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Abstract—Missing data imputation is a key issue in learning from incomplete data. Various techniques have been developed with
great successes on dealing with missing values in data sets with homogeneous attributes (their independent attributes are all either
continuous or discrete). This paper studies a new setting of missing data imputation, i.e., imputing missing data in data sets with
heterogeneous attributes (their independent attributes are of different types), referred to as imputing mixed-attribute data sets.
Although many real applications are in this setting, there is no estimator designed for imputing mixed-attribute data sets. This paper
first proposes two consistent estimators for discrete and continuous missing target values, respectively. And then, a mixture-kernel-
based iterative estimator is advocated to impute mixed-attribute data sets. The proposed method is evaluated with extensive
experiments compared with some typical algorithms, and the result demonstrates that the proposed approach is better than these
existing imputation methods in terms of classification accuracy and root mean square error (RMSE) at different missing ratios.

Index Terms—Classification, data mining, methodologies, machine learning.

1 INTRODUCTION

ISSING data imputation aims at providing estimations

for missing values by reasoning from observed data
[5]. Because missing values can result in bias that impacts
on the quality of learned patterns or/and the performance
of classifications, missing data imputation has been a key
issue in learning from incomplete data. Various techniques
have been developed with great successes on dealing with
missing values in data sets with homogeneous attributes
(their independent attributes are all either continuous or
discrete). However, these imputation algorithms cannot
be applied to many real data sets, such as equipment
maintenance databases, industrial data sets, and gene
databases, because these data sets are often with both
continuous and discrete independent attributes [21]. These
heterogeneous data sets are referred to as mixed-attribute
data sets and their independent attributes are called as
mixed independent attributes in this research. To meet the
above practical requirement, this paper studies a new
setting of missing data imputation, i.e., imputing missing
data in mixed-attribute data sets.
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Imputing mixed-attribute data sets can be taken as a new
problem in missing data imputation because there is no
estimator designed for imputing missing data in mixed-
attribute data sets. The challenging issues include, such as
how to measure the relationship between instances (transac-
tions) in a mixed-attribute data set, and how to construct
hybrid estimators using the observed data in the data set. To
address the issue, this research proposes a nonparametric
iterative imputation method based on a mixture kernel for
estimating missing values in mixed-attribute data sets. It first
constructs a kernel estimator to infer the probability density
for independent attributes in a mixed-attribute data set. And
then, a mixture of kernel functions (a linear combination of
two single kernel functions, called mixture kernel) is
designed for the estimator in which the mixture kernel is
used to replace the single kernel function in traditional kernel
estimators. These estimators are referred to as mixture kernel
estimators. Based on this, two consistent kernel estimators
are constructed for discrete and continuous missing target
values, respectively, for mixed-attribute data sets. Further, a
mixture-kernel-based iterative estimator is proposed to
utilize all the available observed information, including
observed information in incomplete instances (with missing
values). Finally, a grid research method is presented to obtain
the optimal bandwidth for the proposed mixture kernel
estimators, instead of the data-driven method in [29]. The
proposed algorithm is experimentally evaluated in terms of
root mean squared error (RMSE), classification accuracy and
the convergence speed of the algorithm, compared with
extant methods, such as the nonparametric imputation
method with a single kernel, the nonparametric method for
continuous attributes, and frequency estimator (FE). These
experiments were conducted on UCI data sets and a real data
set at different missing ratios.

The rest of the paper is organized as follows: It begins
with briefly recalling related work in Section 2. The new
algorithm is designed and analyzed in Section 3. The
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experimental results are reported and analyzed in Section 4.
Finally, Section 5 concludes the paper.

2 REeLATED WORK

Methods for dealing with missing values can be classified
into three categories by following the idea from [10], [36],
[25]: 1) case deletion, 2) learning without handling of
missing values, and 3) missing value imputation.

The case deletion is to simply omit those cases with
missing values and only to use the remaining instances to
finish the learning assignments [22], [27]. The second
approach is to learn without handling of missing data,
such as Bayesian Networks method [23], Artificial Neural
Networks method 15, the methods in [14], [17].

Different from the former two, missing data imputation
method advocates filling in missing values before a learning
application. Missing data imputation is a procedure that
replaces the missing values with some plausible values,
such as [35], [26]. While the imputation method is regarded
as a more popular strategy [16], a new research direction, the
parimputation strategy, has recently been proposed in [38].
It advocates that a missing datum is imputed if and only if
there are some complete instances in a small neighborhood
of the missing datum, otherwise, it should not be imputed.

2.1 Research into Missing Value Imputation

Commonly used methods to impute missing values include
parametric and nonparametric regression imputation meth-
ods. The parametric method, such as linear regression [13],
[22], and [31], is superior while the data set are adequately
modeled. However, in real applications, it is often impossible
to know the distribution of the data set. Therefore, the
parametric estimators can lead to highly bias, and the
optimal control factor settings may be miscalculated. For
this case, nonparametric imputation method [28], [35], [38]
can provide superior fits by capturing the structure of the
data set.

However, these imputation methods are designed for
either continuous or discrete independent attributes. For
example, the well-established imputation methods in [4],
[35] are developed for only continuous attributes. And these
estimators cannot handle discrete attributes well. Some
methods, such as C4.5 algorithm [28], association-rule-based
method [40], and rough-set-based method [24], are designed
to deal with only discrete attributes. In these algorithms,
continuous attributes are always discretized before imput-
ing. This possibly leads to a loss of useful characteristics of
the continuous attributes. There are some conventional
imputation approaches, such as [6], [1], and [11], designed
for discrete attributes using a “frequency estimator” in which
a data set is separated into several subsets or “cells.”
However, when the number of cells is large, observations
in each cell may not be enough to nonparametrically estimate
the relationship among the continuous attributes in the cell.

When facing with mixed independent attributes, some
imputation methods take the discrete attributes as contin-
uous ones, or other methods are used. Some reports, for
instance, [6], [1], and [11], selected to smooth the mixed
regressors, but without taking the selection of bandwidth
into account. Therefore, Racine and Li [29] proposed a
natural extension of the method in [3] to model the settings
of discrete and continuous independent attributes in a fully
nonparametric regression framework.

However, all the above methods were designed to
impute missing values with only the observed values in
complete instances, and did not take into account observed
information in incomplete instances. On the other hand, all
the above methods are designed to impute missing values
one time. John et al. [18] thought that iterative approaches
impute missing values several times and can be usefully
developed for missing data imputation. Zhang et al. [42]
thought it is necessary to iteratively impute missing values
while suffering from large missing ratio. Hence, many
iterative imputation methods have been developed, such as
the Expectation-Maximization (EM) algorithm which is a
classical parametric method. Zhang et al. [42] and Caruana
[9] proposed nonparametric iterative methods but based on
a k-nearest neighborhood framework. In this paper, the
proposed iterative imputation method is a nonparametric
model specially designed for those data sets with both
continuous and discrete attributes, which is based on a
kernel regression imputation framework.

2.2 Research into Bandwidth Selection and Kernel
Function Selection

Kernel function is popularly used in building imputation

models, such as [35], [26] and [29], denoted by kernel

imputation. When kernel imputation method is employed

to impute missing values, it usually consists of two parts:

kernel function selection and bandwidth adjustment.

During the process for selecting kernel functions, what we
need to consider is not only the ability to learn from the data
(i.e., “interpolation”), but also the ability to predict unseen
data (i.e., “extrapolation”). Smits and Jordan [34] argued that
these two characteristics are largely determined by the choice
of kernel functions. For example, a global kernel (such as the
polynomial kernel) has better extrapolation abilities at lower
order degrees, but requires higher order degrees for good
interpolation. A local kernel (such as the RBF kernel or
Gaussian kernel) has good interpolation abilities, but fails to
provide longer range extrapolation. Jordan [20] demon-
strated that a mixed kernel, a linear combination between
poly kernel and Gaussian kernel, gives the extrapolation and
interpolation much better than either a local kernel or a
global kernel. In this paper, a mixture of kernels is employed
to replace the single kernel in continuous kernel estimator.

Silverman [33] pointed out that the selection of optimal
bandwidth is much more important than kernel function
selection. This is because smaller values of bandwidth make
the estimate look “wiggly” and show spurious character-
istics, whereas too large values of bandwidth will result in
an estimation that is too smooth, in the sense that it is too
biased to reveal structural features. However, there is not a
generally accepted method for choosing the optimal
bandwidth. The popular methods [19], [30] include rules
of thumb, oversmoothing, least squares cross validation,
biased cross validation, direct plug-in methods, solve-the-
equation plug-in methods, and bootstrap methods.

In contrast to the existing bandwidth selections, this paper
employs a mixture kernel for building kernel estimators, and
presents a grid search strategy to select the optimal
bandwidth. From the experiments, the proposed method
really not only demonstrates better extrapolation and
interpolation, but also decreases the exponential time nearly
to a polynomial one.
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3 NONPARAMETRIC ITERATIVE IMPUTATION
METHOD

As demonstrated in this paper, the numbering for sections
is upper case Arabic numerals, then upper case Arabic
numerals separated by periods. Initial paragraphs after the
section title are not indented. Only the initial, introductory
paragraph has a drop cap. Before presenting the new
imputation algorithm in Section 3.1, the work in [29] is first
recalled, which reported on kernel functions for discrete
attributes (including ordering and nonordering discrete
attributes/variables). Then, a mixture kernel function is
proposed by combining a discrete kernel function with a
continuous one presented in [26]. Furthermore, a new
estimator is constructed based on the mixture kernel.
Section 3.2 develops novelty kernel estimators for discrete
and continuous target values, respectively. In Section 3.3,
the nonparametric iterative imputation algorithm is ex-
tended from a single kernel to a mixture of kernels. In
Section 3.4, the nonparametric iterative imputation algo-
rithm is designed and simply analyzed.

3.1 Single Kernel Imputation Method by Mixture
Kernel Estimator

Let X! € S"denoteak x 1 vector of the estimator designed for
discrete variables (or attributes), and X¢ € SP the estimator for
continuous variables remained, where d and p are the number
of dimensions of discrete and continuous variables, respec-
tively. Assume that X?, denotes the uth component of X¢,
and X¢, contains ¢, > 2 different values, i.e., foru=1,...,k,
X4, €{0,1,...,¢, — 1},and X; = (X, X¢) € §" x RP.

The kernel function for discrete variables, proposed in
[29], is simply called as discrete kernel function in the rest of
the paper. There are two kinds of discrete kernel functions,
nonordering and ordering discrete kernel functions (see
Definitions 1-3).

A nonordering discrete kernel function is constructed by
four steps:

1. Define a univariate kernel function:

10Xy

u,?

1 if X4 = X9
>:{ 1 u,i u (1)

A, otherwise.

2. Define an indicator function I(X?, # X?), whose
value is 1 if I(X?, # Xd) and 0 otherwise.

3. Define d;, , = Z% L I(XT, # X1), whose value is the
number of disagreement components between X
and 24

4. Construct a nonordering discrete kernel function

according to Definition 1.

Definition 1 (Nonordering Discrete Kernel Function). For
a kx1 vector with nonordering discrete values, such as
X4 e 8, xd €8, then its corresponding kernel function is
defined as follows:

k
A) =[x, Xx9) = 1t xr = At (2)

u=1

Xdas
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where X is the smooth parameter and will be decided in
experiments.

Similarly, a kernel function for ordering discrete vari-
ables is defined as follows:

Definition 2 (Ordering Discrete Kernel Function). Let
UXiu ) = N, where |X;, —x,|=s, then the ordering
discrete kernel function is defined as

H)\

where &, , = S"_ | Xiu — @] is the Ly-distance between X!
and %, and \ is the smooth parameter.

L(X;, 21, M) o] = AP (3)

Combining (2) with (3), it is easy to obtain the kernel
function for discrete variables.

Definition 3 (Discrete Kernel Function). Discrete variables
include nonordering or ordering variables, based on Definitions 1
and 2, the discrete kernel function is defined as follows:

L(X;l,x:l,)\) — )\dl','--f-*—é'l‘,:,l" (4)

Qin et al. [26] presented a kernel function for continuous
variables as follows:

Definition 4 (Continuous Kernel Function). For a
k x 1 vector with continuous values, such as, x € RP, then
its kernel function is K(x — X;/h), and the K(.) is a mercer
kernel, i.e., positive definite kernel.

Based on the above work (Definitions 3 and 4), in this
paper, a mixture kernel function is proposed for mixed
independent attributes (see Definition 5).

Definition 5 (Mixture Kernel Function). With integrating
the discrete and continuous kernel functions, a mixture kernel
function is constructed as follows:

Knaize = K(“ /) L(X{, 2, 0), (5)

REat B

where h — 0 and A\ — 0 (X, h is the smoothing parameter for
the discrete and continuous kernel functions, respectively), and
K iz 15 a symmetric probability density function.

Consequently, some estimators are constructed with (5)
as follows:

Definition 6 (Estimator for Continuous Missing Attri-
butes). The kernel estimator, m(x), for continuous missing
target values m(x) for data sets with mixed independent
attributes is defined as follows:

-1 n
n Y i YiKy e
— n —
n-! 27‘21 Ky iz +n 2,

m(z) = (6)

where the item n 2

denominator to be 0.

in m(x) is only used for avoiding the

When the missing value m(x) is in a discrete attribute,
the estimator is constructed with Definition 7.

Definition 7 (Estimator for Missing Discrete Attributes).

Let Dy = (0,1,...,¢c, — 1} denote the range of m(x), one
could estimate m(x) by
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() = n S YK i
nt 30 Kz + 1072
nT i Xen, ey Ko
n! Z:Lzl Kn,)\ ’

where I(Y;,y,\) =1ify=Y;, and \if y £ Y.

(7)
+A

Equations (6) and (7) are designed for imputing missing
target values only once, and they are similar to the function
presented in [29]. However, there are essential differences
between these two methods. For example, the kernel
functions proposed in this paper employ the method given
in [26] for dealing with continuous missing attributes. This
is different from that in [29] because the former has been
demonstrated to outperform other methods for imputing
continuous attributes (including the method in [29)]. In
particular, in this paper, a mixture kernel is constructed
instead of the single kernel ([26]) in the continuous kernel
estimator, where the mixture kernel will further be
analyzed and explained in Section 3.3.

Theorem 1 (Asymptotic Normality for Single Imputation).
The estimator in Definition 6 or 7 is of asymptotic normality.

The proof of Theorem 1 is informally outlined as follows:

Racine and Li [29] have presented the asymptotic
normality of the estimator (see (8)) for discrete independent
attributes.

_ —1 n
M(x) _ n! Z:l:1 YKz ix n Zi:1 ZZJGDg,y#K K
nt 3 K U Ky

Comparing (7) with (8), the only difference is that an item
n~? is added to (7) for avoiding the denominator to be 0. The
item does not affect that the asymptotic normality of (7) and it
is similar to that of (8), because the term n~? is a positive value
small enough. For the former partin (7) (i.e., (6)), the estimator
is obtained by using a mixture kernel to replace the single
kernel in existing continuous kernel estimator. Because the
mixture kernel always leads to a mercer kernel, comparing (6)
with the continuous kernel estimator in [29], the asymptotic
normality of (6) is preserved from that of the continuous
kernel estimator in [29]. Consequently, Theorem 1 holds.

Given the above improvement, one can find that the
above imputation method for missing values is a single-
imputation method. It is not feasible to use the above
methods (based on (6) or (7)) to impute missing values when
there are only a few completed instances, because the
estimators can lead to bias in these cases, and this will
become more serious when the missing rate is higher. In
practice, most databases have a high missing rate, especially
in industrial databases. For example, the industrial data set
introduced in [21], there are 4,383 records in the data set, but
none of the records are complete and only 33 variables out of
82 have more than 50 percent of the records completed. It
certainly results in a low imputation performance to impute
the missing values with such a limited percentage of
complete information [42]. Therefore, it is important to
consider how to utilize all the available information in the
data set because the observed information in incomplete
instances (with missing values) assists in improving the
imputation performance [42]. The imputation algorithm

- (8)

designed in this paper gives a consideration to all the
observed information in a data set.

Based on (6) and (7), a mixture-kernel-based nonpara-
metric iterative imputation method is proposed to utilize all
the observed information, including the observed informa-
tion in incomplete instances. In the kernel estimator for
continuous variables, a mixture kernel is used to replace the
single kernel so as to obtain better interpolation and
extrapolation. This algorithm will be designed in the
following sections.

3.2 Nonparametric Iterative Imputation

The sets of respondents (observed values in the target
variable Y) and nonrespondents (missing values in Y) are
denoted by S, (r=1,...,v) and S,, (m =n —v), respec-
tively. Based on the results in Section 3.1, a random sample
(sample size = n) of incomplete data associated with a
population (X?, XY, 6) can be represented as follows:

(X% X Y;,6),i=1,2,...,n,

where the X%s, X¢s are observed when §; = 0; Y] is missing
when §; = 1.

The tth imputation value Y; of the ith missing value is
denoted by Y/ that is evaluated with (9) as follows:

Y =i (X) + <, 9)

where ¢t is the number of iterative imputation times, m;(x)

is the kernel estimator for m,(z) (z € R*?) based on the

completely observed pairs (X', Y"), and {¢!} is a simple
random sample of size m with replacement from

{Yf —1m(X;)} i € Sy, in the tth imputation.

Definition 8 (Iterative Kernel Estimator for Continuous
Target Variable). If the independent attribute is mixed and
the missing target variable Y is continuous variable, the kernel
estimator, 1y (x), of Yis defined as follows:

-1 n t
N n Ei:l Y: Kh,)\,i;l:

my(x) = n ’ 10
t( ) nil ZiZI K}L,)\,il‘ +n72 ( )
Y: if6i=0o0ri=1,...,r
‘L AZ i bl b
Wherex—{yyq ifoi=1lori=r+1,...,n

In particular,

and the product kernel function K(z — X;/h) is replaced
with a mixture kernel in this paper (will be explained in
Section 3.3), whereas a single kernel is usually used for
continuous target variables in traditional imputation
techniques.

Definition 9 (Iterative Kernel Estimator for Discrete
Target Variable). Let D, ={0,1,...,c, — 1} denote the
range of Y. in the discrete target variable Y, and the joint
density of (Y;, X;) is estimated by n=" 1" 1YY, yy N)Kpvia,s
where the indicator function Y ; (Y}, y, \) =1 Y] =y,
and = X otherwise. The kernel estimator, 1y (x), of Yis defined
as follows:
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Z::l ZyED”,y;ﬁY, l(Y;yv Ut, )‘) ytKn,/\
>ic1 Kna 7

(11)

mt (1’) =

where

¢ _ Y ifos=00ri=1,...,r,
Y = Yitifs=lori=r+1,...,n

In particular, Y'is the best common class in the discrete
target variable, and 5;‘ =0, i=r+1,...,n. The product
kernel function K(z — X;/h) in (11) is replaced with a
mixture kernel, whereas a single kernel is used in (7) and (8).

Thereby, in the following sections, () is used to denote
the kernel estimator regardless of whether or not Y; is
continuous or discrete, and 17, (z) will also be regarded as the
imputed value of m,(z). Note that the kernel weights can be
added up to 1 + (¢; — 1) # 1 for A # 0 in the case of (2) and
(4). Racine and Li [29] demonstrated that this did not affect
the nonparametric estimator defined in (2) and (4) because
the kernel function appears in both the numerator and
denominator of them. And the kernel function can be
multiplied by any positive constant without changing the
definition of 7 (x). In addition, in (6), the estimator is changed
to conventional one when A =0, whereby one uses a
frequency estimator to deal with the discrete variables. In
Section 4, some experiments will be conducted to compare
the proposed approach with the frequency estimator method.

Theorem 2 (Asymptotic Normality for Iterative Imputa-
tion). The nonparametric kernel density estimator in Defini-
tion 8 or 9 is of asymptotic normality.

The proof of this theorem is simply outlined as follows:
In Definitions 8 and 9, if the number of the final
imputation times is ¢, it means that the single imputation
is performed ¢ times. In each imputation, the difference
between the single imputation (presented in Definition 6 or
7) and the iterative imputation (in Definition 8 or 9) is the
utilizing of the imputed values. In the proposed iterative
imputation, the imputed values are treated the same as the
observed ones and used to impute subsequent missing
values, whereas the single imputation does not utilize the
imputed values when imputing subsequent missing
values. However, this difference does not affect on the
asymptotic normality of estimators due to the variance.
Therefore, based on Theorem 1, each imputation in the
iterative imputation (in Definition 8 or 9) is still of
asymptotic normality. This means that the proposed
iterative imputation is of asymptotic normality.

3.3 Mixture Kernel FunctionResearch into Missing
Value Imputation

Zheng et al. [41] pointed out that a global kernel (such as the
polynomial kernel) can present better extrapolation at lower
order degrees, but need more higher order degrees for
receiving a good interpolation. And a local kernel has better
interpolation, but fails to provide stronger extrapolation.
They also demonstrated that a mixture of kernels can lead
to much better extrapolation and interpolation than using
either the local or global kernels. In this research, the
proposed imputation approach is based on a mixture kernel
function constructed in Definition 10 as follows:

JANUARY 2011

//the first imputation
FORA each MViin' Y
MV,-1 =mode (S"inY ); //if Y isa discrete variable
MVl-l =mean ( S"inY ); //if Y is a continuous variable
END FOR

//t-th iteration of imputation (t>1)
t=1;
REPEAT
t++;
FOR each M‘{i inY
MV, = MVf_l,pe Spop=L...mp#i
M Vir is got based on Eq. (11) // if discrete variable
MV} is got based on Eq. (10) // if continuous variable
END FOR
UNTIL

’CA, - CA,_1| >¢& //if discrete variable

Convergence or Cycling //if continuous variable

3.0 //finishing the iterative imputation
OUTPUT

t; // tis the iterative times

Completed dataset;

Fig. 1. The pseudocode of the proposed algorithm.

Definition 10 (Linear Mixture Kernel Function). Let
Koy = (< myz; > +1)Y, Ky = exp(—(z — xi)2/02), a lin-
ear mixture kernel function is defined as follows:

) Ky

where q is the degree of the polynomial, o is the width of the
radial basis function (RBF), and p is the optimal mixed
coefficient (0 < p < 1). The values of p, q, and o are constant
scalars, but have to be determined with experiments.

Kmix = proly + (1 - (12)

For the above mixture kernel model, four coefficients,
namely A (the parametric for discrete kernel function), p, g,
and o, are used so as to get the optimal result. It is very
difficult to get the optimal result while dealing simulta-
neously with so many coefficients because the time
complexity is often exponential. To circumvent this pro-
blem, in this research, a grid search strategy is designed for
selecting the optimal bandwidth based on a principle that
minimizes the Approximate Mean Integrated Square Error
(AMISE) of the tth imputed missing values 7, (X;). Let the
AMISE of the tth imputed missing values 17, (X;) be

CVi(\, (pyp,0)) = Inin{i [V —my (XL-)]Z}7 (13)

1=1

where 1;_;(X;)denotes the “leave-one-out” kernel estimator
of 17,_;(X;). This leads to the fact that the search space is only
a part of the whole spaces for the grid parameter values. In
Section 4.5, some experiments will be conducted to illustrate
the use of the grid search method in choosing bandwidth.

3.4 Algorithm Design

In the proposed imputation approach, the ith missing value
is denoted by MYV; and the imputed value of MV, in
tth iteration imputation is regarded as MV;'. The algorithm
is designed in Fig. 1.
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From the above algorithm, all the imputed values are
used to impute subsequent missing values, i.e., the (¢ 4+ 1)th
(t > 1) iteration imputation is carried out based on the
imputed results of the tth imputation, until the filled-in
values converge or begin to cycle or satisfy the demands of
the users.

In the first iteration of imputation in the above algorithm,
all the missing values are imputed using the mean for
continuous attributes (the mode for discrete ones). Using
the mean (or mode) of an attribute to replace missing values
is a popular imputation method in machine learning and
statistics. However, Brown [8] thought that imputing with
the mean (or mode) will be valid if and only if the data set is
chosen from a population with a normal distribution. This
is usually impossible for real applications because the real
distribution of a data set is not known in advance. On the
other hand, Rubin [31] demonstrated that a single imputa-
tion cannot provide valid standard errors and confidence
intervals, since it ignores the uncertainty implicit in the fact
that the imputed values are not the actual values. Therefore,
running extra iteration-imputations based on the first
imputation is reasonable and necessary for better dealing
with the missing values.

Since the second iteration of imputation, each of iteration-
imputation is carried out based on former imputed results
with the nonparametric kernel estimator. During the
imputation process, when the missing value MV} is
imputed based on (10) or (11), all other missing values are
regarded as observed values, ie., MV, = ]V[Vf‘l, pE Sy,
p=1,...,m,p#i. Inparticular, MV;}' = mean (5"in Y) if the
target variable Yis a continuous variable, MV;' = mode (S"in
Y) if Y is a discrete one in this algorithm. The iteration-
imputation for missing continuous attributes will be
terminated when the filled-in values converge or begin to
cycle (details about cycle will be presented in Section 4.1).
For discrete missing values, the imputation algorithm will
be terminated if |C'4; — CA;_1| > ¢ based on the principle of
the parameter iterative algorithm EM [13], where ¢ is a
nonnegative constant specified by users; the classification
accuracy for the ¢tth imputation is denoted by C'A4;. Then the
time of iteration of the algorithm is ¢ for imputing a discrete
missing attribute because the first imputation has been
finished.

4 EXPERIMENTAL STUDY

We considered several data sets from real applications and
data sets taken from the UCI data set in [7] (see Table 1) in
this section.

The first four data sets are used in Sections 4.1 and 4.4,
and the remaining data sets for Sections 4.2 and 4.3. None of
these data sets have missing values. The selected data sets
let us compare the imputed values with their real values.
For these complete data sets, missed values are generated at
random so as to systematically study the performance of the
proposed method. The percentage of missing values (the
“missing rate”) was fixed at 10, 20, 30, 50, and 80 percent for
each data set. For comparison with the proposed method
(denoted by Mixing), four selected imputation methods are
the nonparametric iterative single-kernel imputation meth-
od with a polynomial kernel (denoted by Poly), a nonpara-

TABLE 1
Databases Used in Our Experiments

Name Y Attri.Type | #(attr.) | #(ins.)
Auto-mobile | C 15/10/1 26 205
Auto-mpg C 4/1/3 8 398
HHG1984 C 2/1/3 6 896
Housing C 12/1/1 14 506
Abalone D(29) | 7/1/0 8 4177
AC D(10) | 2/1/4 7 6000
Annealing D(6) 6/29/3 38 798
CMC D(3) 2/3/4 9 1473
Pima D(2) 6/0/2 8 768
Vowel D(11) 10/0/0 10 528

Each column represents the name of the database, dependent attribute
(C: continuous, D(29): discrete attribute has 29 classes), the type of
independent attribute (continuous/un-ordering/ordering), the number of
independent attributes, and the number of instances, respectively.

metric iterative single-kernel imputation method with the
RBF kernel (RBF), the traditional kernel nonparametric
missing value imputation method from [38] (Normal), and
the conventional frequency estimator (FE), setting A = 0 in
the experiments.

For the missing target value in the data set, they are first
imputed with mean (or mode) method for continuous (or
discrete) variable. From the second iteration of imputation,
previously imputed missing values are regarded as known
values and used in next iteration of imputation. This leads
to the utilization of observed information in incomplete
instances. The imputation process is stopped when the
imputation results satisfy the conditions presented in
Section 3.4.

4.1 Y, Is a Continuous Variable

The first data set is the balanced panel data from [43] and is
indicated as HHG (1984) in the paper. The other three data
sets were obtained from UCI, i.e., Auto-mpg, Housing, and
Automobile.

4.1.1 Convergence of the Imputed Values

An important practical consideration with the iterative
imputation methods is to determine at which point addi-
tional iterations have no meaningful effect on the imputed
values, i.e., how to judge the convergence of the algorithm.
Each iteration of EM algorithm is guaranteed [13] to be
nondecreasing in maximum likelihood, thus, EM algorithm
converges to a local maximum in likelihood. However, it is
difficult to make similar guarantees for nonparametric
methods. Caruana [9] concluded that the average distance
(i.e., the attribute values move from successive iterations
when the algorithm is applied to the pneumonia data set)
drops to zero, means that no missing values have changed
and that the method has converged in the parametric model.
But in this case, motions of nonparametric models do not
drop all the way to zero, indicating that the algorithm
converged to a cycle. However, Caruana [9] and [42] argued
that cycles are rare with parametric methods if density
calculations are exact, and that they are more likely in the
nonparametric models, but the nonparametric method has
never diverged in their experiments.
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TABLE 2
The Results of the Iterative Imputation Times (Denoted by T))
and the Mean for the Imputed Values After Convergence
(Denoted by V) for the Data Set HHG (1984)
at Different Missing Rates

10% 20% 30% 50% 80%

T \4 T \ T \ T \ T N
Mixing 8 0.085 | 10 [ 0.098 14 | 0128 | 17 | 1.27 | 20 | 1.53
Poly 10 | 0.103 | 13 | 0.138 19 ] 0167 [ 21 | 1.79 | 25 | 211
RBF 11 | 0107 | 14 | 0.14 20 | 0174 | 21 | 195 | 29 | 2.86
Normal | 14 | 0.121 | 20 | 0.1851 | 28 | 0.219 | 27 | 2.77 | 30 | 3.01
FE 13 | 0117 | 17 | 0.163 22 | 0197 | 23 | 226 | 29 | 2.59

Here, a stopping criterion is designed for nonparametric
iterations. With ¢t imputation times, there will be (¢ — 1) chains
of iterations. Note that the first imputation won’t be
considered when talking about the convergence because
the final results will be decided mainly by imputation from
the second imputation. Of course, the result in the first
imputation always generates, to some extent, effects for the
final results. This will be discussed in future work. Since the
number of individual components of missing values is high, it
is not feasible to monitor convergence for every imputed
missing value. Schafer [32] considered that since convergence
rates are closely related to missing information, it makes
sense to focus on parameters (in our paper, it will be variance
and mean of the imputed values. Obviously, we can also use
other parameters, such as distribution function, or quantile)
for which the fractions of missing information are high.

Assuming that the mean and variance of three successive
imputations are M, M1, Mo, and Vj, Vig, Vg, (1 <1<
t + 2), respectively,

If

Vi
— 1, and — < e.
1+2 1+2

(14)

It can be inferred that there is little change in
imputations between the first and third time and one can
stop iterating without substantial impact on the resulting
inferences. Unlike the converged condition in the EM
algorithm, in this paper, it first summarizes a stopping
strategy by using terminology such as “satisfying a
convergence constraint” rather than “achieving conver-
gence” to clarify that convergence is an elusive concept
with iterative imputation. And the variability across the
first third of the chains is compared with the variability
across the last third of the chains. The middle one in each
of the three iterations is ignored to avoid dependence
between two segments in each iteration imputation, since
consecutive iterations tend to be correlated.

TABLE 3
The Results of T"and V' After Convergence for the Data Set
Housing at Different Missing Rates
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TABLE 4
The Results of 7' and V' After Convergence for the Data Set
Auto-mpg at Different Missing Rates

10% 20% 30% 50% 80%

T \Y T \Y% T \Y% T \Y% T \Y
Mixing 4 0022 | 5 0.030 | 7 0.032 | 12 | 0.045 | 19 | 0.179
Poly 6 0041 | 8 0.068 | 10 | 0.082 | 14 | 0.091 | 24 | 0.256
RBF 6 0.040 | 9 0.070 | 10 | 0.083 | 13 | 0.085 | 23 | 0.233
Normal | 10 | 0.095 | 16 | 0.139 | 19 | 0.155 | 15 | 0.176 | 26 | 0.589
FE 8 0.056 | 12 | 0.081 | 15 | 0.115 | 13 | 0.126 | 22 | 0.429

Compared with the method used for taking the con-
vergence of the algorithm into account in [9], this paper
considers the mean of the imputed values as well as taking
the variance of the imputed values into account. Caruana
[9] only considered the former parametric. That shows the
convergence condition in the proposed approach is stronger
than the existing one. On the other hand, the parameter
(such as mean or variance) of the imputed values in an
iteration of imputation is partitioned into three chains and
given up considering the second part. Caruana [9] took all
the imputed values in one imputation into account.
Obviously, the proposed approach can efficiently avoid
dependence on imputed values.

Tables 2, 3, 4, and 5 show the experimental results,
including the iterative times and the average value after
these five algorithms have converged for the data sets HHG
(1984), Housing, Auto-mpg, and Automobile, with missing
rates of 10, 20, 30, 50, and 80 percent, respectively. The
iterative times after the algorithm has converged for four
nonparametric methods (i.e., Mixing, Poly, RBE, and FE) for
mixed independent attributes are lesser than the Normal
algorithm that deals with only continuous independent
attributes. Moreover, they have better efficiency in conver-
gence than the Normal algorithm because the average
distance is closer to zero than that of the Normal algorithm.
This demonstrates that the proposed approach is signifi-
cantly better than the other methods in these experiments.

4.1.2 RMSE and Correlation Coefficient

Below, the RMSE is used to assess the predictive ability
after the algorithm has converged:

RMSE = (15)

where ¢; is the original attribute value; €; is the estimated
attribute value, and m is the total number of predictions.
The larger the value of the RMSE, the less accurate the

TABLE 5
The Results of 7' and V' After Convergence for the Data Set
Automobile at Different Missing Rates

10% 20% 30% 50% 80% 10% 20% 30% 50% 80%

T \ T \ T \ T \ T \ T|V T|V T \Y T \Y% T \Y%
Mixing 5 0.048 | 6 0.070 | 10 | 0.096 | 15 [ 0351 | 17 | 0.958 Mixing 3 10018 | 5 | 0021 | 8 0.030 | 10 | 0.049 | 15 | 0.097
Poly 8 0.061 | 10 | 0.088 | 16 | 0.120 | 18 | 0.563 | 21 | 1.235 Poly 4 | 0019 | 6 | 0025 | 10 | 0.035 | 14 | 0.085 | 17 | 0.143
RBF 9 0.065 | 10 | 0.091 | 15 | 0.119 | 18 | 0.694 | 20 | 1.225 RBE 4 | 0018 | 5 | 0022 | 12 | 0.034 | 16 | 0.075 | 18 | 0.126
Normal | 14 | 0.095 | 18 | 0.165 | 23 | 0.201 | 23 | 0.854 | 27 | 1.653 Normal [ 5 | 0.025 | 8 | 0.027 | 13 | 0.060 | 19 | 0.153 | 24 | 0.236
FE 12 | 0.071 | 14 | 0129 | 18 | 0.165 | 19 | 0.679 | 22 | 1.265 FE 4 10020 )5 ] 0024 | 11 | 0.051 | 16 | 0.125 | 20 | 0.224
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TABLE 6
The RMSE (Denoted by R) and Correlation Coefficient
(Denoted by CC) After Convergence for the Data Set HHG

(1984)

10% 20% 30% 50% 80%

cC R CcC R CcC R CcC R CcC R
Mixing 0.98 0.351 0.96 0.562 0.93 0.701 0.92 1.952 0.85 3.257
Poly 0.97 0.532 0.94 0.722 0.91 0.982 0.90 2427 0.83 4.526
RBF 0.97 0.482 0.93 0.730 0.90 1.003 0.90 2.533 0.82 5.327
Normal 0.96 0.924 0.90 1.575 0.86 1.928 0.88 3.895 0.80 8.956
FE 0.95 0.678 0.91 0.911 0.89 1.625 0.89 3.452 0.81 7.622

prediction is. At the same time, the correlation coefficient
between the actual and predicted values of missing
attributes is calculated after convergence.

Tables 6, 7, 8, and 9 show the results: the predictive
accuracy (through the measure of RMSE) and the correla-
tion coefficient between the actual and predicted values of
missing attributes after these five algorithms have con-
verged for the data sets HHG (1984), Housing, Auto-mpg,
and Automobile, with missing rates of 10, 20, 30, 50, and
80 percent, respectively.

These results demonstrate that the new approach com-
pletely dominates the other four algorithms, especially when
the missing rate is moderate, such as 20 percent, since the
proposed approach is nonparametric, with mixture kernels,
and for mixed attributes during the imputation process.

The four algorithms (i.e., Mixing, Poly, RBF, and FE) that
handle the mixed independent attributes outperform the
traditional algorithm, Normal, in terms of the RMSE and
correlation coefficient, under different missing rate cases on
these three real data sets. The reason is that the Normal
algorithm cannot handle the discrete independent attributes
well because it treats the discrete attributes as continuous,
and it will further aggravate the “curse of dimensionality”
when the number of continuous attributes increases.

Compared with the four algorithms (dealing with the
mixed independent attributes) in Tables 6, 7, 8, and 9, for all
kinds of situations in the experiments, the results of Mixing,
Poly, and RBF are better than that of the FE algorithm in
terms of the RMSE and correlation coefficient. When \ = 0,
the estimator in (7) and (8) will become the conventional
frequency estimator method to deal with the discrete
variables. However, the FE algorithm has a major weakness
because the number of discrete cells may exceed the sample
size. Therefore, it does not have enough observations in each
cell for building a nonparametric estimator. The estimators
for other three algorithms smooth the discrete variables to
avoid this problem, as Racine and Li [29] argued, and they
can reduce the variance significantly by a trade-off between

TABLE 7
The RMSE and Correlation Coefficient (Denoted by CC) After
Convergence for the Data Set Housing

TABLE 8
The RMSE and Correlation Coefficient (Denoted by CC) After
Convergence for the Data Set Auto-mpg

10% 20% 30% 50% 80%

cC R cC R cC R cC R cC R
Mixing 0.97 0.495 0.95 0.651 0.94 0.832 0.92 2.682 0.88 7.530
Poly 0.95 0.622 0.94 0.900 0.91 1.433 0.90 3.267 | 0.88 9.102
RBF 0.95 0.624 0.93 0.902 0.90 1.451 0.90 2.962 0.88 8.125
Normal 0.92 1.204 0.88 2.020 0.87 | 2.826 0.85 4.176 0.82 9.983
FE 0.94 0.958 0.92 1.623 0.89 2.053 0.87 | 3.269 0.86 9.624

bias and variance, resulting in performance much better than
the frequency estimator for finite samples.

Considering the results of Mixing, RBF, and Poly, all the
results of the Mixing algorithm are better than the other
two. This means that using mixture kernels in nonpara-
metric kernel estimation can provide much better learning
capacity and generalization ability than those estimators
only using either the local or global kernels. On the other
hand, the performance of most situations in the Polynomial
kernel is evidently better than the ones in RBF. It can be
concluded that a global kernel, such as the Polynomial
kernel, is very good at capturing general trends and
extrapolation behavior, and only a little of a local kernel
(such as the RBF kernel) needs to be added to the global
kernel to obtain a good combination of interpolation and
extrapolation abilities in the mixture kernel.

4.2 Y, Is Discrete Variable

The UCI data sets “Abalone,” “Pima,” “Vowel,” “CMC,”
“Anneal,” and “AC” in which the class attribute is discrete
are applied to the above five methods to compare the
performances in terms of classification error rate and paired
t-test.

Tables 10 and 11 show the results: the iterative times and
predictive accuracy with respect to classification error rate
after these five algorithms have terminated on six data sets.
Similar to the results for imputing continuous missing values,
the results of the Mixing algorithm for imputing discrete
missing values are better than the other four algorithms in all
respects, such as iterative time or predictive error rate. For
example, all the algorithms that considered discrete inde-
pendent attributes achieved from 2.6 to 41.5 percent
improvement, with respect to classification errors, over the
conventional Normal algorithm. These three algorithms
(Mixing, Poly, and RBF) averagely outperform the FE
algorithm by about 8-16 percent. Most of the results of Poly
are better than those of the RBF. The best method, the Mixing
algorithm, outperforms the Poly, RBF, FE, and Normal

TABLE 9
The RMSE and Correlation Coefficient (Denoted by CC) After
Convergence for the Data Set Automobile

10% 20% 30% 50% 80% 10% 20% 30% 50% 80%

CC R CC R CC R CC R cC R CC R CC R CC R CC R CC R
Mixing 0.97 0.502 | 0.96 0.699 0.94 0.973 0.90 1.452 0.86 3.965 Mixing 0.98 0.475 0.98 0.754 0.96 0.959 0.92 1.759 0.89 2.636
Poly 0.95 0.673 0.94 0.920 0.92 1.257 0.88 2.694 0.83 | 4.256 Poly 0.97 0.495 0.96 0.895 0.94 1.257 0.90 2.524 0.88 3.255
RBF 0.95 0.672 0.93 0.930 0.91 1.258 0.88 2.753 0.83 | 4.858 RBF 0.97 0.485 0.96 0.786 0.95 1.125 0.91 2.548 0.86 3.628
Normal 0.93 0.145 0.89 2.519 0.87 | 2.907 0.86 3.562 0.81 5.638 Normal 0.95 0.502 0.94 1.204 0.92 1.966 0.88 4.257 | 0.82 5.265
FE 0.94 0.903 0.92 1.391 0.88 1.868 0.87 | 3.129 0.82 | 4.956 FE 0.96 0.500 0.95 1.053 0.95 1.026 0.91 3.528 0.88 4.256
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TABLE 10
lterative Times After the Algorithms Have Finished the Iterative Imputation After Convergence for the Six Data Sets

Abalone Pima Vowel

10% | 20% | 30% | 50% | 80% | 10% | 20% | 30% | 50% | 80% | 10% | 20% | 30% | 50% | 80%
Mixing | 6 8 11 18 19 10 13 15 18 25 8 10 13 18 25
Poly 7 10 12 19 21 12 14 17 22 27 10 13 17 21 29
RBF 7 10 13 21 21 12 15 17 20 27 10 12 17 20 31
Normal | 10 15 18 24 26 16 19 22 25 29 13 16 20 26 32
FE 8 11 16 20 22 14 19 20 24 28 12 16 20 23 30

CMC Anneal AC

10% | 20% | 30% | 50% | 80% | 10% | 20% | 30% | 50% | 80% | 10% | 20% | 30% | 50% | 80%
Mixing | 8 9 12 16 22 10 11 12 18 22 4 5 7 10 12
Poly 9 12 15 17 25 12 14 16 21 26 5 5 8 14 17
RBF 10 12 16 19 29 11 14 17 20 25 5 6 8 13 16
Normal | 12 17 19 26 29 14 15 18 24 29 6 8 10 17 20
FE 10 15 17 20 26 12 14 15 19 24 5 7 9 15 18

TABLE 11

Classification Error Rate After the Algorithms Have Finished the lterative Imputation After Convergence for the Six Data Sets

Abalone Pima Vowel

10% | 20% | 30% | 50% | 80% | 10% | 20% | 30% | 50% | 80% | 10% | 20% | 30% | 50% | 80%
Mixing | 0.208 | 0.235 | 0.298 | 0.356 | 0.521 | 0.116 | 0.131 | 0.167 | 0.365 | 0.489 | 0.145 | 0.169 | 0.193 | 0.254 | 0.425
Poly 0.232 | 0.259 | 0.316 | 0.385 | 0.595 | 0.139 | 0.158 | 0.194 | 0.374 | 0.563 | 0-152 | 0.180 | 0.227 | 0.298 | 0.485
RBF 0.232 | 0260 | 0316 | 0395 | 0.624 | 0.139 | 0.159 | 0.199 | 0.401 | 0.625 | 0.152 | 0.195 | 0.230 | 0264 | 0.457
Normal | 0.284 | 0.305 | 0.351 | 0.415 | 0.675 | 0.172 | 0.223 | 0.251 | 0.425 | 0.685 | 0-187 | 0229 | 0.264 | 0.312 | 0510
FE 0.246 | 0268 | 0332 | 0399 | 0612 | 0.154 | 0.172 | 0.215 | 0.405 | 0.647 | 0.182 | 0.211 | 0.253 | 0.304 | 0.468

CMC Anneal AC

10% | 20% | 30% | 50% | 80% | 10% | 20% | 30% | 50% | 80% | 10% | 20% | 30% | 50% | 80%
Mixing | 0127 | 0.153 | 0.176 | 0.247 | 0.341 | 0.145 | 0.194 | 0.254 | 0.351 | 0.415 | 0.085 | 0.097 | 0.106 | 0.356 | 0.459
Poly 0.141 | 0.159 | 0.196 | 0.289 | 0452 | 0.192 | 0.205 | 0.296 | 0.384 | 0.512 | 0.096 | 0.125 | 0.156 | 0.445 | 0.524
RBF 0.146 | 0.161 | 0.198 | 0262 | 0.595 | 0.187 | 0.226 | 0.312 | 0421 | 0576 | 0.089 | 0.121 | 0.125 | 0.478 | 0.564
Normal | 0176 | 0.227 | 0.243 | 0.287 | 0.875 | 0.212 | 0.294 | 0.335 | 0.445 | 0.609 | 0.112 | 0.148 | 0.149 | 0.511 | 0.785
FE 0.163 | 0.202 | 0.231 | 0.268 | 0.612 | 0.157 | 0.276 | 0.268 | 0.402 | 0.593 | 0.094 | 0.135 | 0.136 | 0.495 | 0.658

methods by about 4-14 percent, 7-18 percent, 16-39 percent,
and 18-41.5 percent, respectively, with respect to classifica-
tion accuracy.

We analyze the statistical significance of differences in
classification errors between our method (i.e., Mixing) and
the compared algorithms (the left four algorithms) based on
paired t-tests at the 95 percent significance level. The
significance is computed for each of the five amounts of
missing values and each pair compared algorithm based on
average classification errors across the six data sets. The
results are presented in Table 12. The results show that our
algorithm can more improve the classification errors even if
with high missing rate.

4.3 Experimental Results between Single and
Iterative Imputations

From Sections 4.1 and 4.2, the mixture-kernel-based non-

parametric iterative imputation method outperforms the

other methods under the assumption of iterative imputation.

In particular, the proposed approach is the best one when the

missing rate is moderate, such as 20 percent. This section will

experimentally demonstrate the advantages of the proposed
algorithm over single imputation about the constructed
confidence interval for continuous variables. The results
about classification accuracy will be presented by comparing
the proposed approach with multiple imputation in Sec-
tion 4.4. Due to the space limitation, only the results with a
missing rate of 20 percent are presented in these two sections.

TABLE 12
Statistical Significance of Difference Algorithm Mixing and the
Other Compared Algorithms, i.e., Poly, RBF, Normal, and FE,

Respectively
10% 20% 30% 50% 80%
Mixing ~Poly +(21) | ++27) | +21) | 1408) | ++0.21)
Mixing ~RBF +(19) | ++29) | ++2.0) | 1107) | ++(0.39)
Mixing ~Normal | ++25) | ++34) | ++6.1D | 1115 | ++0.92)
Mixing ~FE ++(2.0) | ++32) | ++25) | 1412) | ++0.15)

Note that “++” indicated the proposed algorithm that gives statistically
significantly better classification errors for a given amount of missing
values; positive t-value indicates that the classification errors for the
proposed algorithm were better.
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At first, all missing values will be imputed based on the
single imputation method, nonparametric mixture-kernel-
based. So, (10) and (11) are revised as follows:
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Figs. 2, 3,4, 5, 6, and 7 show the results for classification
accuracy after the proposed algorithm has converged for the
data sets “Abalone,” “Pima,” “Vowel,” and “CMC,” with
missing rates of 20 percent. The results show that the
performance of the proposed approach in the first imputa-
tion is worse than the result for single imputation. This is
because the missing values are imputed by mean or mode in
the first imputation in the proposed approach. Since the
second imputation, most of the performances of the iterative
method show that the mixture-kernel-based nonparametric
iterative imputation method performs better than the single-
imputation methods. The exception is found in data sets
CMC and Pima. However, the left results in the other
iterations are better than the results of single imputation in
these two data sets.
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4.4 Experimental Results between Multiple and
Iterative Imputations

At first, the missing values were multiple imputed, based
on [31], [4] with (16) or (17), and our method with (10) or
(11), and the imputation times were 10, 6, and 5 for data set
HHG (1984), Housing, and Auto-mpg because these
iterative times allowed the proposed algorithm to converge.
Next, a (1 — «) percent interval estimate is constructed for
mean based on [31], [4], where « is the significance level,
and « = 0.05 throughout the paper (other values for a can
be chosen in practice). The performances of the multiple
imputation are compared with the proposed algorithm
according to their coverage probabilities (CPs) and average
lengths of confidence intervals (denoted by AL) based on
our constructed confidence intervals when the missing rate
is 20 percent in these three data sets, and the results are
shown in Table 13. These results demonstrate that our
iterative imputation method performs better than the
Multiple Method for the AL of confidence interval or
convergence probabilities.

4.5 Experimental Selection for Bandwidth

The four coefficients, A, p, q, and o, have simultaneously
been considered in order to get optimal results. It is very
difficult for our algorithm to get an optimal result for so
many coefficients at the same time because of the
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TABLE 13
AL or CP of Confidence Interval between Multiple Imputation
Methods and lterative Imputation Method After Convergence for
the Four Data Sets

HHG(1984) Housing Auto-mpg Auto-Mobile

AL | CP AL | CP AL | CP AL cp
Iterative | 7.62 | 93.96 | 321 | 9456 | 2.95 | 95.02 | 5.88 | 94.59
Multiple | 825 | 93.50 | 3.95 | 9447 | 3.20 | 94.52 | 9.26 | 93.65

exponential time complexity. Fortunately, Jordan [20]
demonstrated experimentally that only a “pinch” of a local
kernel, (i.e.,, 1 — p = 0.01), needs to be added to the global
kernel in order to obtain a combination of good interpola-
tion and extrapolation abilities. Moreover, our experimental
results show that using higher degrees of polynomials or
larger widths of RBF kernels did not produce better results.

In the experiments, the coefficients p, q, and o are
combined with the coefficient A so as to optimize the AMISE
in sections for selecting optimal bandwidth, including
nonordering attributes and ordering attributes. A grid
search is used to optimize one parameter at a time. The
important thing is to limit the search space in order to
decrease the complexity of the algorithm.

First, the value of ¢ is limited. If the data are in a (0, 1)
scaled input space, a pure RBF-kernel with o > 0.4 behaves
like a lower degree polynomial in the known learning
space. That is precisely what it does not want when using
the mixture kernel, because the polynomial part will
consider the global behavior. The RBF-kernel part is
specifically needed when modeling the local behavior. On
the other hand, using one ¢ that is too small will result in
overly complex models that also model the noise. Therefore,
it is appropriate that o be set between 0.15 and 0.3 in the
proposed approach. Second, as a global kernel, the
polynomial kernel is very good at capturing general trends
and extrapolation behavior. The extrapolation behavior of
the model becomes erratic and shows sudden increases or
decreases in the response surface when the value of q is too
high. So, a lower degree for the polynomial kernel may be
chosen. In the experiments, d > 2 is seldom used, and q is
usually set to 1 or 2. Third, the choice of p is related to how
much of the local behavior needs to be modeled by the RBF
kernel. Since the RBF-kernel is a very powerful kernel for
modeling local behavior, it will not need much of its effects
in order to see a huge improvement in the model. In the
experiments, it is better if p is a value between 0.95 and 0.99.

Another question is how to find the best combination.
The best approach, given the already limited search space,
is to do a grid search. In the proposed approach, the value
of o is changed from 0.1 to 0.3, the degree of p is changed
with 1 and 2; and the value of p is changed from 0.95 to 0.99.
Once a combination is obtained, e.g.,, 0 =02, ¢=2,
p = 0.95, they are fixed, and the value of X is changed until
the best AMISE is searched. The best AMISE can be
obtained by scanning all the combinations of p, q, o, and
A, where the complexity is reduced compared with the
original one due to the limited search space.
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5 CONCLUSIONS AND FUTURE WORK

In this paper, a consistent kernel regression has been
proposed for imputing missing values in a mixed-attribute
data set by extending the method in [29]. The mixture-
kernel-based iterative nonparametric estimators are pro-
posed against the case that data sets have both continuous
and discrete independent attributes. It utilizes all available
observed information, including observed information in
incomplete instances (with missing values), to impute
missing values, whereas existing imputation methods use
only the observed information in complete instances (with-
out missing values). The optimal bandwidth is experimen-
tally selected by a grid search method. The experimental
results have demonstrated that the proposed algorithms
outperform the existing ones for imputing both discrete and
continuous missing values.

In future, we plan to further explore global or local
kernel functions, instead of the existing ones, in order to
achieve better extrapolation and interpolation abilities in
learning algorithms.
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