c o m b i n a t i o n  of the learn ing  a lgo r i thm had  an effect 
on improv ing  the classif icat ion pe r fo rmance  of se- 
lected rules. 

W h e n  we cons t ruc t  a c o m p a c t  fuzzy classifica- 
t ion system with high classif icat ion pe r fo rmance  for 
a specific pa t t e rn  c lass i f icat ion p rob lem,  first a set 
of  n o n - d o m i n a t e d  so lu t ion  of the rule selection 
p r ob l em are  found by the p r o p o s e d  methods ,  then 
one of the n o n - d o m i n a t e d  so lu t ions  is chosen de- 
pend ing  on the preference of  h u m a n  users. The  
p r o p o s e d  me thods  can be also viewed as know-  
ledge acquis i t ion  tools  because  classif icat ion know-  
ledge is au toma t i ca l l y  ex t rac ted  from numer ica l  
d a t a  as a small  n u m b e r  of l inguist ic classif icat ion 
rules. Because the n u m b e r  of  selected rules by the 
p r o p o s e d  me thods  is small ,  h u m a n  users can care-  
fully examine  all the selected rules. If hundreds  of 
rules are selected, it is p rac t ica l ly  imposs ib le  for 
h u m a n  users to examine  all the selected rules care- 
fully. In the p r o p o s e d  methods ,  h u m a n  users can 
also easily unde r s t and  each rule because  the se- 
lected rules are  l inguist ic rules. This  c lar i ty  of the 
selected rules is the ma in  a d v a n t a g e  of the p ro-  
posed  rule selection methods .  
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