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Fuzzy Descriptive Models: An Interactive
Framework of Information Granulation
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Abstract—In this paper, we introduce and discuss an impor-
tant class of endeavors of fuzzy modeling, such as fuzzy descriptive
models. In a nutshell, the objective of fuzzy descriptive models is to
provide with a sound, comprehensible, and relevant description of
experimental data at a general level of relationships revealed there.
The elements of such models called descriptors are inherently in-
formation granules as the notion of granularity goes hand-in-hand
with the interpretability of the resulting constructs (information
granules). This paper elaborates on the use of the language of fuzzy
sets that are viewed as generic models of information granules. The
development of the information granules is carried out in an in-
teractive manner in which a designer can inspect a structure in a
data set in a visual fashion. Such visualization is possible through
a suitable visualization vehicle provided by self-organizing maps.
The role of the designer is to choose from some already visualized
regions of the self-organizing map characterized by a high level
of data homogeneity. We provide a new algorithm of constructing
membership functions of the information granules (fuzzy sets). In
addition to some synthetic data, the study includes a comprehen-
sive descriptive modeling of highly dimensional electrocardiogram
data.

Index Terms—Computerized electrocardiogram (ECG) signal
analysis and classification, fuzzy descriptive model, information
granulation, self-organizing maps, user-interactive model devel-
opment.

I. INTRODUCTION

FUZZY modeling comes today with a plethora of archi-
tectures, algorithms, and hybrid design methodologies; cf.

[10]–[12], [17], [19], [24], [25], [27], and [34]. The omnipresent
and strong visibility of various mechanisms of computational
intelligence (CI) [20], [40], such as evolutionary optimization
[29] and neurofuzzy modeling and optimization [30], [35], [41],
is the dominant feature of the area. The use of clustering tech-
niques becomes also more visible nowadays; cf. [1], [2], [6],
[9], [21], [26], [31], and [32]. In spite of this diversity, most
of the resulting fuzzy models become surprisingly close each
other as far as the underlying objective is concerned: all of them
tend to approximate data (predominantly numeric) to the highest
possible extent. The original agenda and an evident strength of
fuzzy sets that comes with the transparency of their granular
constructs (that is fuzzy sets and fuzzy relations) do not seem
to be fully explored. To the contrary: we tend to compete with
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Fig. 1. Descriptive and predictive fuzzy modeling.

purely numeric models especially neural networks are going to
do a superb job. One may even wonder what would make fuzzy
sets superior in this type of competition. Having noticed the ev-
ident quest for accuracy of the models, one may consider two
classes of fuzzy models and the ensuing modeling principles
and development methodologies, that is

• Fuzzy descriptive models: These models are aimed at a
description of data in the language of well-defined, se-
mantically sound and user-oriented information granules
[37]–[39]. The objective is to understand the data where a
certain point of view there is carefully articulated in the
language of fuzzy sets (viz. the relationships deal with
fuzzy sets). Obviously a dynamic perspective can be in-
cluded that is the fuzzy sets along with their granularity
modified in order to produce descriptors that are mean-
ingful and legitimized from the standpoint of experimental
evidence (data). We regard the models in this category to
be a prerequisite to other fuzzy models of higher level of
details. They tend to bedata noninvasive, meaning that we
do not attempt to impose a specific detailed structure on
the data.

• Fuzzy predictive modelsare the models to carry out some
sort of prediction. The term prediction is used in a gen-
eral sense as such models can encompass a prediction of
time series, output variable or a class in a classification
problem. As a matter of fact, an evident majority of fuzzy
models fall under this category; cf. [6], [9], [17], [29],
[33]–[35], and [41].

These two categories of fuzzy models interact in the sense
outlined in Fig. 1, yet their role in the entire modeling environ-
ment is quite different.
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The data and some domain knowledge hints are combined to-
gether to form a descriptive model. Here, an active role of the
designer is a must. To accomplish that one need a highly interac-
tive, visual development environment. The results of descriptive
modeling are a prerequisite to efficient predictive fuzzy mod-
eling. As a matter of fact, we can view some constructs of the
descriptive modeling to be used as building blocks of predictive
modeling. In particular, this is visible when using fuzzy clus-
ters in the design of fuzzy models; cf. [21], [27], and [32]. It
is important to stress that the specific research agenda of de-
scriptive and predictive models is very different so is the list
of the fundamental pursuits. In descriptive models, we question
whether the information granules (fuzzy sets) are relevant, de-
scriptive, and suitable from the standpoint of their granularity
(which helps capture the required level of details of the data). In
predictive models, the primary questions deal with the accuracy
of the model, its generality, robustness, etc.

It is interesting to note that this type of categorization of the
models (in general sense, not necessarily fuzzy models) has be-
come visible quite strongly in data mining and intelligent data
analysis (IDE); cf. [5], [22], and [28].

This paper is devoted to the descriptive fuzzy models and
attempts to address the crucial design issues, especially those
concerning a formation of a highly interactive, efficient and
user-friendly visualization environment. The material is ar-
ranged in 8 sections, each of them focusing on a separate facet
of the descriptive modeling. In Section II, we revisit a concept
of self-organizing maps (SOMs) regarded as a backbone of
the user-oriented development environment. The basic idea of
SOMs is augmented here by an introduction of some auxiliary
maps that help visualize the structure in the data and describe
its characteristics (Section III). In Section IV, we discuss a
way of constructing membership functions of fuzzy sets that
are a direct product of the homogeneous data regions defined
by the designer in the SOM. The experimental part of the
study is covered in Sections V and VI. Here, we deal with a
synthetic data set and use two data sets used in the machine
learning studies. Next, Section VI includes a comprehensive
development of the descriptive model for electrocaridogram
(ECG) data. Section VII moves the ECG data analysis further
by elaborating on the links between the descriptive model and
the ensuing predictive models. Conclusions are covered in
Section VIII.

II. SOMs—AN INSIGHT INTO A STRUCTURE OFDATA

The concept of an SOM was originally coined by Kohonen
[14]–[16] and is currently used as one of the generic neural tools
for structure visualization. There are a number of augmentations
of the generic version of SOM; see [18] as well as other gener-
alizations such as growing SOMs [8]. In this study, we concen-
trate on the use of the generic version of the SOM; our selection
is motivated by a wealth of theoretical studies and experimental
evidence collected in practice.

As usually reported in the literature, SOMs are regarded as
regular neural structures (neural networks) composed of a rect-
angular (squared) grid of artificial neurons. The intent of SOMs
is to visualize highly dimensional data in a low-dimensional

Fig. 2. A basic topology of the self-organizing map constructed as a grid of
identical processing units (neurons).

structure, usually emerging in the form of a two- or three-di-
mensional map. To make this visualization meaningful, an ul-
timate requirement is that such low-dimensional representation
of the originally high-dimensional data has to preservetopolog-
ical properties of the data set. In a nutshell, this means that two
data points (patterns) that are close each other in the original
highly-dimensional feature space should retain this similarity
(or resemblance) when it comes to their representation (map-
ping) in the reduced, low-dimensional space in which they need
to be visualized. And, reciprocally: two distant patterns in the
original feature space should retain their distant location in the
low-dimensional space. Being more descriptive, SOM performs
as acomputer eyethat helps us gain insight into the structure
of the data set and observe relationships occurring between the
patterns being originally located in a highly dimensional space.
In this way, we can confine ourselves to the two dimensional
map that apparently helps us to witness all essential relation-
ships between the data as well as dependencies between the soft-
ware measures themselves. In spite of the existing variations, the
generic SOM architecture (as well as the learning algorithm) re-
mains basically the same. In what follows, we summarize the
essence of underlying self-organization algorithm that realizes
a certain form of unsupervised learning.

Before proceeding with the detailed computations, we intro-
duce all necessary notation. “” feature of the patterns (data)
are organized in a vectorof real numbers located in the-di-
mensional space of real numbers, . The SOM comes as a
collection of linear neurons organized in the form of a regular
two-dimensional grid (array), Fig. 2.

In general, the grid may consist of “” rows and “ ”
columns; quite commonly we confine ourselves to the square
array of “ ” “ ” elements (neurons). Each neuron is
equipped with modifiable connections where the
connections are arranged into an-dimensional vector that is

. The two indexes (
and ) identify a location of the neuron on the grid. The neuron
calculates a distance () between its connections and a certain
input

(1)
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The same input affects all neurons. The neuron with the
shortest distance between the input and the connections be-
comes activated to the highest extent and is declared to be a
winning neuron—we also say that it matched the given input
( ). Let us denote its coordinates by (0, 0). More precisely,
we have

(2)

As a winner of this competition, we reward the neuron and allow
it to modify the connections so that they are getting even closer
to the input data. The update mechanism is governed by the
expression

(3)

where denotes a learning rate, 0. The higher the learning
rate, the more intensive updates of the connections. In addition
to the changes of the connections of the winning node (neuron),
we allow this neuron to affect its neighbors (viz. the neurons
located at similar coordinates of the map). The way in which
this influence is quantified is expressed via a neighbor function

( , , 0, 0). In general, this function satisfies two intuitively
appealing conditions: 1) it attains maximum equal to one for the
winning node, , , and 2) when the node is apart
from the winning node, the value of the function gets lower (in
other words, the updates are less vigorous). Evidently, there are
also nodes where the neighbor function zeros. Considering this,
we rewrite (1) in the following form:

(4)

Commonly, we use the neighbor function in the form

with the parameter (equal to 0.1 or 0.05 depending upon the
series of experiments) modeling the spread of the neighbor
function.

The update expression (4) applies to all the nodes (, ) of
the map. As we iterate (update) the connections, the neighbor
function shrinks: at the beginning of updates we start with a
large region of updates and when the learning settles down, we
start reducing the size of the neighborhood. For instance, one
may think of a linear decrease of its size.

The number of iterations is either specified in advance or the
learning terminates once there are no significant changes in the
connections of the neurons.

The distance can be defined in many different ways.
A general class worth considering is that of the Minkowski
distance. Practically, three of representatives of this family are
commonly used, that is Hamming, Euclidean, and Tchebyschev.
From the experimental end, the choice between these three dis-
tances is not critical and the Euclidean distance is a legitimate
choice.

Dealing with raw measures poses the risk that one software
measure may become predominant, simply because its domain
includes larger numbers (that is the range of the measure is
high). Therefore, the distance function is computed for normal-
ized rather than raw data. In the sequel, the SOM exploits these
transformed software measures. Two common ways of normal-

ization are usually pursued, the linear and statistical normaliza-
tion. In the linear normalization, the original variable is normal-
ized to the unit interval [0, 1] via a simple linear transformation:

where and are the minimal and maximal value of the
variable encountered in the data. The statistical normalization
uses the mean and the standard deviation of the variable

Finally, the logistic normalization involves a nonlinear transfor-
mation of data that follows a logistic transformation, namely

. In addition, when observing the activity of
the individual neurons in the grid, some of them may be exces-
sively “active” and winning most the time. The other neurons
tend to become “idle.” This uneven activity pattern is undesired
and should be avoided. In order to promote more even activity
across the network, we make the learning frequency-sensitive
by penalizing the frequently winning nodes and increasing the
distance function between the patterns (inputs) and the connec-
tions of the winning node. For instance, instead of the original
distance , we use the expression where

is a positive constant modeling the effect of intentionally in-
creased distance betweenand . The higher the value of, the
more substantial the increase in the effective distance between
the pattern and the neuron.

When designing a self-organizing map, the following are es-
sential design parameters: the size of the map, initial learning
rate and its temporal decay, type of distance function, and a form
of data normalization.

Overall, the developed SOM is fully characterized by a ma-
trix of connections of its neurons, that is ,

(note that we are now dealing with
a squared by grid of the neurons). The simplest visualiza-
tion scenario one can envision is to map the original data on the
map so in this manner we get a certain insight into the struc-
ture of the data in a highly-dimensional space. For instance, we
can state that and are similar because they “activate” two
neighboring neurons on the map. A visualization of the rela-
tive position of the patterns is a main advantage of the SOM.
Moreover, by a careful arrangement of the weight matrix into
several planes (arrays) we can produce a variety of important
views at the data. We introduce such concepts as a weight, re-
gion (cluster), and data density map.

III. A SSOCIATEDSELF-ORGANIZING MAPS

The associated maps come as a result of a different or-
ganization of or some slight modifications of the original
connections.

A. Weight Maps

Obviously the weight matrix can be viewed as a pile of
layers of by maps indexed by the variables, see Fig. 3. That
is we regard as a collection of two-dimensional matrices each
corresponding to a certain feature of the pattern, say
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Fig. 3. A concept of associated SOM maps: region and weight maps.

Each of these matrices contain information about the weights
(or the features of the patterns as the weights tend to follow the
features once the self organization has been completed).

The most useful information we can get from these weight
maps deals with an identification of possible associations be-
tween the features. If the two weight maps are very similar,
this implies that the two corresponding features they represent
are highly related. If two weight maps are very dissimilar, this
means the two variables they represent are not closely interre-
lated. In addition, we can also determine the feature associa-
tion for a data subset. For example, two weight maps can be
very similar in the upper right corner, but are very dissimilar in
other area of the map. This means only the data located in the
upper-right corner are highly related. One should note that the
identification of relationships is carried out in a visual mode and
we do not allude to any measure of association such as a corre-
lation coefficient. Nevertheless, this aspect is highly supportive
in a descriptive data analysis and helps the designer understand
the essence of the relationships between the features. In the se-
quel, it may lead to the identification of possible redundancies
of some features (e.g., we state that two features are redundant
if their weight maps are very close each other).

B. Region (Clustering) Map

A slight transformation (summarization) of the original map
allows us to visualize homogeneous regions in the map,viz.

the regions in which the data are very similar. Furthermore we
should be able to form boundaries between such homogeneous
regions of the map. Owing to the character of this transforma-
tion, we will be referring to the resulting areas as clusters and
calling the map a region (or clustering) map. The calculations
leading to the region map are straightforward: for each location
of the map, say (, ) we compute distances between the weight
vectors of its closest neighbors, such as ( , ), ( , ), ( ,

) , etc. That is

and take a median of these differences, that is, medI [ ]
with treated as a neighborhood of this particular location of
the map. The neighborhoodfunctions in a same manner as
commonly encountered in image processing (not surprising, the
SOM is a digital image). The neighborhood consists of eight

cells of SOM (pixels) surrounding the given neuron of the map.
This median is regarded this as a measure of homogeneity of the
nearest neighbor of the ( ) location of the map. At the visual
end, we map the median on a certain level of brightness to each
of these results that gives us a useful vehicle of identifying re-
gions in the map that are highly homogeneous. Likewise, the
entries with dark color form a boundary between the homo-
geneous regions. Clusters can be easily identified by finding
areas of higher level of brightness being surrounded by these
dark boundaries. For some data set, there are distinct clusters,
so in the clustering map, the dark boundaries are clearly vis-
ible. There could be cases where data are inherently scattered,
so in the clustering map, we may not see clear dark boundaries.
In Fig. 3, the region (clustering) map reveals two clusters: the
one quite extensive that covers an upper part of the map and the
smaller one. The clustering map is an important vehicle for a
visual inspection of the structure in the data. It delivers a strong
support for descriptive modeling: the designer can easily un-
derstand how structure looks like in terms of clusters. In par-
ticular, one can analyze the size of the clusters, their location
in the map (that tells about closeness and possible linkages be-
tween the clusters). By looking at the boundaries between the
clusters, the region map tells us how strongly these clusters are
identified as separate entities distinct from each other. Overall,
we can look at the region map as a granular signature of the
data. These visualization aspects of SOMs underline their char-
acter as a user-friendly vehicle of descriptive data analysis. In
this context, it also points out at the essential differences be-
tween SOMs and other popular clustering techniques driven by
objective function minimization (say FCM and alike). Note that
while FCM solves an interesting and well-defined optimization
problem but does not provide with the same interactive environ-
ment for data analysis.

It is worth stressing that the homogeneous regions of the SOM
could be detected in an automatic manner (as discussed in [7]).
While attractiveper se, the formation of the regions is affected
by the values of some parameters (quite often difficult to adjust)
that are not transparent to the user. The position promoted in this
study is that the user/designer should play a dominant role in the
determination of the regions in the map.

C. Data Distribution Map

The previous maps were formed directly from the general
map produced through self organization. It is advantageous
to supplement all these maps with a data distribution (density)
map. This map shows (again on a certain brightness scale) a dis-
tribution of data as they are allocated to the individual neurons
on the map.

Following the assumed visualization scheme, the darker the
color of the neuron, the more patterns invoked the neuron as the
winning one; see Fig. 4.

The data density map can be used in conjunction with the
region map as it helps us indicate how much patterns are behind
the given cluster. In this sense, we may eventually abandon
a certain cluster in our descriptive analysis as not carrying
enough experimental evidence. Moreover, the data density map
helps reveal some evident learning problem related to a few
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Fig. 4. An example data density map; the darker neurons identify groups of
higher data density. These regions should be analyzed in conjunction with the
region (clustering) map.

frequently winning nodes (neurons); to alleviate this discrep-
ancy, we can introduce a frequency sensitivity component in
the learning process.

Overall, the sequence realized so far can be described
as follows:

highly dimensional data SOM region, data density maps
feature maps interactive user-driven descriptive analysis

In the sequel, we discuss how the regions (clustering areas) iden-
tified in the map can be described in terms of information gran-
ules—fuzzy sets.

IV. ESTIMATION OF MEMBERSHIPFUNCTIONS

There are a number of existing methods of membership func-
tion estimation whose origin stems from different ways of in-
terpreting fuzzy sets; cf. [13], [23], and [24]. In what follows,
we are concerned in the notion of membership cast in the frame-
work of pattern recognition. We also share an opinion that mem-
bership grades should relate in some way to experimental data.

We start with experimental data
belonging to several classes where the degree

of belongingness of to any class is binary (that is we
adopt the yes–no class assignment). The dominant class is
determined; say and the intent is to compute a membership
function of the concept (feature) describing. Without any
loss of generality, we consider a two-class problem, meaning
that we distinguish between the data points belonging to this
most frequent class we are interested in () and other class
that may represent all remaining classes.

The underlying idea is to assign the high membership grade
(1) to the regions where there are only patterns belonging to.
When moving to the regions where we encounter some patterns
belonging to , we gradually start reducing the corresponding
membership grades. Furthermore, we consider the membership
function to be unimodal and distributed around a prototypical
value of the concept governing the dominant class.

The procedure outlined can be formalized as a two-step
algorithm

• determination of the prototypical value of the fuzzy set;
• determination of membership grades assumed by the

fuzzy set around the prototype based on the experimental
data.

Fig. 5. Computing the membership function ofA with the use of
overshadowing principle; note that the point belonging to! “overshadows”
other elements belonging to! that are located more distantly fromm.

The prototypical value can be found in many different ways
(say, as a median or mean). The simplest one is to take a mean
value of the elements in that belong to , that is

card

The determination of the membership grades of other points is
guided by the following rationale; refer also to Fig. 5. The cal-
culations are carried out separately for the data points to the left
and to the right from the mean value. Furthermore we order the
elements larger than the prototype in an increasing order. The el-
ements lower than the prototypical value are order in decreasing
fashion.

We start moving from the prototype up toward the higher
values of the data with the initial membership grade equal to
one, . In this move, two cases may occur: a) either
the next data point belongs to , or b) it belongs to . In the
first case, we maintain the previous membership grade. If the
point belongs to , we assign lower membership grade whose
value is computed as

where

and is the largest element in the data set. This means that
if this new point is close to the prototype, the reduction
in membership value () becomes substantial. Interestingly, the
existence of elements that belong to the other class leads to an
irreversible drop in the membership values of the fuzzy set. Note
that for the next data points, say , that may
belong to the dominant class, we end up having the lower mem-
bership grade. In other words, the data point belonging to
“overshadows” the remaining larger data points in the sequence.
Overall, the calculations of the membership values can be suc-
cinctly described by the expression

if
if .

The membership grades computations for the data points
lower than the prototype () is carried out in an analogous
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TABLE I
COLLECTION OF A TWO-CLASS DATA

TABLE II
MEMBERSHIPGRADE OF THE FUZZY SET A CONSTRUCTEDWITH

THE OVERSHADOWING PRINCIPLE; THE MEMBERSHIP GRADES

EQUAL TO 1 ARE HIGHLIGHTED

Fig. 6. Parabolic membership function of the feature of class! defined in
the feature spacex.

manner. The only difference is that now we order these data
points in a decreasing order.

The membership function determined in this way exhibits a
stairwise effect meaning that the changes of membership grades
are confined to the discrete data points. One can approximate
a continuous membership function (such as linear, parabolic,
Gaussian, etc.) using these specific values.

As an example, let us consider a data set in Table I.
The dominant class (1) is denoted by. Following the above

algorithm, the resulting membership grades are summarized in
Table II.

If we proceed with a further parabolic approximation of the
membership grades

if
if
if

the resulting membership function is shown in Fig. 6.
In spite of the type of approximation developed on the basis

of some discrete membership grades, there is an interesting and
general observation as to the underlying form of the fuzzy set.
If we do not encounter any elements belonging to class, then
we consider a complete membership to the class of interest ().
This way of looking at the fuzzy sets promotes existence of
cores of the information granules (namely, 1-cuts of the respec-
tive fuzzy set). By endorsing this point of view, we often end up
with regions of the feature space in which we have a high con-
fidence as a reliable descriptor of the class. In contrast, in all

Fig. 7. A graphic environment of the development and interpretation of
self-organizing maps.

models of probabilistic pattern recognition where we work with
Gaussian probability density functions, these functions assume
only a single prototypical value (mean) and do not show up any
plateau around it.

V. SOFTWARE ENVIRONMENT AND EXPERIMENTING

WITH A SYNTHETIC DATASET

To highlight and exemplify a way in which the self-organizing
map is used in data analysis, below we show a few snapshots
illustrating how the software operates and what type of user in-
teraction is involved. The developed software (C, running
on a PC platform) is user friendly with a significant interac-
tion facilitated by the graphical user interface. Not only does
this interface supports a visualization environment, but it helps
the developer make decisions as to finding the structure in the
data set and interact with the data in such process. The devel-
opment environment provides the user with some generic sta-
tistical characterization of the data, Fig. 7, and navigates him
through a detailed setup of the self-organization process (in-
volving all necessary details such as the size of the map, normal-
ization schemes, types of distance function, number of learning
epochs). During the learning a map being formed is continu-
ously updated and this dynamics is visualized in Fig. 7. Finally,
the analyst can highlight (select) any region on the map and look
at the corresponding subset of experimental data. The regions on
the map are identified through a visual inspection. As one can
immediately look at the corresponding data, the overall process
becomes highly interactive. Obviously, such regions could be
formed in an automatic fashion (as a matter of fact, SOMs are
just images and there are a lot of image processing tools of edge
detection and contour forming that could be found useful here).
This option has not been pursued as being too restrictive and
biased toward a specific algorithm of edge detection and edge
tracking.

It is worth stressing that when running the same data set
through a self-organizing map, we may end up with a different
configuration of the regions. This is not essential as the regions
themselves are quite repeatable in terms of their data content as
well as mutual distribution on the map.

The intent of this section is to take a relatively simple low-
dimensional example in which we know the structure in the
data set and observe what structure is revealed by the self-orga-
nizing map. A four-dimensional synthetic data set is generated
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(a)

(b)

Fig. 8. The structure revealed by the self-organizing map after the training;
neurons marked in darker color delineate regions of high homogeneity both for
the (a) 10 by 10 map and (b) 15 by 15 map.

by a uniform random generator [random ( )]where each group
is shifted as follows:

Four groups were generated, each of them consisting of 2000
data points. The shift parameters describing each group are
listed as follows:

Group no.

.

We experimented with two sizes of the map; in the first case
it has a 10 by 10 grid of neurons, in the second structure the
grid was increased to the size 15 by 15. The learning took 1000
epochs. The experimental finding was that after that no substan-
tial changes in the connections of the neurons (and equivalently
the structure of the data revealed by the map) have been ob-
served. After the training, the structure of the data was revealed
quite profoundly as illustrated in Figs. 8 and 9.

The differences are even more profound and the clusters are
clearly delineated when the size of the map was increased to 25
neurons per column/row.

The distribution map (Fig. 10) provides us with the qualita-
tively the same picture as before yet now it comes with more

Fig. 9. Homogeneous regions in the 25 by 25 SOM.

Fig. 10. The density distribution of data (associated self-organizing map); the
darkest entries correspond to 33 patterns allocated to the respective neuron, the
brightest points allocate zero patterns. Note that the boundaries exhibit a very
low density of data points.

Fig. 11. Distribution of features in the SOM (darker regions correspond to
higher values of the respective feature of the patterns).

details. Note that the boundaries are formed by a few data points
that are different from the rest of the patterns.

Finally, the distribution of the features on the map is shown in
Fig. 11. This provides us with another option to investigate rela-
tionships between the features (variables). By visual inspection,
we immediately learn that features 2 and 3 are more “related”
(in a visual sense) than the first and second feature. On the other
hand, there is a relationship between the first and fourth feature
that occurs only for a lower portion of the map (where the high
values of these features coincide).

It should be mentioned that for smaller maps, their ability to
distribute the classes in disjoint regions was very limited. For
instance, in the 5 by 5 map, we were not able to delineate clearly
separable regions. Furthermore far more overlap between the
classes occurred even for the same neuron. This was a clear
indicator of the size of the network not being fully adequate to
the size of the data set.

In the sequel, we visualize the performance of SOMs on two
data sets quite often used in machine learning.

Wine Data: This dataset consists of 178 data points (pat-
terns) belonging to three classes. We start with a small 5 by 5
SOM which was trained for 2000 epochs. The patterns are nor-
malized linearly. The results are shown in Fig. 12. By visually
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Fig. 12. Visualizuation of data in the SOM with inspection of classes. (Top)
Distribution of patterns across the map. (Middle) Individual features distributed
across the maps.

inspecting the map, we see clearly identified boundaries that
potentially delineate the patterns belonging to different classes.
This indeed has happened. As the software environment is
highly interactive so that we can directly look under the “hood”
of the map and inspect the patterns associated with the selected
nodes of the map. The homogeneous regions (the nodes with
light shadowing) and their correspondence with the classes is
included in Fig. 12. Interestingly, the homogeneous regions
correspond quite well with the areas of the map of high density
of data points [again, this effect is visualized in Fig. 12(a)].

This analysis gives us an immediate visual insight into the
complexity of the problem treated as a potential classification
task. The weight maps reveal dependencies between the features
in a graphical form. It can be viewed as a generalization of the
standard correlation analysis when we characterize a (linear) de-
pendency between features by a single numeric value (correla-
tion coefficient) while now we are provided by a series of maps
one can visually inspect and “correlate.” The details are shown
in Fig. 12(c). It becomes apparent that some features (shown in
the maps denoted by a5, a6, a10, and a11) exhibit the same be-
havior while others are quite distinct.

Glass Data: In this study, we are concerned with 214 in-
stances of glass belonging to seven classes. The classification
was motivated by criminological investigation. Each pattern is
characterized by a number of features dealing with the chemical
content of glass (sodium, aluminum, silicon, barium, etc.).

We start with a 5 by 5 SOM trained for 2000 learning epochs.
Linear normalization is used to preprocess the data; see Fig. 13.

Fig. 13. Visualization of glass data (classes) supported by SOM.

(a)

(b)

Fig. 14. (a) Distribution of classes in the SOM. (b) Data density across the
map.

Few classes can be delineated, namely 2, 3, and 7. The rest are
difficult to distinguish. The increase of the size of the map helps
alleviate the problem. With the increase of the size of the map
to a 13 by 13 grid, Fig. 14, after 7000 learning epochs we end
up with several homogeneous regions identifying most of the
classes existing in the problem (the size of the map was made
quite large on purpose with an intent to see how far the discrimi-
nation between the classes can be realized). The results point out
that some classes are easy to discriminate (those are the classes
we were able to find in the map) while others such as class re-
quire more attention when building their classifiers. Still, at this
size of the map, we were not able to find a clearly distinguished
region occupied by class-6. The distribution of the classes in
the map reflects the diversity of the patterns belonging to the
corresponding class; apparently class-5 is more “compact” than
class-1. The mutual distribution of the classes is another inter-
esting indicator as to the relationships between the classes; for
instance class-1 and class-2 are neighbors while class-7 is lo-
cated quite distant from these two. Interestingly, the distribution
of patterns across the map is quite uniform, Fig. 14(b) meaning
that all nodes of the map were involved in the organization of
the data to a similar extent.
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TABLE III
CHARACTERISTICS OF THEGRANULAR DESCRIPTORS OF THEECG CLASSES

VI. GRANULAR ANALYSIS OF THE ECG DATA

The complex problem of computerized diagnostic classifica-
tion of the ECG signal has been considered as a real example. A
consistent ECG database characterized by a clinical validation
has been investigated.

The CORDA database, developed by J. Willems at the
Medical Informatics Department of the University of Leuven,
Leuven, Belgium [36], consists of 3253 12 lead ECGs (2140
men and 1113 women with a mean age of 4912 years). There
were 12 standard leads (that is I, II, III, AVR, AVL, AVF, V1,
V2, V3, V4, V5, V6). It consists only of single-disease cases
with normal QRS duration and no conduction abnormality.
Seven diagnostic classes have been considered: normal (N), left
ventricular hypertrophy (LVH), right ventricular hypertrophy
(RVH), biventricular hypertrophy (BVH), inferior (IMI),
anterior (AMI), and combined (MIX) myocardial infarction.

From the original ECG signal (12 standard leads acquired at
500 Hz for a period of about 10 s), a set of 540 (45 for each
lead) primary measurements were computed with a computer-
ized system, obtaining a first consistent data reduction. A second
data reduction, according to a clinical selection and a statistical
selection, has been performed obtaining a set of 39 ECG fea-

Fig. 15. The self-organizing map (size of 25 by 25) and several clusters
identified for further analysis.

tures. They include amplitudes and duration of the QRS and T
waves, QRS and T axes, ST-segment elevation or depression,
and the area under QRS and T waves.

The same dataset has been used to establish the performance
of statistical classification models [36], and to validate the per-
formance of different architectures of neural networks [3], [4].

One can envision a certain hierarchy of the classes of the sig-
nals that could be helpful in understanding the results of self-or-
ganization. The diagnostic class of biventricular hypertrophy
(BVH) then includes both LVH and RVH, and consequently the
three classes BVH, LVH, and RVH are not completely indepen-
dent. This means that a classification of LVHRVH is equiv-
alent to BVH, and that a BVH patient classified as only LVH
or RVH represents a partial discrepancy. Analogous considera-
tions are valid for the diagnostic class of combined myocardial
infarction MIX with respect with AMI and IMI.

The size of the map was experimented with. Finally, the size
of 25 by 25 is a reasonable choice considering the size of the data
set as well as the interpretation results one can derive (it is worth
noting that this description of data is an interactive process so
the user has control over the granularity of the descriptors visible
through the map). The data were normalized with the use of a
logistic transformation.

There are of immediate and important observations one can
make on the basis of a visual inspection of the self-organizing
map (especially the region map and the maps of the individual
features). We may quantify the groups in a more quantitative
manner as summarized in Table III. These groups of data are
described in terms of class homogeneity, total size, and fuzzy
sets—information granules capturing the data beneath the se-
lected portion of the map.

Several interesting observations can be drawn.

• The homogeneous regions in the SOM, their size and lo-
cation vis-à-visother regions help identify relationships
between the classes of ECG signals.

In particular, a region (cluster) capturing normal signals
[region C in Fig. 15] is quite compact and shows a high
level of homogeneity. The region denoted by A [that in-
volves AMI] is quite extended and is quite distant from
other regions. Similarly, region B (that captures a mixture
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Fig. 16. Feature maps of the ECG patterns; the features are denoted as a1, a2, …, a39. The brightness scale shows the values of the features as they are distributed
across the map.

of IMI and MIX) is apart from the other regions and occu-
pies an entire region on the upper right corner of the map.
A very different behavior can be observed for the three
other regions, that is E, H, and F. These are close neigh-
bors and all of them capture two classes RVH and BVH
but in a different mix. When moving along the map and
starting from the first one (E), there is an evident mix of
BVH and RVH. In the sequel, the next group (H) is domi-
nated by RVH while the group identified as F has a similar
dominance by RVH with some BVH.

• The identification of the groups in the map can be viewed
as a descriptive data analysis with an ultimate goal to
capture the essence of the data. In this case we are inter-
ested in building concise and homogeneous descriptors

of the ECG classes. The map tells us what is most likely
as to the occurrence of “plain” or mixed classes of pat-
terns. Obviously, it is easy to describe (and discriminate)
between the class of normal signals (N) and others while
discriminating between class IMI and MIX (as shown in
region B) will be a difficult task (no matter what classi-
fiers we are interested in). It is easy to discriminate be-
tween class RVH when dealing with region H however
doing the same for the region E (where there is an evi-
dent mix of RVH and BVH) will be a significant classi-
fication challenge.

The series of maps for each feature (feature maps) as shown in
Fig. 16 is important sources of information by helping us visu-
alize relationships between the features. A quick visual inspec-
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Fig. 17. Density map associated with the SOM: the brighter the color, the
higher the number of the data points allocated to the corresponding neuron. The
range of these numbers is from 9 (the darkest location of the map) to 0 (the
brightest entries of the map).

Fig. 18. Visual identification of the regions in the map of the highest diversity.

tion helps us notice that some of them are highly related (the
corresponding maps are very similar). For instance

• the parameters A21 (Q amplitude in V3) and A22 (Q dura-
tion in V3) as well as partially A19 (Q duration in V1) ex-
hibit similar behavior, showing a region with high values
in the upper right corner, with a correspondence (in agree-
ment) with the classification of region B.

• Some qualitative similarities can be seen considering the
parameters A27(ST elevation in V6), A28 (ST slope in
V6), and A10 (ST elevation in II).

• A qualitative similarity is shown by A14 (area under
T wave in lead AVR) and A13 (ST elevation at 80 ms
after J point of lead AVR).

Fig. 17 shows a density map illustrating how the ECG pat-
terns populate the SOM In general, the data become distributed
across the map quite uniformly with an exception of few entries.
Nevertheless, the differences are not very substantial. The den-
sity map states that there are no any problems with the learning
as there were no particularly “hyperactive” neurons during the
learning process.

One may be interested in the content of the map exhibiting
a significant level of diversity, Fig. 18. These regions carry a
substantial level of class diversity as well as shown in Fig. 19.

Fig. 19. Distribution of patterns in the selection regions of the map of high
diversity.

Fig. 20. Fuzzy sets formed on the basis of the fuzzy regions (clusters) defined
in the self-organizing map: QRS axis in AVF in 40 ms, QRS peak-to-peak
amplitude in V3, T amplitude in V3, R duration in AVL.

Again, we emphasize that the SOM-based analysis is user ori-
ented. It is a user who makes decisions about delineating regions
on the map, identify their “content” (i.e., the content in terms of
classes involved) and make decisions as to expansion or con-
traction of the specific region. Obviously, the homogeneity map
along with the data density map are used to support such deci-
sion-making problem.

Each region (cluster) comes with its own granular signature
of data in the form of the fuzzy sets of the features. A few il-
lustrative examples are included in Fig. 20. Obviously, having
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(a)

(b)

Fig. 21. The use of descriptive analysis in forming a blueprint of predictive
fuzzy models. (a) BVH and RVH merged into a single class, also class IMI and
MIX considered together. (b) BVH and RVH treated as two separate classes.

seven classes and 39 features, it is impossible to display all of
them, but even the sample shown here gives an interesting and
useful insight into the meaning of the features.

VII. FROM DESCRIPTIVE TOPREDICTIVE FUZZY MODELS

In light of the general taxonomy of descriptive–predictive
models, one can state that the profound majority of models en-
countered in fuzzy modeling fall under the second category. In-
terestingly, the role of fuzzy sets has been diminished there in
the sense that all design of the fuzzy models are immediately
aimed at very detailed constructs. Hence, what is really offered
by fuzzy sets, that is a global and user-friendly view at data, is
not of primary concern in the predictive model.

We may envision the previous descriptive analysis to be an
important step in constructing a blueprint of any further and far
detailed fuzzy model, say a fuzzy classifier. In particular, we
may think of the regions identified in the SOM to form a certain
type of receptive fields. Then, the structure becomes evident
(Fig. 21).

What is shown there pertains to some selected classes of the
fuzzy neural architectures. The choice of the specific topology
depends upon the classification problem we are interested in.
If general classes (that is an amalgamation of RVH and BVH)
are admissible, the architecture in Fig. 21(a) is a viable option. If
such generalized class is not feasible, a blueprint of the model in
Fig. 21(b) is a good starting point. The connections linking the
receptive fields (regions in the SOM) with the output unit are
initialized based on such descriptive analysis; further detailed
learning is nevertheless required to achieve a full calibration of
the model and increase its accuracy.

VIII. C ONCLUSION

In this paper, we have distinguished between descriptive and
predictive fuzzy models and fuzzy modeling. The focal point
of these investigations is concerned with the first category of
the system modeling techniques. It is shown that at descriptive
fuzzy modeling is a highly designer-oriented activity with the
objective to make the “internal” language of the data understood
by the designer (naturally, we envision that a certain type of a
visual environment is required).

The main points worth emphasizing are as follows.

• The descriptive fuzzy modeling is aimed at allowing the
data “speak their own language” and translate these find-
ings in terms (that is information granules expressed as
fuzzy sets) so that they become meaningful to the de-
signer/user. We are after thetransparencyof the constructs
(and their relevancy in terms of enough experimental ev-
idence. The noninvasive nature of this category of mod-
eling is also apparent.

This type of modeling is predominantly user centered. It
is the designer who formulates questions and hypotheses
about the possible structure in the data, validates them on
a basis of the granular findings. The environment in which
the designer operates needs to be highly interactive so that
the crucial relationships are portrayed in the easily com-
prehended format and the environment facilitates any form
of the “what-if” analysis. It has been shown that self-or-
ganizing maps augmented with additional visualization
vehicles (such as region/cluster and density maps) are a
suitable development environment for the descriptive data
analysis. At this point one may be tempted to automate the
process of building regions in the region (clustering) map
(which could not be difficult considering that it would end
up being a certain task of image processing—after all these
maps are just digital images). Nevertheless, we strongly
believe that there should be enough room for initiative of
the designer so there are no specific constraints imposed
on the way of perceiving the problem.

• The descriptive modeling is a prerequisite for predictive
modeling (no matter what type of the model is sought
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and what development/identification technique is consid-
ered afterwards). The descriptive modeling may help ad-
dress crucial modeling questions as to the suitability of a
specific detailed mode and navigate in processes of deci-
sion-making pertinent to such detailed modeling activities.

The descriptive modeling has been applied to the analysis of
ECG data. It was treated as a preliminary phase of designing of
the detailed classifiers by providing an invaluable insight into
the nature of classes, their distribution and overlap between the
classes.
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