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a b s t r a c t

The treatment of incomplete data is an important step in the pre-processing of data. We propose a novel

nonparametric algorithm Generalized regression neural network Ensemble for Multiple Imputation

(GEMI). We also developed a single imputation (SI) version of this approach—GESI. We compare our

algorithms with 25 popular missing data imputation algorithms on 98 real-world and synthetic

terms of (i) the accuracy of output classification: three classifiers (a generalized regression neural

network, a multilayer perceptron and a logistic regression technique) are separately trained and tested

on the dataset imputed with each imputation algorithm, (ii) interval analysis with missing observations

and (iii) point estimation accuracy of the missing value imputation. GEMI outperformed GESI and all the

conventional imputation algorithms in terms of all three criteria considered.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Incomplete data is an unavoidable problem when dealing with
real world datasets. Missing values result in less efficient
estimates because of the sample bias, and the reduced sample
size. Further, most data mining algorithms cannot work directly
with incomplete datasets. To make the matter worse, many real
world problems are high dimensional. If missing data are
randomly distributed across cases, we could even end up with
no valid cases in the dataset, because each of them will have at
least one missing data element. Hence, missing value imputation
is widely used, by necessity. Imputation refers to the replacement
of missing data with statistically plausible values. However, a
naı̈ve or unprincipled imputation may create more problems than
it solves. A poor imputation strategy may result in distorted
created samples that can mislead classification, prediction and
clustering techniques. The algorithm used to generate imputed
values must be ‘‘correct’’, that is, it must accommodate the
ll rights reserved.
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necessary predictor variables and their associations. Rubin
contends that good imputation methods use all information
related to missing cases [1].

Missing values occur when values are not recorded for all
attributes. Little and Rubin [2] and Schafer [3] classify non-
random missing data into three categories: (i) missing completely
at random (MCAR), (ii) missing at random (MAR), and (iii) missing
not at random (MNAR). MCAR occurs when the data which is
missing does not depend on the values of any variable in the
dataset. Possible reasons for MCAR include manual data entry
procedure, incorrect measurements, equipment error, changes in
experimental design, accidental skipping of a question or
questions, etc. MAR occurs when the probability of missing data
on a particular variable x1 (say, smoking status) depends on other
observed variables ðx2,x3,. . .,xnÞ (say, age), but not on x1 itself. For
example, teenagers are less likely to answer a question on
smoking habits. MNAR occurs when the probability of missing
data on particular variable x1 depends on the variable x1 itself. For
example, a question regarding smoking habits is less likely to be
answered when the respondent is a smoker. MCAR and MAR data
are recoverable, whereas MNAR is not.

Missing data imputation is challenging because possible biases
exist since the subjects with missing values are often system-
atically different from the subjects without missing values [1].
These biases are difficult to eliminate since the precise reasons for
missing data are usually not known. Hence, imputations should
reflect the full uncertainty about missing values. However,
the determination of uncertainty is not straightforward. If the
uncertainty is underestimated, the classifier trained with the
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imputed dataset will overfit the training data and produce
erroneous outputs. To fully account for all sources of variation,
it is essential to allow for sampling variation and imputation
variation in the imputation. Sampling variation occurs when we
sample a population and estimate a parameter from the sample
rather than from the population of interest as a whole. If we
would have taken a different sample from the population, we
would have obtained different parameter estimates. Imputation
variation is similar. Missing values are replaced by the best
surrogate values. However, an imputed value is just a guess at the
actual value; it is not an actual (observed) value. Imputation
variation arises from the fact that there is uncertainty regarding
the actual value of the missing data. Imputation can also lead to
an overestimation of the uncertainty of the estimate. If the
uncertainty is overestimated, the classifier trained with the
imputed dataset will underfit the training data and exhibit poor
prediction capability. Procedures for imputation that incorporate
appropriate variability among imputations within a model are
called ‘‘proper’’ [1].

A major focus of research is to develop an imputation
algorithm that preserves the multivariate joint distribution of
input and output variables. Much of the information in these joint
distributions can be described in terms of means, variances and
covariances. If the joint distributions of the variables are multi-
variate normal, then the first and second moments completely
determine the distributions. On average, the imputation should
give reasonable predictions for the missing data, and variability
among them should reflect an appropriate degree of uncertainty.
An imputation model must preserve all important associations
among variables in the dataset, including interactions.

We propose a novel nonparametric multiple imputation (MI)
algorithm. The remainder of this paper is organized as follows: a
brief review of previous work in Section 2, details of novel
algorithms in Section 3, details of how we assess the new
algorithms in Section 4, results and discussion in Section 5,
followed by summary and conclusions in Section 6.
2. Review of existing techniques

Missing data handling methods can be broadly classified into
two categories: deletion and imputation. Listwise deletion [4]
drops an entire case (subject) if a value of any explanatory
variable is missing. This is a straightforward process, but cases
with missing values should not simply be ignored because it will
reduce sample size and will induce systematic selection bias.

Imputation methods replace missing values with values
estimated from the available data. The advantage of imputation
is that it uses ‘expensive to collect’ data, that would otherwise be
discarded. Imputation techniques can be split into procedures
grounded on non-model vs. model-based approaches. The end
products of non-model based approaches are surrogate values to
replace missing data. In contrast, the end products of model based

methods are the estimated values of model parameters, which in
turn are used to impute missing values.

The most commonly used non-model based procedures are zero
imputation [4] and mean substitution [5]. In zero imputation,
missing values are always replaced by a zero value. This method is
simple and provides all cases with complete data. However, this
method does not utilize any information about the data. The
integrity and usefulness of the data can be jeopardized as a result.
Mean substitution is an improvement over zero imputation. It
replaces missing values of a given variable with the mean value
(unconditional mean) for that variable. Its main advantage is that
it produces ‘‘internally consistent’’ sets of results. However, this
method does not take into account the relationship among
variables and can distort the multivariate relationships. Mean
substitution artificially reduces variance. Severe biases can result
when the missing data characteristic is MAR but not MCAR.

The most sophisticated techniques for the treatment of
missing values are model-based. These methods consider inter-
relations among variables. The model-based techniques can be
classified into two categories: explicit model based algorithms
and implicit model based algorithms. Explicit models create a
parametric representation of the dataset. These are based on a
number of assumptions. A statistical model provides accurate
estimates only when model assumptions are satisfied. If the
assumptions are violated, the validity of imputation values
derived from applying these techniques may be in question.
Commonly used explicit model based methods include expecta-
tion maximization algorithms (EM) [6] and data augmentation
(DA) algorithm or Markov chain Monte Carlo (MCMC) [7].

Implicit model based algorithms often have semi-parametric or
non-parametric flavours. These methods make few or no
distributional assumptions about the underlying phenomenon
that produced the data. Hot deck imputation methods employing
best match (donor) values are the most popular implicit model
based algorithm. Hot deck imputation procedures replace missing
values on incomplete records using values from similar, but
complete records of the same dataset. Past studies suggest that
this approach is promising [5]. There are two popular variants of
hot-deck imputation algorithm: K-nearest neighbour (KNN)
imputation algorithm [8] and weighted K-nearest neighbour
imputation algorithm (WKNN) [9]. A major limitation of these
methods is the difficulty in defining what is ‘similar’. Recently a
number of studies applied multilayer perceptrons (MLP) [10],
radial basis function networks (RBFNs) [11], and generalized
regression neural networks (GRNNs) [12] to impute missing
values. However, these techniques (except for GRNNs) are quite
complicated, with many free parameters that can affect the
quality of the imputation. Estimating all parameters simulta-
neously induces errors. In contrast to other neural networks,
GRNN has only one free parameter, but GRNN leads to potentially
severe curse of dimensionality effects [13]. The curse of
dimensionality is a serious issue, especially when the missing
value percentage is high.

A few studies have explored ensemble learning for missing
data imputation [14]. Neural network ensemble is a machine
learning paradigm where multiple neural networks (base lear-
ners) are trained to solve the same problem. The ensemble
network can be either homogeneous or heterogeneous. The
heterogeneous ensemble network obtains the overall output from
different independent network structures, whereas the homo-
geneous ensemble network obtains the overall output from
similar independent network structures. Methods of homoge-
neous ensemble model generation basically rely on varying the
parameters related to the design and the training of neural
network. Typically, an ensemble (homogeneous and heteroge-
neous ensembles) is constructed in two steps. In the first step, a
large set of candidate base classifiers (neural networks) is
generated and then an optimal subset of base classifiers, from
the base classifiers pool, is selected to form the ensemble of
classifiers. To ensure diversity in the homogeneous ensemble set,
the random sub-spacing strategy is used. In the random subspace
method, many different features subsets are randomly chosen for
producing candidate component classifiers and then base classi-
fiers are iteratively refined using sequential hill-climbing or
stochastic techniques. On the other hand, for heterogeneous
model generation, neural network ensemble members are created
by using different neural network types. After the base classifiers
are constructed and refined, an optimal subset of ensemble
members are selected from the pool of candidate classifiers. An
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effective (homogeneous and heterogeneous) ensemble should
consist of high-accuracy classifiers that disagree on their predic-
tions. Popular methods for selecting an optimal subset of
ensemble members include principal component analysis (PCA)
[15], correlation analysis [16], genetic algorithm (GA) [17],
particle swarm optimization (PSO) [18], and hill-climbing (HC)
[19]. However, these techniques are not ideal techniques for
constructing base classifiers and selecting a subset of ensemble
members, since they are plagued by local minima and premature
convergence problems. At the second step of ensemble construc-
tion, the predictions of the learned models are integrated. The
most popular combination schemes are majority and weighted
voting [20]. The majority voting approach involves averaging the
predictions of the individual networks. Majority voting rule
constitutes a very appealing method due to its conceptual and
implementational simplicity. However, this approach treats each
member equally, i.e., it does not stress ensemble members that
can make more contribution to the final generalization. The
weighted voting approach is an improvement over the majority
voting approach. In weighted voting approach, the total weight is
one and each member of the ensemble is entitled to a portion of
this total weight according to their performance. The ensemble
decision on a new instance is obtained by a weighted vote of all
ensemble members. Weights are adjusted using iterative predic-
tion-error minimization method. The popular weight optimiza-
tion methods include gradient descent algorithm [21], GA [22]
and PSO [23]. A major limitation of conventional weighted voting
approach is that it is a static approach. The weights for ensemble
members do not depend on the instance to be classified.

Both explicit and implicit model based methods are further
divided into single and multiple imputation methods. In single
imputation, a single parameter is estimated with no sense of how
this parameter estimate might vary across equally plausible sets
of missing data imputations. Single imputation produces a single
filled-in dataset, where each missing value is replaced with a
single value. The replaced values are then treated as if they were
actual values. In general, single imputation offers the advantage of
allowing complete data analysis methods to be used, and it
requires less work to impute each missing value only once.
Expectation maximization (EM SI), multilayer perceptrons (MLP
SI), radial basis function networks (RBFN SI) and hot deck
imputation algorithms (HD SI) are examples of single imputation
algorithms. A major problem with single imputation is that this
approach cannot reflect sampling and imputation variability [24].
Therefore, the estimated variances of the parameters are biased
toward zero, leading to statistically invalid inferences. Rubin [25]
proposed multiple imputation (MI) to solve this problem . A
detailed summary of MI is given in Rubin [1], Rubin and Schenker
[26], Schafer [3], and Schafer and Olsen [27]. In MI, the focus is on
getting the joint probability density function of model parameters
that represent sampling and imputation variability. In this
approach, model parameters are randomly drawn from the
distribution and each missing datum is replaced by m41 possible
values to accurately reflect uncertainty and to preserve data
relationships and aspects of the data distribution. Multiple hot
deck imputation algorithms (HD MI), MCMC, and multiple neural
networks (NN MI) are examples of MI algorithms. It requires that
the analyst specifies an imputation model, imputes several data
sets, analyses them separately, and then combines the results. MI
builds on the advantages of single imputation. MI not only allows
the use of complete-data analysis methods for the data analysis,
but also incorporates random error since it requires random
variation in the imputation process. MI produces improved
estimates of standard errors when compared with single imputa-
tion methods because repeated estimations are used. It can
accommodate any model and any data and does not require
specialized software. MI also increases efficiency of parameter
estimates because it minimizes standard errors and simulates
proper inferences from the data. The three disadvantages of MI
when compared with other imputation methods are: (a) more
effort to create the multiple imputations, (b) more time to run the
analyses, and (c) more computer storage space for MI-created
datasets [1]. These are hardly issues with current development in
computer technology. However, several authors have raised
questions with regard to the validity of MI approach [28,29].
They report that MI procedure tends to yield longer confidence
intervals. In other words, this approach may overestimate
standard error or variance (the standard error squared) of missing
value estimates.
3. Novel algorithms: GEMI and GESI

We developed two novel missing value imputation algor-
ithms—GRNN-ensemble for multiple-imputation (GEMI) and
GRNN-ensemble for single imputation (GESI). Both algorithms
construct an ensemble model of generalized regression neural
networks (GRNN)—a well respected computational intelligence
based algorithm proposed by Donald Specht in [30] (see Appendix
A for a brief overview of the GRNN). The proposed algorithms
employ a novel algorithm SAGA to optimize the ensemble
makeup [31] (see Appendix B for a brief overview of SAGA). In
GESI, one replacement value is created and imputed for each
missing observation. In GEMI, several missing values are inde-
pendently imputed, creating multiple (m) datasets and multiple
estimates, one for each replication of the imputation process. The
multiple estimates are averaged over the m imputations to create
a single MI estimate of the statistic of interest. To account for the
uncertainty of the imputation process, MI variance estimators
that incorporate both within- and between-imputation compo-
nents are used to account for imputation-related variance in the
overall variance of the estimate of interest. In this section, we
discuss the advantages and principal motivations behind design
choices for our novel algorithms and advantages to reap from our
algorithms are discussed below (the pseudocodes of GEMI and
GESI are presented at the end of this section).

First, a good imputation algorithm should use as much
information as possible. A variable X may be related both to the
missing data mechanisms and to the actual outcomes of the
covariates. To produce high-quality imputations for a particular
variableX, the imputation model should include variables that are
(a) potentially related to X and (b) potentially related to the
missing mechanism of X. A general guideline is that the imputer
should use a model that is general enough to preserve any
associations among variables (two-, three-, or even higher-way
associations) that may be the target of subsequent analysis.
Hence, our algorithms attempt to use the maximum possible
information content available to yield optimal performance. Our
novel algorithms (GEMI and GESI) conjointly model the data and
missing data mechanisms to exploit information, not only from
observations, but also from presence and absence of values in
other variables. This is a difficult task to accomplish. For each
variable Xi, we define a corresponding indicator variable Ii, to
indicate whether the value of the variable Xi is missing or not.
However, adding all those indicator features comes at a price: it
increases the dimensionality of the patterns. Consequently, the
curse of dimensionality problem appears and the prediction
performance degrades severely.

In order to ensure the inclusion of all the important predictors
and interactions in the model, our algorithms follow a novel
homogeneous ensemble framework that can cope with the curse
of dimensionality. GEMI and GESI are GRNN ensembles where a
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collection of GRNNs is trained for the same task. Ensemble
members are trained on different subsets of features. These
separately trained GRNNs are then combined to form one unified
prediction model. There are numerous ensemble approaches
available in the literature. Compared with existing ensemble
learning algorithms, our proposed ensemble approach is unique in
the following two aspects.
(i)
 Selection of ensemble members: The selection of an optimal
feature subset and the selection of an optimal set of ensemble
members are similar types of combinatorial problems. Hence,
the same techniques are used for both of these problems.
However, these techniques fail to guarantee an optimal
solution since these methods have the shortcomings of local
minima and slow convergence speed. Our novel algorithms
apply our proposed feature subset selection algorithm (SAGA)
to select several parsimonious feature sets with excellent
prediction performances. SAGA is a hybrid algorithm based on
(1) simulated annealing (SA) algorithm, (2) genetic algorithm
(GA), (3) hill-climbing (HC) algorithm, and (4) GRNN (see
Appendix B). These subsets are used to train separate GRNNs.
GEMI and GESI then identify a parsimonious set of trained
GRNNs (ensemble members) for the ensemble model using
the SAGA. We demonstrated in [31] that SAGA offers the most
parsimonious and best-fitting models.
(ii)
 Method of combining the outputs of ensemble members:
Weighted voting is widely used for combining the outputs
of several ensemble members trained independently to
perform a prediction task. A weighted voting system is one
in which the preferences of some voters carry more weight
than the preferences of other voters. The major disadvantage
of traditional weighted voting system is that the weights for
each ensemble member’s vote do not depend on patterns to
be learned. Recent studies show that when the performance
of the ensemble members is not uniform for all patterns, the
efficiency of this type of voting is affected negatively [32]. To
combat this, a GRNN is used as a combiner. The combiner
GRNN uses the outputs of the base GRNN classifiers as inputs
and produces the final prediction for the unobserved items.
Fig. 1 illustrates the basic framework for the proposed GRNN
ensemble. GRNN is a local approximation algorithm. To
embed this feature into our own algorithms (GEMI and GESI),
we used GRNN as base learners as well as the ensemble
combiner. Consequently, GEMI and GESI are dynamic
weighted voting methods whose combiner assigns weights
to base classifiers on a pattern-by-pattern basis.
In addition to the large number of predictor variables, there is
another major pitfall to be aware of when imputing missing data.
Missing values are determined using complete case analysis. The
sample size decreases as the percentage of missing values
increases. A small sample size tends to result in a poor model
fit. In order to reduce this problem, our algorithms (GEMI and
GESI) imitate the iterative computation of the MCMC and EM
algorithms, although these new algorithms do not use the
maximum likelihood approach. GEMI and GESI repeatedly alter-
nate between two steps, the M (maximization)-step and the E

(expectation)-step. In the first M-step, GEMI and GESI fit the
imputation model based on the complete cases only. Then, in the
first E-step, missing values are imputed by the imputation model
estimated at the previous M-step. Given a complete sample, the
next M-step updates the imputation model. This new imputation
model is then used in the next E-step for re-estimating missing
values. This process continues until the algorithm converges.
Second, our proposed algorithm GEMI is a multiple imputation
(MI) algorithm. MI accounts for data by restoring not only the
natural variability in the missing data, but also by incorporating
the uncertainty caused by estimating missing data. GEMI uses
Rubin’s multiple imputation framework [1] that allows us to
create proper multiple imputations in complex multivariate
settings. To perform multiple imputations using GEMI, we create
30 training sets since a larger number of samples will give a better
estimate of the random error, every time randomly selecting 70%
of the available data. Each dataset is analyzed. With 30 training
sets, 30 separate sets of parameter estimates (i.e. conditional
mean and conditional variance) are obtained. Individual para-
meter estimates are combined to get global parameters of the
conditional target distribution for the missing data. We then
create 30 replications of the original datasets, resulting in 30
datasets. For imputing missing values, GEMI simulates draws
from the distribution of interest. The replicas of a record will
differ in imputed values but not in observed values. Variation in
estimates across these multiple datasets permits estimation of
overall variation, including both sampling and imputation
variance.

Third, both novel algorithms (GEMI and GESI) are based on a
fuzzy clustering scheme. This is a non-parametric algorithm and
avoids distributional assumptions. Another advantage of our
methods is that they are local approximators whereas many
conventional imputation algorithms such as MCMC, EM, and MLPs
are global approximators. Global approximators formulate one
predictive formula for the entire search space. In contrast, local
approximators formulate many effective formulas in order to
address local variations. GEMI and GESI have inherited these
qualities from their underlying algorithm GRNN. In GRNN, all
training patterns form their own clusters. When a new pattern is
presented to the GRNN, each cluster assigns a membership weight
(between 0 and 1) to indicate the strength of the membership of
the pattern belonging to the cluster using a Gaussian membership
function based on the similarity. However, it is worth noting that
GRNN does not assume that data follow a Gaussian distribution.
In GRNN, the outputs of new patterns are calculated from a
weighted average of outputs of training patterns.

Fourth, there are only a few parameters in GEMI and GESI that
need to be selected. These parameters include the parameters of
GRNN and the parameters of SAGA. Apart from the above
mentioned parameters, there is one extra parameter (number of
imputations: m) in GEMI. GRNN has only one adjustable
parameter (the smoothing parameter s). However, we have
discovered the best default value for this parameter. We set the
default value for each centre’s width (s) within each GRNN to
twice the mean of the distance to the 20 nearest neighbours. The
width of each prototype pattern (i.e. centre) within each GRNN is
different since each prototype pattern has a unique set of 20
different neighbours. As a result, the proposed default value of s
can keep the local approximation ability of GEMI and GESI intact.
Table C1 shows performance impact of different s values.

The choice of SAGA parameter values and the total number of
imputations (m) depends on the computational cost one is willing
to incur. Hence, the task of specifying m and SAGA parameters is
relatively straightforward.

We determine default settings through experiments with 200
synthetic datasets (these 200 datasets were not used in the
missing data imputation study). Users can accept default para-
meter values where resource constraints permit, since default
parameter values will almost always produce good results. They
can also set much higher values for these parameters (parameter
m and parameters of SAGA). Usually, the higher parameter values
provide better results. In our missing data imputation experi-
ments, we used default settings. A reasonable number of different



Fig. 1. The framework of the proposed ensemble classifier.

Table 1
Default parameter settings for GEMI and GESI.

Parameter Default setting

Number of imputations m (a

parameter of GEMI)

30

Smoothing factor parameter s
(for GEMI and GESI)

(each centre’s width is set to average

Euclidean distance to 20 nearest members)*2

Parameters of SAGA
Population size of SA, and GA 100

Population size of HC 10

Stopping criterion of the SA

and GA

Stop the algorithm if the best solution does

not improve in the last 100 runs.

Fig. 2. Imputation model built by GESI.
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parameter values were tried in order to find those values for
which the code seemed to perform best overall. The relative
performance of different parameter values were compared using
statistical tests (Friedman two-way analysis of variance by ranks
and comparisons of groups or conditions with a control [33]). A
brief description of these tests is available in Appendix D (see
Siegel and Castellan [33] for detailed description of these
statistical tests). The list of default values of parameters, stored
in the configuration file in our novel algorithms, are given in
Table 1.

Based on the resource constraint, we set the value of m to be
30. Ideally, the selection of the parameter value m should depend
on the resource (e.g. memory and computational cost) availability,
which we mentioned earlier. Our research demonstrates that
precision improves increasing the number of imputations (m).
Our aim is to clarify this implication, so that the analyst may make
an informed choice of the parameter value. Hence, we reported
the performance impacts of different m values in Table C2. It
appears that the best value for parameter m is 100.
3.1. The pseudo-code of GEMI and GESI (all vectors are presented in

bold face)

In the implementation of GESI, we execute only the first two
steps of the full procedure outlined in this section. GESI fits a
single ensemble model (model-P), as shown in Fig. 2. Model-P is a
set of models (p1,p2,y,pn) in which each element (p1,p2,y,pn) is a
single ensemble model (SEM) that estimates the conditional mean
of a missing value, where n is the total number of missing values.

For the implementation of GEMI, the full process has to be
adhered to. GEMI develops two prototype models—P (estimates
conditional means of missing values) and Q (estimates conditional
variances of missing values). GEMI fits m sets of (identical in the
sense that they consist of the same feature ensembles, but non-
identical in the sense that they are trained on different sets of
training examples) replicas of a pair of prototype ensemble
models—model-P: (P1, P2,y,Pm) and model-Q: (Q1, Q2,y,Qm)—as
shown in Fig. 3. P1, P2,y,Pm and Q1, Q2,y,Qm are replica models.

Both prototype models (P and Q) and each pair of replica
models [(P1,Q1),(P2,Q2),...,(Pm,Qm)] consist of n sub-models (one
model for each of the n missing values). (p1,p2,...,pn) and
(q1,q2,...,qn) represent the submodels of the prototype models P

and Q, respectively. The model-P: P¼(p1,p2,...,pn) predicts the
conditional means of missing values, whereas the model-Q:
Q¼(q1,q2,...,qn) predicts the conditional variance of each missing
value. Since the training samples of the prototype model P may
contain incomplete observation vectors, the prototype model P is
fitted through the application of an iterative EM-style algorithm
where the M-step learns the imputation models and the E-step
uses imputation models to estimate missing values. The training



Fig. 3. Protype models built by GEMI.

I.A. Gheyas, L.S. Smith / Neurocomputing 73 (2010) 3039–30653044
samples of prototype model Q do not contain any missing data for
any of the attributes. Hence, the model Q is fitted in one pass to
the squared residuals of the prototype model P.

Step 1: Normalize each variable to the range [0,1] using min-
max normalization method. Min-max normalization subtracts the
minimum value of a variable from each value of the variable and
then divides the difference by the range of the attribute.

We normalize each variable before applying GEMI and GESI,
i.e. make all variables to vary in the range [0,1]. This main reason
for scaling the data to this range is to prevent the inputs with
much larger ranges from dominating in the training. Another
useful, but more complicated, pre-processing strategy would be to
whiten the observed variables.

Step 2: Design and construction of prototype model-P: As
mentioned before, in Model-P, there is a set of models (p1,p2,...,pn)
in which each element (p1,p2,y,pn)is a single ‘‘ensemble’’ model
(SEMm) that estimates the conditional mean of a missing value,
where n is the total number of missing values. In other words, in
Model-P, there is a SEMm for each missing value in the dataset,
wherein the variable with the missing value is the target variable.
We define an indicator variable I for each main variable X with
[Iij]¼1 if Xij is missing and 0 otherwise. Here, Xij denotes the value of
the jth main variable in the ith pattern. Iij denotes the value of the jth
indicator variable in the ith pattern. The main (X¼[X1,X2...]) and
indicator (I¼[I1,I2,...]) variables are considered as candidate input
variables.

We note that there can be multiple missing values in a record
and our algorithms can deal with this issue. The proposed
imputation algorithm is an iterative algorithm. Each iteration
consists of two steps: M step and E step. In M step our algorithm
fits multiple models (one model for each of the missing values).
These models can handle only one missing variable for each case.
In the first iteration, each of these models includes only those
independent variables that have no missing values in the test
pattern. Listwise deletion is performed to remove training cases
with missing values in one or more independent variables.
Missing values are computed in the E step of the first iteration
of GEMI and GESI using the models fitted in the first M step. Thus,
the first E step will create a new complete matrix or dataset. On
the next iterations, no deletion is required. The M-step of each
iteration fits imputation models for missing values of the original
dataset to the data imputed at the E-step of the last iteration.
Then the new imputation models are applied to re-compute the
missing values of the original matrix in the next E-step, thereby
forming a new matrix which serves as the training sample for the
next M-step. SAGA is used in each iteration to select an optimal
subset of features. It is worth noting that the observed values
remain unchanged, only missing values are re-estimated in each
iteration. The iterations continue until the estimates of the
missing values become stable.

The pseudo-code of iterative M and E steps loop is given below.
Step 2.1: The maximization M-step

Create a loop to build a SEMm model for each missing value
k¼1; n¼total number of missing values
While krn

Step 2.1.1: Use SAGA to identify 100 (or less, when the total
number of diverse solutions found so far is less than 100) of the
best feature subsets (FS) for the target variable from the pool of
candidate input variables (both the main and indicator variables)
using 10 fold cross validation. The parameters of SAGA are fixed at
the values shown in Table 1.

Step 2.1.2: Train a separate GRNN with each of these 100
feature subsets. This will give us 100 trained GRNNs. These
GRNNs are trained to predict the output variable (i.e. the variable
with missing values).

Step 2.1.3: Use SAGA to select an optimal subset of base GRNN
classifiers from the pool of 100 trained GRNNs to form the
ensemble model (pk) using 10-fold cross validation. The para-
meters of SAGA are fixed at the values shown in Table 1.

Step 2.1.4: Complete the construction of the ensemble model
(pk) by training the combiner GRNN to predict the conditional
mean of the missing value dij using the outputs of the base
learners as inputs.

k¼k+1;
End (while krn loop)
Step 2.2: The expectation E-step: E-step supplies the imputed

values based on imputation models calculated in the previous
M-step.

Given a complete sample, the next M-step updates the
model P¼(p1,p2,...,pn) and then the next E-step re-estimates the
missing values based on the updated models. The two steps are
iterated until the conditional means of missing values become
stable. The process of developing model P is further illustrated in
Fig. 4.
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Fig. 4. A block diagram of the construction of prototype model-P for the conditional mean of missing data.
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Step 3: Design and construction of prototype model-Q: Model-Q
is a set of models Q¼(q1,q2,...,qn) in which each element
(q1,q2,y,qn) is a single ‘‘ensemble’’ model (SEMv) that estimates
the conditional variance of a missing value. In Models-Q, there is a
SEMv for each missing value in the dataset. In other words, there
is a SEMv model associated to each SEMm model. To construct a
SEMv model, the following steps were executed.
K¼1;
n¼total number of missing values
While Krn

// build the model qk

Step 3.1: Define input and output variables for the model (qk):
The target variable of the model qk is defined as the squared
residuals of the model pk on the training set. All variables, except



Fig. 6. Generating a pair of replica ensemble models.
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the variable with missing values (i.e. the target variable of model
pk), and the corresponding indicator variables are treated as
candidate input variable for the model qk.

Step 3.2: Apply SAGA to select the ensemble of base learners:
Step 3.2.1: Identify 100 near-optimal but diverse feature subset

solutions using 10-fold cross validation. The default parameter
setting used in the experiment is listed in Table 1.

Step 3.2.2: Train a base GRNN learner using each of the 100
feature subset solutions.

Step 3.2.3: Apply SAGA to select an optimal subset of GRNNs
from the pool of 100 trained GRNNs, which will be used to form
the model qk. Table 1 summarizes the SAGA parameter setting for
the experiments.

Step 3.2.4: To complete the construction of the ensemble
model qk, train the combiner GRNN to predict the expected
squared error of the ensemble model pk based on the outputs of
the base GRNN learners.

K¼K+1;
End (while Krn) loop
The model-Q construction process is illustrated in Fig. 5.
Step 4: Construct multiple models for estimating parameters of

missing observations: Generate m exact replicas ((P1,Q1),(P2,Q2),y,
(Pm,Qm)) of the prototype models P and Q. Train the replicas using
70% training data rather than 100%. The training set of each
replica was selected randomly. While training the different
replicas, we did not apply SAGA for selecting ensemble members
since these ensemble models are constructed from the prototype
configuration. The replicas were trained using the following steps:

//Use a loop to train replica models
K¼1;
While Krm

Step 4.1: Train each member GRNN of the replica ensemble
model Pk on the training set using input (main and indicator
variables) and output (variable with the missing value) data.

Step 4.2: Present the training patterns to model Pk for the
prediction of target variable and compute squared residuals.

Step 4.3: Train each member GRNN of the replica model Qk

using inputs (main and indicator predictor variables) and output
(squared residuals of Pk) data.

K¼K+1;
End Loop/*Replica models ((P1,Q1),(P2,Q2),y,(Pm,Qm)) are now

ready for use.*/
The process of developing a pair of replicas of models P and Q

is summarized in Fig. 6.
Fig. 5. A block diagram of the construction of the ensemble m
Step 5: Estimate the parameters of missing data

L¼1;
n¼number of missing values
m¼number of replica models
While Lrn

k¼1;
While krm
�

ode
Present the fully trained model Pk with the missing value dL for
predicting the conditional mean (Y

_

Lk) of missing value (dL).

�
 Present the missing value (dL) to the trained model Qk for

predicting the conditional variance (U
_

Lk) of missing value (dL).

�
 End While loop krm
�
 The conditional mean of the missing value dL is the average of
the single estimates:

Y
_

L ¼
1

m

Xm

k ¼ 1

Y
_

Lk ð1Þ

Estimate the within-imputation variance (i.e. sampling error)
�
UL ¼
1

m

Xm

k ¼ 1

U
_

Lk ð2Þ
l Q for the conditional error variance of missing data.
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�
 Estimate the between-imputation variance (i.e. the imputation
error)

BL ¼
1

m�1

Xm
k ¼ 1

ðY
_

Lk�YLÞ
2

ð3Þ
�
 Next, we compute the total variance of the missing value (dL).
Typically, total variance equals within-variance (UL) plus
between-variance (BL). However, Rubin’s approach is to weight
the between-imputation variance according to the number of
imputations performed. Thus the total variance (T) is com-
puted by the following formula:

TL ¼ULþ 1þ
1

m

� �
BL ð4Þ

//We now know the mean and variance of the missing value dL.
L¼L+1;
End (of While Loop Lrn)
//We now know the conditional means and variances of all

missing values.
Step 6: Replace each missing value by m plausible values:

Replicate each record of the original dataset m times.
We then impute the missing values setting them to YLþ

ffiffiffiffiffi
TL

p
R

where R is a pseudo-random number drawn from a normal
distribution with mean 0 and standard deviation 1.

Steps 5 and 6 are further illustrated graphically in Fig. 7.
4. Comparative performance analysis

We compare our algorithms (GEMI and GESI) with popular
single imputation (SI) and multiple imputation (MI) algorithms:
(1) expectation maximization (EM) SI, (2) EM MI, (3) generalized
regression neural networks (GRNN) SI, (4) GRNN MI, (5) hot-deck
(HD) SI, (6) HD MI, (7) heterogeneous ensemble of GRNNs with
simple averaging (HES) SI, (8) heterogeneous ensemble of GRNNs
Prototype model P for conditional 
mean of missing data

Replica 
model P1

Replica 
model P2

Replica 
model P3

Estimated 
conditional
mean m1

Estimated 
conditional
mean m2
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mean m3

c

Average conditional mean Between im
varian

Estimate joint posterior distribution of missin

Use data augmentation, and replace each miss
by a set of imputed values randomly drawn from

posterior distribution of missing data.

Fig. 7. Multiple imputation proce
with simple averaging (HES) MI, (9) heterogeneous ensemble of
GRNNs with simple averaging (HEW) SI, (10) heterogeneous
ensemble of GRNNs with simple averaging (HEW) MI, (11)
homogeneous ensemble of GRNNs with simple averaging (HOS)
SI, (12) homogeneous ensemble of GRNNs with simple averaging
(HOS) MI, (13) homogeneous ensemble of GRNNs with weighted
averaging (HOW) SI, (14) homogeneous ensemble of GRNNs with
weighted averaging (HOW) MI, (15) K-nearest neighbour algo-
rithm (KNN) SI, (16) KNN MI, (17) Markov chain Monte Carlo
(MCMC), (18) multilayer perceptrons (MLP) SI, (19) MLP MI, (20)
mean substitution (MS), (21) radial basis function neural net-
works (RBFNN) SI, (22) RBFN MI, (23) weighted KNN (WKNN) SI,
(24) WKNN MI, and (25) zero imputation (ZI) on 98 datasets
(30 synthetic datasets+67public real-world datasets+1 new real-
world dataset), using 10 fold cross validation. The public real-
world datasets are obtained from UCI machine learning repository
[34]. The implementation procedures of the conventional algo-
rithms are briefly described in Appendix E.

Appendix F presents a brief description of datasets. Synthetic
datasets and public real-world datasets are complete with no
missing data. These datasets were used to conduct controlled
experiments. We artificially removed data using ignorable and
non-ignorable missing value mechanisms at different rates of
missing values. Appendix G details the methods adopted to
simulate random and non-random missing data mechanisms.
Roughly 33% of the total missing values were introduced, using
the MCAR mechanism and approximately 33.5% using MAR
mechanism into each of the datasets. The remaining missing
values were imposed on the datasets using the MNAR missing
value mechanism. Then the imputation algorithms were applied
separately to each incomplete dataset for imputation of missing
values. We compare performance of algorithms on synthetic and
public real-world datasets in three different ways:

First, each multiple imputation algorithm’s performance was
evaluated based on how accurately the algorithm recovers the
nature of the conditional posterior distribution of the missing
value. Each multiple imputation algorithm constructs a 95%
Prototype model Q for conditional 
variance of missing data

Replica 
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Replica 
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confidence interval estimate of the missing value. The formula for
the 95% confidence interval using the normal approximation is:
ðconditional mean71:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
conditional variance
p

Þ:

We examine the relative performance in the sense of interval
estimation accuracy of multiple imputation algorithms. In gen-
eral, an interval forecast is considered to be correct if the actual
value falls inside the predicted 95% confidence interval. The
higher the accuracy of interval identification, the better the
algorithm. If the two algorithms have the same interval estima-
tion accuracy on a dataset, the algorithms are ranked based on the
average length of the estimated confidence interval. A narrow
confidence interval implies high precision. For example, if we let
the confidence interval be (�N,N), then we may achieve 100%
accuracy, but this interval is associated with very poor precision.
Single imputation algorithms were naturally excluded from this
study since they only provide a point estimate of the missing
value.

Second, we compare the imputation algorithms with respect to
the precision in terms of the accuracy of the missing value
estimates using 10-fold cross validations on datasets. In general,
the higher the accuracy values, the higher the agreement between
observed and predicted data. If the variable of interest is
continuous, then mean absolute percentage error (MAPE) was
used to estimate the predictive accuracy of the algorithms.

Accuracy ð%Þ ¼ 100�MAPE ð%Þ ¼ 100�
100

N

XN

i ¼ 1

Xi�X
_

i

��� ���
Xi

ð5Þ

where N is the number of test patterns, Xi is the observed value of
the variable of interest (X) at the ith point and X

_

i is the predicted
value.

Third, missing data inevitably affect a classifier’s performance.
Hence, the relative merits of imputation algorithms were assessed
by measuring the impact of imputation on the classification of the
response variable.

The Friedman test is used to test the null hypothesis that the
performance is the same for all algorithms. After applying the
Friedman test and noting it is significant, ‘‘Comparison of Groups
or Conditions with a Control’’ tests (details are available in
[33, p. 181]) were performed in order to test the (null) hypothesis
that there is no significant difference between any pair of the
imputation algorithms under study. Appendix C provides a brief
overview of these tests.

In addition to experiments on public real world datasets, the
performance was tested with a new real world dataset ‘‘Smoking
Dataset’’. This dataset contains about 37% missing values. We did
not artificially remove values from this dataset. We assess each
imputation algorithm’s performance on this dataset in terms of
accuracy of output estimation by the GRNN classifier trained with
Fig. 8. Impact of imputation on classific
the imputed dataset. Since all the missing values in this dataset
are actually unknown to us, it was not possible to compare
imputation algorithms in terms of the estimation error of missing
values. Appendix F provides a brief description of the dataset.

We adopted a set of measures for free and fair competition
between imputation algorithms, which we discussed below.

4.1. Measures for fair comparative evaluations of imputation

algorithms

The following measures were taken to organize fair competi-
tion among all imputation algorithms:
�

atio
We determine the performance of every imputation algorithm
based on the average predictive accuracy of a GRNN classifier,
a MLP classifier, and a logistic regression technique in the
imputed dataset using 10-fold cross-validation.

�
 The input space of all imputation algorithms includes main

variables and corresponding indicator variables.

�
 All algorithms use our proposed feature subset selection

algorithm SAGA for selecting an optimal subset of features.
GEMI, GESI, HOS SI, HOS MI, HOW SI and HOW MI employ
SAGA for the selection of optimal subsets of features, as well as
an optimal strategy for selecting ensemble members. All
imputation algorithms use SAGA with the parameter settings
reported in Table 1.

�
 Although none of these algorithms (except EM and MCMC) use

maximum likelihood (ML) estimation of model parameters, all
algorithms (except MS, ZI, HD, KNN, and WKNN) were
implemented as an (EM-style) iterative method to refine
imputation models.

�
 Each multiple imputation (MI) algorithm replaces missing

values with a set of 30 plausible values.

5. Results and discussion

Fig. 8 presents the impact of imputation of missing values by
different imputation algorithms on classification accuracy for
smoking dataset.

Summary results on the remaining 97 datasets (synthetic and
UCI datasets) are presented in Tables 2–5. These tables compare
our novel imputation algorithms with well-known imputation
procedures in terms of (i) the overall mean accuracy of classifying
the response variable on imputed datasets with different
percentage of missing data (Table 2), (while Table 2 displays the
average classification accuracy of three classifiers (GRNN, LR, and
MLP), the individual accuracies of GRNN, LR and MLP in imputed
datasets are presented in Tables H1–H3), (ii) the overall mean
accuracy of interval estimation of the missing value (Table 3) and
n accuracy on smoking dataset.



Table 2
Average output classification accuracy of GRNN, LR and MLP classifiers in imputed datasets under different levels of missing rates (standard deviations in parentheses).

Algorithm Rate of missing values

5% 10% 20% 30% 40% 50% 60% 70% 75%

GEMI 97 (4) 96 (4) 92 (6) 85 (7) 76 (9) 69 (17) 59 (17) 55 (12) 44 (15)

GESI 97 (4) 85 (6) 75 (8) 62 (15) 55 (17) 55 (10) 51 (10) 53 (11) 40 (15)

EM 97 (4) 75 (10) 61 (13) 60 (12) 52 (20) 53 (16) 49 (9) 43 (13) 43 (13)

GRNN MI 97 (4) 79 (10) 71 (11) 68 (10) 51 (19) 52 (14) 50 (11) 44 (14) 43 (16)

GRNN SI 97 (4) 80 (11) 64 (13) 57 (19) 55 (17) 50 (9) 50 (9) 39 (14) 46 (15)

HD MI 97 (4) 81 (7) 62 (13) 52 (20) 49 (16) 54 (11) 50 (8) 39 (18) 43 (17)

HD SI 97 (4) 80 (8) 61 (8) 51 (20) 50 (15) 51 (12) 47 (8) 39 (17) 46 (18)

HES MI 97 (4) 81 (9) 71 (11) 59 (14) 49 (23) 59 (17) 50 (10) 39 (19) 38 (17)

HES SI 97 (4) 79 (10) 62 (15) 54 (15) 48 (20) 50 (18) 52 (8) 43 (15) 43 (13)

HEW MI 98 (5) 82 (7) 73 (8) 70 (13) 61 (17) 50 (10) 49 (12) 41 (16) 41 (14)

HEW SI 97 (5) 81 (9) 68 (12) 59 (12) 52 (16) 49 (9) 50 (10) 42 (17) 42 (18)

HOS MI 96 (4) 79 (10) 68 (17) 66 (19) 52 (17) 51 (16) 52 (9) 44 (15) 39 (17)

HOS SI 97 (4) 73 (15) 53 (16) 52 (18) 57 (18) 52 (13) 51 (10) 40 (19) 47 (15)

HOW MI 97 (5) 86 (8) 80 (9) 75 (12) 67 (13) 58 (12) 50 (11) 43 (15) 41 (17)

HOW SI 96 (4) 82 (8) 71 (14) 63 (19) 43 (16) 47 (15) 47 (9) 40 (18) 46 (15)

KNN MI 97 (4) 79 (11) 61 (13) 54 (19) 56 (16) 53 (14) 48 (11) 40 (15) 39 (16)

KNN SI 97 (4) 73 (15) 56 (18) 51 (22) 55 (18) 48 (10) 48 (8) 44 (15) 43 (15)

MCMC 97 (4) 87 (7) 80 (7) 73 (11) 62 (15) 48 (16) 50 (9) 39 (16) 42 (16)

MLP MI 96 (3) 79 (9) 65 (11) 63 (15) 57 (16) 51 (12) 52 (10) 43 (17) 41 (16)

MLP SI 97 (5) 74 (11) 56 (11) 51 (18) 54 (18) 48 (12) 42 (14) 44 (12) 42 (14)

MS 98 (4) 73 (9) 54 (11) 51 (22) 50 (21) 52 (9) 49 (11) 43 (14) 41 (15)

RBF MI 97 (4) 79 (12) 69 (12) 64 (11) 45 (20) 49 (13) 48 (11) 40 (14) 39 (19)

RBF SI 97 (4) 78 (11) 60 (11) 49 (17) 51 (13) 48 (18) 51 (8) 38 (15) 43 (17)

WKNN MI 98 (4) 78 (11) 66 (11) 60 (21) 50 (20) 51 (12) 50 (9) 43 (15) 41 (17)

WKNN SI 97 (4) 75 (13) 59 (13) 52 (22) 55 (18) 51 (12) 52 (9) 46 (16) 39 (17)

ZI 96 (5) 69 (15) 50 (18) 48 (12) 55 (15) 46 (9) 48 (8) 41 (17) 48 (15)

Table 3
Interval estimation accuracy of imputation algorithms under different levels of missing rates (standard deviations in parentheses).

Algorithm Rate of missing values

5% 10% 20% 30% 40% 50% 60% 70% 75%

GEMI 94 (5) 97 (2) 96 (4) 90 (9) 82 (11) 79 (14) 71 (15) 64 (16) 49 (15)

GRNN MI 94 (5) 90 (5) 79 (6) 73 (11) 74 (14) 54 (17) 48 (9) 49 (12) 50 (12)

HD MI 93 (4) 88 (4) 70 (10) 70 (11) 70 (10) 55 (14) 55 (13) 50 (13) 51 (14)

HES MI 94 (6) 88 (6) 73 (7) 74 (7) 58 (29) 59 (24) 54 (10) 52 (13) 47 (10)

HEW MI 94 (5) 91 (3) 80 (11) 80 (8) 72 (18) 56 (13) 54 (10) 51 (14) 50 (11)

HOS MI 93 (5) 83 (7) 67 (6) 68 (17) 60 (11) 52 (7) 50 (8) 47 (12) 50 (14)

HOW MI 94 (5) 90 (3) 87 (5) 80 (13) 74 (14) 62 (10) 56 (9) 50 (15) 48 (11)

KNN MI 95 (5) 80 (8) 71 (9) 66 (13) 59 (18) 56 (13) 55 (10) 51 (13) 52 (14)

MCMC 94 (5) 92 (2) 90 (5) 82 (12) 72 (17) 54 (12) 52 (10) 49 (14) 53 (11)

MLP MI 93 (4) 83 (7) 70 (11) 67 (15) 61 (16) 50 (14) 48 (8) 51 (13) 49 (13)

RBF MI 94 (5) 85 (7) 73 (7) 74 (17) 56 (18) 59 (22) 50 (18) 52 (13) 50 (13)

WKNN MI 93 (5) 89 (6) 71 (9) 61 (19) 67 (21) 50 (7) 45 (11) 47 (13) 51 (10)
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average length of constructed 95% confidence intervals for
missing values (Table 4), and (iii) the overall mean accuracy of
point estimation of the missing value (Table 5).

The Friedman tests reveal significant differences (po0.05) in
the performance of imputation algorithms at 10–70% missing
data. The classification performance of imputation algorithms
based on pair-wise tests is presented in Table 6.

The pair-wise test results for other performance measures are
shown in Tables H4 and H5. Table H6 compares the computa-
tional cost of imputation algorithms. All algorithms were run on a
3.40 GHz Intels Pentiums D CPU with 2 GB RAM.

Our results lead to the following insights about the imputation
algorithms:
�
 The rates of missing values affect the performance of the
imputation algorithms (Tables 2–6 and Tables H4 and H5).
There was no significant difference in the performance of
algorithms when the percentage of missing values is either
very low (not more than 5%) or very high (above 75%). Thus, it
would appear that a difference in the performance of
imputation algorithm develops when the percentage of
missing values is not too high or too low.

�
 Our results reveal that GRNN, LR, and MLP classifiers have the

highest mean accuracy across all levels of missing data when
classifiers are trained on the dataset imputed by GEMI (Fig. 8,
Tables 2 and 6 and Tables H1–H3). GEMI offers the best
performance when the percentage of missing data is between
about 10% and 70%. Within this range of missing values, GEMI
outperformed all imputation algorithms in terms of the two
criteria mentioned earlier: (i) the accuracy of output classifica-
tion (Tables 2 and 6) and (ii) the interval estimation accuracy
of missing data (Tables 3, 4 and Table H4). Imputation
algorithms reach at their personal best when imputed datasets
are assessed on the basis of the accuracy of the GRNN classifier
(Tables H1–H3).

�
 In terms of the third criterion which relates to the point

estimation accuracy of the missing value estimates, GESI has



Table 4
The overall width of interval estimates of missing values under different levels of missing rates (standard deviations in parentheses).

Algorithm Rate of missing values

5% 10% 20% 30% 40% 50% 60% 70% 75%

GEMI 9 (7) 16 (11) 23 (12) 39 (14) 51 (22) 67 (18) 46 (14) 53 (21) 31 (28)

GRNN MI 8 (8) 25 (9) 35 (14) 36 (16) 53 (32) 60 (39) 38 (20) 32 (27) 30 (28)

HD MI 12 (9) 35 (14) 32 (12) 28 (14) 28 (12) 60 (23) 35 (27) 23 (27) 29 (24)

HES MI 10 (8) 30 (9) 36 (20) 44 (24) 32 (25) 64 (39) 48 (29) 33 (30) 29 (27)

HEW MI 10 (8) 29 (10) 28 (9) 49 (28) 82 (36) 66 (22) 55 (34) 28 (29) 30 (26)

HOS MI 9 (9) 27 (15) 47 (24) 57 (32) 60 (19) 53 (19) 40 (30) 24 (30) 32 (25)

HOW MI 9 (8) 20 (8) 27 (14) 49 (26) 64 (30) 67 (33) 37 (26) 28 (25) 34 (28)

KNN MI 11 (9) 24 (13) 35 (27) 37 (24) 40 (25) 53 (31) 37 (30) 31 (32) 33 (28)

MCMC 12 (9) 23 (11) 25 (14) 46 (26) 60 (34) 64 (30) 36 (28) 23 (23) 21 (25)

MLP MI 8 (7) 22 (15) 48 (25) 46 (30) 35 (26) 48 (30) 42 (28) 35 (29) 29 (29)

RBF MI 12 (10) 25 (11) 35 (23) 37 (23) 47 (29) 77 (36) 42 (30) 29 (28) 29 (28)

WKNN MI 11 (9) 22 (13) 31 (14) 31 (20) 44 (26) 59 (29) 41 (26) 30 (26) 41 (30)

Table 5
The accuracy of estimating the missing values under different levels of missing rates (standard deviations in parentheses).

Algorithm Rate of missing values

5% 10% 20% 30% 40% 50% 60% 70% 75%

GEMI 89 (11) 81 (10) 79 (14) 76 (12) 70 (15) 62 (14) 62 (14) 55 (13) 50 (28)

GESI 89 (10) 98 (2) 94 (5) 89 (8) 79 (12) 74 (14) 64 (17) 60 (17) 44 (31)

EM 89 (11) 88 (9) 84 (9) 77 (10) 72 (12) 64 (7) 54 (8) 41 (30) 59 (31)

GRNN MI 91 (8) 73 (8) 64 (8) 63 (10) 57 (17) 50 (11) 53 (12) 46 (34) 53 (32)

GRNN SI 88 (11) 89 (9) 89 (9) 77 (11) 70 (10) 60 (13) 57 (12) 50 (29) 51 (30)

HD MI 89 (10) 66 (19) 58 (13) 61 (11) 54 (12) 50 (6) 43 (10) 53 (29) 43 (32)

HD SI 89 (12) 90 (9) 86 (10) 72 (11) 58 (14) 50 (7) 54 (15) 55 (32) 48 (29)

HES MI 86 (11) 68 (14) 63 (9) 61 (16) 62 (16) 51 (21) 44 (22) 45 (29) 50 (23)

HES SI 89 (9) 80 (16) 69 (13) 74 (15) 55 (22) 58 (13) 52 (12) 53 (31) 47 (34)

HEW MI 89 (11) 75 (11) 66 (13) 64 (13) 57 (11) 54 (17) 52 (12) 42 (28) 50 (34)

HEW SI 88 (11) 88 (6) 85 (9) 78 (13) 68 (11) 63 (11) 58 (13) 50 (35) 57 (30)

HOS MI 90 (11) 70 (13) 60 (14) 55 (14) 57 (13) 53 (8) 49 (13) 56 (33) 45 (29)

HOS SI 89 (8) 81 (11) 81 (12) 72 (14) 66 (18) 55 (15) 56 (13) 49 (28) 46 (33)

HOW MI 91 (11) 77 (8) 71 (17) 64 (16) 64 (12) 55 (17) 51 (13) 46 (32) 57 (34)

HOW SI 89 (10) 89 (9) 85 (10) 72 (11) 69 (15) 57 (13) 58 (13) 45 (29) 48 (35)

KNN MI 90 (10) 73 (11) 65 (9) 64 (15) 56 (18) 41 (17) 44 (17) 49 (33) 53 (31)

KNN SI 92 (10) 87 (7) 81 (13) 80 (13) 62 (14) 55 (18) 45 (15) 53 (29) 45 (32)

MCMC 86 (10) 77 (13) 70 (14) 64 (15) 58 (14) 55 (15) 53 (19) 56 (31) 51 (33)

MLP MI 88 (10) 74 (12) 61 (12) 56 (14) 50 (18) 56 (19) 53 (14) 50 (33) 48 (29)

MLP SI 86 (10) 86 (7) 80 (9) 77 (16) 68 (11) 60 (9) 58 (8) 41 (25) 40 (28)

MS 90 (11) 84 (13) 80 (13) 75 (18) 63 (18) 58 (21) 50 (13) 47 (30) 50 (33)

RBF MI 88 (9) 73 (13) 66 (12) 66 (18) 60 (14) 46 (16) 47 (18) 46 (29) 55 (23)

RBF SI 87 (13) 83 (10) 88 (11) 75 (17) 74 (13) 62 (11) 62 (14) 51 (33) 57 (31)

WKNN MI 87 (10) 75 (14) 64 (10) 67 (12) 54 (14) 48 (12) 47 (15) 57 (30) 50 (30)

WKNN SI 89 (9) 88 (7) 85 (8) 73 (12) 69 (9) 61 (10) 50 (13) 57 (29) 47 (34)

ZI 85 (11) 79 (15) 67 (17) 56 (22) 53 (21) 54 (19) 57 (19) 52 (29) 53 (30)
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significantly outperformed all imputation algorithms (Tables 5
and H5). In terms of classification accuracy, GESI significantly
outperformed all single imputation algorithms (Fig. 8 and
Tables 2, 6).

�
 The ‘‘high-level’’ primary goals of data mining are output

prediction and clustering. It is important to bear in mind that
the fundamental goal of missing data imputation is to improve
and facilitate the practice of these tasks. Imputation is
generally not undertaken for its own sake. Both single
imputation (SI) and multiple imputation (MI) approaches have
been subject to criticisms. According to the critics, SI
substantially underestimates uncertainty about the missing
value, whereas MI overestimates the variance. However, our
empirical results suggest that the performance of imputation
algorithms in terms of their classification accuracy is relatively
better for the MI than for the SI (Fig. 8 and Tables 2, 6). For
instance, the performance of GEMI is better than that of GESI.
Similarly, MCMC, HOW MI, HOS MI, HEW MI, HES MI, GRNN
MI, RBF MI , HD MI, KNN MI, WKNN MI, MLP MI, are generally
better than EM SI, HOW SI, HOS SI, HEW SI, HES SI, GRNN SI,
RBF SI, HD SI, KNN SI, WKNN SI, and MLP SI, respectively.

�
 In terms of classification accuracy of the response variable on

the imputed data, GEMI, MCMC and HOW MI are the top three
imputation algorithms that achieved the first two places across
the varying levels of missing data (Tables 2 and 6). Similarly, in
the sense of interval estimation accuracy of the missing data,
GEMI, MCMC, and HOW MI are the top imputation algorithms
(Tables 3, 4 and H4). In the sense of point estimation of the
missing data (i.e. the accuracy of the missing value estimates),
the top imputation algorithms include GESI, HOW SI, HD SI,
GRNN SI, EM, WKNN SI, HEW SI, and RBF SI (Tables 5 and H5).
These results indicate a direct relation between the classifica-
tion accuracy of the response variable and the interval
estimation accuracy of the missing value estimates, since in
both cases the best algorithms are the same. The results also
demonstrate that the point estimation accuracy of the missing



Table 6
Pairwise comparisons among imputation algorithms in terms of output classification accuracy.

Rank Algorithm Significantly outperformed algorithms

With about 10% missing values
1 GEMI (1)MCMC, (2)HOW MI, (3)GESI, (4)HOW SI, (5)HEW MI , (6)HES SI, (7)GRNN

MI, (8) HD MI, (9)WKNN_MI, (10)HOS SI, (11)HES MI, (12)HEW SI, (13)RBF MI,

(14) HD SI, (15)KNN MI, (16) RBF SI, (17) EM, (18) WKNN SI, (19) GRNN SI, (20)

MLP MI, (21) MLP SI, (22) HOS MI, (23) KNN SI, (24) MS, (25) ZI

2 MCMC (1)HEW MI, (2)HES SI, (3)GRNN MI, (4) HD MI, (5)WKNN_MI, (6)HOS SI,

(7)HES MI, (8)HEW SI, (9)RBF MI, (10) HD SI, (11)KNN MI, (12) RBF SI, (13) EM,

(14) WKNN SI, (15) GRNN SI, (16) MLP MI, (17) MLP SI, (18) HOS MI, (19) KNN

SI, (20) MS, (21) ZI

3 HOW MI (1)RBF MI, (2) HD SI, (3)KNN MI, (4) RBF SI, (5) EM, (6) WKNN SI, (7) GRNN SI,

(8) MLP MI, (9) MLP SI, (10) HOS MI, (11) KNN SI, (12) MS, (13) ZI

4 GESI (1)KNN MI, (2) RBF SI, (3) EM, (4) WKNN SI, (5) GRNN SI, (6) MLP MI, (7) MLP

SI, (8) HOS MI, (9) KNN SI, (10) MS, (11) ZI

5 HOW SI (1) GRNN SI, (2) MLP MI, (3) MLP SI, (4) HOS MI, (5) KNN SI, (6) MS, (7) ZI

6 HEW MI, HES SI, GRNN MI, HD MI, WKNN MI, HOS SI (1) MLP SI, (2) HOM_MI1, (3) KNN SI, (4) MS, (5) ZI

7 HES MI, HEW SI, RBF MI, HD SI, KNN MI, RBF SI, EM, WKNN SI (1) HOS MI, (2) KNN SI, (3) MS, (4) ZI

8 GRNN SI, MLP MI, MLP SI, HOS MI (1) KNN SI, (2) MS, (3) ZI

9 KNN SI (1) MS, (2) ZI

10 MS (1) ZI

11 ZI 0

With about 20% missing values
1 GEMI (1) GESI, (2)HOW SI, (3)HEW MI, (4) GRNN MI, (5) HES MI, (6) RBF MI, (7)

HEW SI, (8) MLP MI, (9) WKNN MI, (10) HES SI, (11) HD MI, (12) KNN MI, (13)

EM, (14) HOS MI, (15) GRNN SI, (16) RBF SI, (17) WKNN SI, (18) HD SI, (19)

KNN SI, (20) MLP SI, (21) HOS SI, (22) MS, (23)ZI

2 MCMC, HOW MI (1) HES MI, (2)GRNN MI, (3)HEW MI,(4) RBF MI, (5) HEW SI, (6) MLP MI, (7)

WKNN MI, (8) HES SI, (9) HD MI, (10) KNN MI, (11) EM, (12) HOS MI, (13)

GRNN SI, (14) RBF SI, (15) WKNN SI, (16) HD SI, (17) KNN SI, (18) MLP SI, (19)

HOS SI, (20) MS, (21)ZI

3 GESI (1) HEW SI, (2) MLP MI, (3) WKNN MI, (4) HES SI, (5) HD MI, (6) KNN MI, (7)

EM, (8) HOS MI, (9) GRNN SI, (10) RBF SI, (11) WKNN SI, (12) HD SI, (13) KNN

SI, (14) MLP SI, (15) HOS SI, (16) MS, (17)ZI

4 HOW SI, HEW MI, GRNN MI (1) WKNN MI, (2) HES SI, (3) HD MI, (4) KNN MI, (5) EM, (6) HOS MI, (7) GRNN

SI, (8) RBF SI, (9) WKNN SI, (10) HD SI, (11) KNN SI, (12) MLP SI, (13) HOS SI,

(14) MS, (15)ZI

5 HES MI (1) HES SI, (2) HD MI, (3) KNN MI, (4) EM, (5) HOS MI, (6) GRNN SI, (7) RBF SI,

(8) WKNN SI, (9) HD SI, (10) KNN SI, (11) MLP SI, (12) HOS SI, (13) MS, (14)ZI

6 RBF MI (1) EM, (2) HOS MI, (3) GRNN SI, (4) RBF SI, (5) WKNN SI, (6) HD SI, (7) KNN SI,

(8) MLP SI, (9) HOS SI, (10) MS, (11)ZI

7 HEW SI, MLP MI, WKNN MI (1) GRNN SI, (2) RBF SI, (3) WKNN SI, (4) HD SI, (5) KNN SI, (6) MLP SI, (7) HOS

SI, (8) MS, (9)ZI

8 HES SI, HD MI, KNN MI, EM, HOS MI (1) RBF SI, (2) WKNN SI, (3) HD SI, (4) KNN SI, (5) MLP SI, (6) HOM_SI1, (7) MS,

(8)ZI

9 GRNN SI, RBF SI (1) WKNN SI, (2) HD SI, (3) KNN SI, (4) MLP SI, (5) HOS SI, (6) MS, (7)ZI

10 WKNN SI (1) HD SI, (2) KNN SI, (3) MLP SI, (4) HOS SI, (5) MS, (6)ZI

11 HD SI (1) KNN SI, (2) MLP SI, (3) HOS SI, (4) MS, (5)ZI

12 KNN SI (1) MLP SI, (2) HOS SI, (3) MS, (4)ZI

13 MLP SI (1) HOS SI, (2) MS, (3)ZI

14 HOS SI (1) MS, (2)ZI

15 MS (1)ZI

16 ZI 0

With about 30% missing values
1 GEMI (1)HEW MI, (2) GRNN MI, (3) HOS MI, (4) RBF MI, (5) GESI, (6) MLP MI, (7)

HOW SI, (8) HES SI, (9) WKNN SI, (10) MS, (11) KNN MI, (12) KNN SI, (13) EM,

(14) HES MI, (15) HD MI, (16) GRNN SI, (17) WKNN MI, (18) HEW SI, (19) HOS

SI, (20) HD SI, (21) MLP SI, (22) RBF SI, (23) ZI

2 MCMC, HOW MI (1) GESI, (2) MLP MI, (3) HOW SI, (4) HES SI, (5) WKNN SI, (6) MS, (7) KNN MI,

(8) KNN SI, (9) EM, (10) HES MI, (11) HD MI, (12) GRNN SI, (13) WKNN MI, (14)

HEW SI, (15) HOS SI, (16) HD SI, (17) MLP SI, (18) RBF SI, (19) ZI

3 HEW MI (1) HES SI, (2) WKNN SI, (3) MS, (4) KNN MI, (5) KNN SI, (6) EM, (7) HES MI, (8)

HD MI, (9) GRNN SI, (10) WKNN MI, (11) HEW SI, (12) HOS SI, (13) HD SI, (14)

MLP SI, (15) RBF SI, (16) ZI

4 GRNN MI (1) MS, (2) KNN MI, (3) KNN SI, (4) EM, (5) HET_MI1, (6) HD MI, (7) GRNN SI,

(8) WKNN MI, (9) HET_SI2, (10) HOM_SI1, (11) HD SI, (12) MLP SI, (13) RBF SI,

(14) ZI

5 HOS MI (1) KNN SI, (2) EM, (3) HES MI, (4) HD MI, (5) GRNN SI, (6) WKNN MI, (7) HEW

SI, (8) HOS SI, (9) HD SI, (10) MLP SI, (11) RBF SI, (12) ZI

6 RBF MI (1) EM, (2) HES MI, (3) HD MI, (4) GRNN SI, (5) WKNN MI, (6) HEW SI, (7) HOS

SI, (8) HD SI, (9) MLP SI, (10) RBF SI, (11) ZI

7 GESI (1) HD MI, (2) GRNN SI, (3) WKNN MI, (4) HEW SI, (5) HOS SI, (6) HD SI, (7)

MLP SI, (8) RBF SI, (9) ZI

8 MLP MI (1) GRNN SI, (2) WKNN MI, (3) HEW SI, (4) HOS SI, (5) HD SI, (6) MLP SI, (7)

RBF SI, (8) ZI

9 HOW SI, HES SI, WKNN SI, MS (1) WKNN MI, (2) HEW SI, (3) HOS SI, (4) HD SI, (5) MLP SI, (6) RBF SI, (7) ZI
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Table 6 (continued )

Rank Algorithm Significantly outperformed algorithms

10 KNN MI, KNN SI (1) HEW SI, (2) HOS SI, (3) HD SI, (4) MLP SI, (5) RBF SI, (6) ZI

11 EM, HES MI, HD MI, GRNN SI, WKNN MI (1) HOS SI, (2) HD SI, (3) MLP SI, (4) RBF SI, (5) ZI

12 HEW SI, HOS SI (1) HD SI, (2) MLP SI, (3) RBF SI, (4) ZI

HD SI (1) MLP SI, (2) RBF SI, (3) ZI

13 MLP SI (1) RBF SI, (2) ZI

14 RBF SI (1) ZI

15 ZI 0

With about 40% missing values
1 GEMI (1) HOW MI, (2) MCMC, (3) HEW MI, (4) MLP MI, (5) GESI, (6) GRNN SI, (7)

KNN MI, (8) MLP SI, (9) WKNN SI, (10) KNN SI, (11) HOS SI, (12) ZI, (13) HEW

SI, (14) RBF SI, (15) HD MI, (16) EM, (17) HOS MI, (18) HES MI, (19) HES SI, (20)

GRNN MI, (21) RBF MI, (22) HD SI, (23) WKNN MI, (24) MS, (25) HOW SI

2 HOW MI (1) HOS SI, (2) ZI, (3) HEW SI, (4) RBF SI, (5) HD MI, (6) EM, (7) HOS MI, (8) HES

MI, (9) HES SI, (10) GRNN MI, (11) RBF MI, (12) HD SI, (13) WKNN MI, (14) MS,

(15) HOW MI

3 MCMC (1) ZI, (2) HEW SI, (3) RBF SI, (4) HD MI, (5) EM, (6) HOS MI, (7) HES MI, (8) HES

SI, (9) GRNN MI, (10) RBF MI, (11) HD SI, (12) WKNN MI, (13) MS, (14) HOW SI

4 HEW MI (1) HEW SI, (2) RBF SI, (3) HD MI, (4) EM, (5) HOS MI, (6) HES MI, (7) HES SI, (8)

GRNN MI, (9) RBF MI, (10) HD SI, (11) WKNN MI, (12) MS, (13) HOW SI

5 MLP MI (1) RBF MI, (2) HD SI, (3) WKNN MI, (4) MS, (5) HOW SI

6 GESI, GRNN SI, KNN MI, MLP SI, WKNN SI, KNN SI, HOS SI, ZI (1) HD SI, (2) WKNN MI, (3) MS, (4) HOW SI

7 HEW SI, RBF SI (1) WKNN MI, (2) MS, (3) HOW SI

8 HD MI, EM, HOS MI (1) MS, (2) HOW SI

9 HES MI, HES SI, GRNN MI, RBF MI, HD SI, WKNN MI, MS (1) HOW SI

10 HOW SI 0

With about 50% missing values
1 GEMI (1) HES MI, (2) GESI, (3) HEW SI, (4) RBF MI, (5) GRNN SI, (6) MLP SI, (7) KNN

SI, (8) MCMC, (9) RBF SI, (10) HEW MI, (11) HES SI, (12) HD MI, (13) KNN MI,

(14) EM, (15) HOW SI, (16) GRNN MI, (17) HD SI, (18) MLP MI, (19) WKNN MI,

(20) HOS SI, (21) MS, (22) HOS MI, (23) ZI

2 HOW MI (1) KNN MI, (2) EM, (3) HOW SI, (4) GRNN MI, (5) HD SI, (6) MLP MI, (7) WKNN

MI, (8) HOS SI, (9) MS, (10) HOS MI, (11) ZI

3 HES MI (1) GRNN MI, (2) HD SI, (3) MLP MI, (4) WKNN MI, (5) HOS SI, (6) MS, (7) HOS

MI, (8) ZI

4 GESI, HEW SI, RBF MI, GRNN SI, MLP SI, KNN SI (1) MS, (2) HOS MI, (3) ZI

5 MCMC, RBF SI, HEW MI, HES SI, HD MI, KNN MI, EM (1) HOS MI, (2) ZI

6 HOW SI, GRNN MI, HD SI, MLP MI, WKNN MI, WKNN SI, HOS SI, MS (1) ZI

7 ZI 0

With about 60% missing values
1 GEMI (1) ZI, (2) GESI, (3) HOW MI, (4) HOW SI, (5) GRNN MI, (6) GRNN SI, (7) MLP

MI, (8) WKNN MI, (9) RBF SI, (10) HOS SI, (11) MS, (12) HOS MI

2 MCMC, HEW MI, HES MI, HEW SI, HES SI, HD MI, RBF MI, HD SI, KNN MI, EM,

MLP SI, WKNN SI, KNN SI, ZI

(1) HOS MI

3 GESI, HOW MI, HOW SI, GRNN MI, GRNN SI, MLP MI, WKNN MI, RBF SI, HOS SI,

MS, HOS MI

0

With about 70% missing values
1 GEMI (1) HOW MI, (2) MCMC, (3) HEW MI, (4) MLP MI, (5) GESI, (6) GRNN SI, (7)

KNN MI, (8) MLP SI, (9) WKNN SI, (10) KNN SI, (11) HOS SI, (12) ZI, (13) HEW

SI, (14) RBF SI, (15) HD MI, (16) EM, (17) HOS MI, (18) HES MI, (19) HES SI, (20)

GRNN MI, (21) RBF MI, (22) HD SI, (23) WKNN MI, (24) MS, (25) HOW SI

2 HOW MI, MCMC, HEW MI, MLP MI, GESI, GRNN SI, KNN MI, MLP SI, WKNN SI,

KNN SI, HOM_SI1, ZI, HEW SI, RBF SI, HD MI, EM, HOS MI, HES MI, HES SI, GRNN

MI, RBF MI, HD SI, WKNN MI, MS, HOW SI

0
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value estimates is not a good measure for reflecting the
goodness of imputations since no top imputation algorithm in
terms of missing value estimation accuracy achieved good
classification results. It is also interesting to note that the
single imputation algorithms achieved the best missing value
estimation accuracy (i.e. the point estimation accuracy of
missing values), while the multiple imputation algorithms
achieved the best classification accuracy of the response
variable. This is because multiple imputation algorithms
simulate the entire joint distribution of the unknown values.
In contrast, single imputation algorithms estimate only the
conditional mean of the missing value so that the width of the
confidence interval is zero at the imputed value that leads to
over-fitting or over-optimization. For all these reasons, single
imputation algorithms typically offer higher accuracy in the
determination of the missing data, than do any of the multiple
imputation algorithm; but provides lower accuracy in down-
stream analyses.

�
 The CPU cost of all algorithms increases linearly in the range of

a 5–50% missing rate (Table H6). Surprisingly, beyond this
range, the computational time drops dramatically. This is
perhaps because there is so little information available about
missing values that the algorithms quickly converge to
suboptimal solutions.

In our study, the computational costs were very large both for
the proposed algorithms and for the conventional algorithms
except Mean Substitution and Zero Imputation methods. This is
because, in our study, for fair comparison and evaluation, all
imputation algorithms employ SAGA for feature subset selection.
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All algorithms fit imputation models using the iterative EM-style
training approach.

SI algorithms fit one model (for the conditional mean) for each
missing value while MI algorithms fit 30 pairs of models (one for the
conditional mean and one for the conditional variance) for each
missing value. Hence, we expect the MI algorithms to be approxi-
mately 30 times more computationally intensive than SI algorithms.
However, in reality, the computational cost does not increase so much
to the MI algorithms because SAGA is used for selecting feature
subsets only once during the model formulation—in the construction
of prototype models, not in the construction of replica models.
6. Summary and conclusions

We have presented a multiple imputation algorithm GEMI and a
single imputation algorithm GESI. Both algorithms use the general-
ized regression neural network ensemble. We tested new algorithms
on 98 synthetic and real-world datasets. All simulation results show
the advantages of GEMI as compared with the conventional
algorithms. However, we note that GEMI has heavy memory storage
requirements and is expensive computationally. GEMI draws
multiple samples from the training set in order to calculate the
conditional posterior distribution of the missing value and then the
initial training set is augmented several times. GEMI is an instance-
based algorithm that stores all instances of the training sample in a
memory in order to use them when needed. In addition, GEMI
employs a relatively expensive feature subset selection algorithm
SAGA to identify not only the good subsets of features, but also an
optimal subset of ensemble members. Moreover, GEMI resorts to an
EM-style iterative procedure to refine the imputation models. Thus,
fitting a joint distribution and generating multiple imputations using
GEMI can greatly increase the computational requirements, both in
terms of processor speed and storage.

To ensure feasibility with respect to time and resource constraints,
one can play with parameter values (the parameters of SAGA and the
parameter m) accepting the trade-off between precision and cost. It is
found that GEMI is better than other multiple imputation (and single
imputation) algorithms, whereas GESI is better than other single
imputation algorithms. Therefore, for a given value of m, GEMI will
perform better than the existing ones no matter what value the
parameter m takes (however, to reduce the risk of overfitting, the
value of this parameter must be set at least to 2). Similarly, no matter
how much time we give SAGA, SAGA can help us choose a better
ensemble, since in our feature subset selection experiments [31],
SAGA came up with better feature subset solutions compared to
conventional search algorithms within all given time frames.

Proper handling of missing values is essential in all analyses.
Existing fast but inaccurate imputation methods can hinder
downstream analysis of the dataset as they frequently destroy
the original distribution of the dataset. Although using GEMI is
relatively computationally expensive with associated intensive
memory requirements, the significantly better results justify its
use. The generation of high-quality imputations always has a
greater priority than computational complexity. Besides, modern
computers are powerful enough to handle this type of computa-
tionally intensive application, for all but the largest datasets.
Appendix A. Generalized regression neural networks (GRNN)

GRNN is a simple, yet very powerful learning algorithm. In
GRNN [30] each observation in the training set forms its own
cluster [142]. GRNN is an instance-based algorithm. In GRNN each
observation in the training set forms its own cluster. When a new
input pattern x¼ ðx1,. . .,xnÞ is presented to the GRNN for the
prediction of the output value, each training pattern (prototype
pattern) yi ¼ ðyi1,. . .,yinÞ assigns a membership value hi to x based
on the Euclidean distance d, where

d¼ dðx,yiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

j ¼ 1

ðxj�yijÞ
2

vuut ð6Þ

and

hi ¼ exp �
d2

2s2

� �
ð7Þ

n is the total number of features in the study. xj is the value of
the jth feature of the presented pattern (features can be multi-
valued or not). yij is the value of the jth feature of the ith prototype
pattern and s is the smoothing function parameter. We found that
the performance of GRNN is not very sensitive to the exact setting
of the parameter (s). We arbitrarily set each centre’s width to two
times of the average distance to 20 nearest neighbours.

Finally, GRNN calculates the output value z of the pattern x as
in Eq. (8). The predicted output of the GRNN for the pattern x is
the weighted average of the outputs of all prototype patterns.
GRNN can handle continuous output variables and categorical
output variables with two categories: event of interest (coded as
‘1’) or not (coded as ‘0’):

z¼

P
iðhi � output of yiÞP

ihi
ð8Þ

If the output variable is binary, then GRNN calculates the
probability of event of interest. If the output variable is
continuous, then it estimates the value of the variable.
Appendix B. Overview of SAGA

The proposed algorithm GEFTS uses an improved algorithm
SAGA [31] for selecting an optimal subset of features, both for base
GRNNs and the combiner GRNN. SAGA uses GRNN for assessing the
fitness of feature subsets. SAGA works in three stages. During stage
1, SAGA applies the simulated annealing (SA) algorithm on 100
randomly selected possible solutions. SA leads to global exploration
of search space without getting trapped into a local minimum. If the
best solution does not improve 100 consecutive generations, the first
stage is terminated. During stage 2, SAGA applies the genetic
algorithm (GA) on the 100 best-to-date solutions found by the SA. A
total of 50 pairs are picked from the chromosome pool using linear
ranking selection. Selection is done ‘‘with replacement’’ meaning
that the same chromosome can be selected more than once to
become a parent. Each pair creates two offspring using the half
uniform crossover scheme (HUX) and then the parents die. In HUX,
exactly half of the non-matching parent’s genes are swapped. Due to
selection of the fittest chromosomes, the crossover and a very low
mutation rate (0.0001), GA converges quickly to a near optimal
solution. The second stage ends if the best solution does not improve
in 100 consecutive generations. In the final stage, SAGA refines the
search by hill-climbing on the 10-best-to-date solutions. The
pseudocodes of SA, GA and HC are given below.

B.1. Pseudocode of the simulated annealing (SA)

// Initialization section

Step 1: Encode possible solutions in binary strings, where 1
indicates the presence of the feature (or the base classifier) and
0 indicates its absence.



I.A. Gheyas, L.S. Smith / Neurocomputing 73 (2010) 3039–30653054
Step 2: Set the initial temperature (Ti): Ti¼100
Step 3: Set the current temperature (Tc): Tc¼Ti

Step 4: Initialize population: Randomly select 100 feature
subset I(¼ I(1:100)) solutions from the solution space for initial
population.
Step 5: Estimate the prediction accuracy of each solution.
Step 6: Evaluate the fitness (fitness score is the prediction
accuracy as a fraction, not a percentage) of each solution using
10-fold cross validation: Based on binary string of each solution
I, extract a new dataset Dnew from the (normalized) original
dataset D. Evaluate the fitness scores Eo(¼Eo(1:100)) of feature
subsets using GRNN and store the information (feature subset
solutions with feature score) in database.// Iterative Section
Step 7: For all current feature subset vectors I(¼ I(1:100))
change the bits of vectors with probability

pmð ¼ pmð1 : 100ÞÞ : pmi ¼ 1�Eoi

where pmi represents the mutation rate of bits within the ith
solution and Eoi represents the fitness score of the ith solution.
Step 8: Evaluate the fitness En(¼En(1:100)) of the new
candidate solutions if not already evaluated (check the
database for fitness scores).
Step 9: Determine if this new solution is kept or rejected and
update the database:
� If EnZEo, the new solution is accepted. The new solution

replaces the old solution and Eo is set to En.
� If EnoEo, calculate the Boltzmann acceptance probability

Paccept: Paccept ¼ expð�ðEo�EnÞ=TcÞ.
� Generate a random number between 0 and 1. If Paccept is

greater than or equal to the random number, the new solution
is accepted and it replaces the old one: Eo¼En.
Table C1
The performance of different smoothing factor parameter values (standard
Step 10: Update the effective temperature Tc:
� If the fitness of the best solution does not improve: Tc¼Tc�1.
� If the fitness of the best solution improved: Tc¼Ti
deviations in parentheses).

Rank (based on

statistical significance)

Each centre’s width Classification

accuracy (%)

4 (Euclidean distance to the nearest

member)*0.5

79 (12)

3 Euclidean distance to the nearest

member

85 (8)

3 (Euclidean distance to the nearest

member)*1.5

87 (7)

3 (Euclidean distance to the nearest

member)*2

88 (7)

3 (Euclidean distance to the nearest

member)*2.5

84 (8)

4 (Euclidean distance to the nearest

member)*3

81 (12)

1 (Average Euclidean distance to 5

nearest members)*2

95 (4)

1 (Average Euclidean distance to 10

nearest members)*2

96 (4)

1 (Average Euclidean distance to 20

nearest members)*2

97 (3)

1 (Average Euclidean distance to 30

nearest members)*2

96 (5)

1 (Average Euclidean distance to 40

nearest members)*2

95 (5)

2 (Average Euclidean distance to 50

nearest members)*2

92 (7)

3 (Average Euclidean distance to 60

nearest members)*2

88 (10)

4 (Average Euclidean distance to 70

nearest members)*2

84 (11)

5 (Average Euclidean distance to 80

nearest members)*2

75 (12)

5 (Average Euclidean distance to 90

nearest members)*2

72 (14)

5 (Average Euclidean distance to 100

nearest members)*2

72 (17)
Step 11: If the effective temperature is greater than or equal to
zero, return to Step 7. Otherwise the run is finished.

B.2. The pseudocode of GA

Step 1: Construct a chromosome pool of size 100 with the 100
fittest chromosomes from the list of feature subset solutions
evaluated so far by the SA.
Step 2: Select 50 pairs of chromosomes with replacement using
rank-based selection strategy.
Step 3: Perform crossover between the chromosomes using the
half uniform Crossover scheme (HUX). In HUX, half of the non-
matching parents’ genes are swapped.
Step 4: Kill the parent solutions.
Step 5: Mutate offspring with probability 0.0001.
Step 6: Evaluate the fitness of the offspring provided if it has
not already been evaluated. Update the database and estimate
the time left.
Step 7: Go back to Step 2 if the best solution does not improve
in the last 100 runs.

B.3. Pseudo-code of Hill-climbing algorithm (HC)

Step 1: Select the best-to-date solution.
Step 2: Create N new candidate solutions from the selected
solution by changing only one bit (feature) at a time. N denotes
the total number of features in the feature space.
Step 3: Evaluate the new solutions if they are not evaluated
before and update the database. Replace the previous solution
by the new solution(s) if they are better than the previous
solution.
Step 4: Go back to step 2 and perform the hill climbing on each
of the accepted new solutions. Repeatedly apply the process
from steps 2 to 3 on selected solutions as long as the process is
successful in finding improved solutions in every repetition
and as long as the time is available.
Step 5: Update the database and update the time available.
Step 6: Select the next best-to-date solution from the database
and go back to step 2. Thus perform hill-climbing on the 10
best-to-date solutions.

Appendix C. The impact of different parameter settings

See Tables C1 and C2.
Appendix D. Description of statistical tests

D.1. The Friedman two-way analysis of variance by ranks

Null hypothesis: The performance of k different algorithms have
the same rank totals.

Alternative hypothesis: The performances of k different algo-
rithms have significantly different rank totals.

The Friedman test determines whether the rank totals for each
algorithm differ significantly from the values which would be
expected by chance. To do this test, we compute the value of the
statistic which we shall denote as Fr

Fr ¼
12

Nkðkþ1Þ

Xk

j ¼ 1

R2
j

2
4

3
5�3Nðkþ1Þ ð9Þ



Table C2
Impact of number of imputations (m) on the performance of GEMI (standard deviations in parentheses).

m Classification

accuracy (%)

Rankings

(based on test

results)

m Classification

Accuracy (%)

Rankings

(based on test

results)

m Classification

accuracy (%)

Rankings

(based on

test results)

With about 5% missing values With about 10% missing values With about 20% missing values
1 84 (7) 4 1 71 (13) 6 1 70 (18) 6

2 96 (4) 3 2 89 (6) 5 2 84 (9) 5

5 98 (3) 2 5 92 (3) 4 5 87 (8) 4

10 96 (4) 1 10 96 (3) 3 10 88 (8) 3

20 96 (2) 1 20 96 (3) 2 20 90 (5) 2

30 98 (2) 1 30 96 (3) 1 30 94 (5) 1

50 96 (3) 1 50 96 (3) 1 50 94 (3) 1

100 99 (3) 1 100 97 (3) 1 100 95 (3) 1

200 98 (3) 1 200 97 (3) 1 200 95 (3) 1

With about 30% missing values With about 40% missing values With about 50% missing values
1 61 (19) 6 1 54 (21) 4 1 53 (20) 6

2 78 (11) 4 2 82 (13) 4 2 68 (14) 5

5 82 (12) 5 5 82 (12) 3 5 71 (15) 3

10 82 (13) 4 10 85 (8) 2 10 76 (9) 4

20 85 (9) 3 20 87 (8) 3 20 75 (7) 3

30 91 (7) 2 30 91 (6) 2 30 82 (7) 2

50 90 (6) 2 50 92 (5) 2 50 82 (7) 1

100 92 (6) 1 100 93 (5) 1 100 83 (6) 1

200 93 (6) 1 200 93 (5) 1 200 83 (6) 1

With about 60% missing values With about 70% missing values With about 75% missing values
1 54 (19) 4 1 53 (20) 2 1 50 (15) 1

2 60 (16) 3 2 55 (20) 2 2 46 (12) 1

5 67 (12) 2 5 54 (18) 1 5 46 (18) 1

10 62 (16) 2 10 63 (12) 1 10 50 (16) 1

20 70 (9) 1 20 66 (12) 1 20 51(14) 1

30 76 (7) 1 30 68 (11) 1 30 48 (14) 1

50 80 (8) 1 50 68 (11) 1 50 52 (14) 1

100 80 (7) 1 100 73 (11) 1 100 52 (14) 1

200 80 (7) 1 200 73 (11) 1 200 52 (15) 1
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where N is the number of datasets, k is the number of search
algorithms, Rj is the sum of ranks of the jth algorithm,

Pk
j ¼ 1 R2

j ¼sum
of the squares of the sums of ranks over all algorithms.

Appendix table M in [33] gives the probabilities associated
with values of Fr as large or larger than the tabled values for
various values of N and k. If the observed value of Fr is larger than
the tabled value of Fr at the chosen significance level, then null
hypothesis may be rejected in favour of alternative hypothesis.

When the obtained value of Fr is significant, it indicates that at
least one of the algorithms differ from at least one other
algorithm. It does not tell the researcher which one is different,
nor does it tell the researcher how many of the algorithms are
different from each other. For these answers, we performed the
statistical test ‘‘comparisons of groups or conditions with a
control’’ for each pair of algorithms. We discuss this test in the
following section.
D.2. Comparisons of groups or conditions with a control

Null hypothesis: The performances of two algorithms (algo-
rithms 1 and 2) are the same.

Alternative hypothesis: The performances of two algorithms
(algorithms 1 and 2) are not the same.

We can test the significance of differences between two
algorithms by using the following inequality. That is, if

R1�R2j jZqða,7cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nkðkþ1Þ

6

r
ð10Þ

where R1 is the rank total of the algorithm 1; R2 is the rank total of
the algorithm 2; N is the total number of datasets, kis the total
number of search algorithms ranked, c¼k�1; a¼0.05. a
represents the level of significance in statistical tests. Values of
q(a,7c) are given in Appendix Table AIII in [33].

If the value of 9R1�R29 exceeds the value of
qða,7cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNkðkþ1ÞÞ=6

p
, there is a statistically significant differ-

ence between the two algorithms.

Appendix E. Implementation of conventional missing data
imputation algorithms

We compared the proposed missing data imputation algorithm
with a number of single imputation algorithms as well as several
multiple imputation algorithms.

We treat the variable with missing value as target, the
remaining variables as predictors. The candidate input variables
include both the main variables and corresponding indicator
variables. We explain how we implemented these algorithms in
this section.

E1. Single imputation (SI) algorithms.
E2. Zero imputation (ZI) replaces the missing values with zero.
E3. Mean substitution (MS) fills in the missing values by their

variable means.
E4. Hot deck imputation (HD) works in the following two

stages:
Step 1: Find the closest donors for the missing value from

complete records using the Euclidean distance matching function.
Step 2: Substitute the most similar case’s value for the missing

value.
E5. K-nearest neighbours algorithm (KNN) imputes missing

values by the average value of the K nearest patterns using the
following equation:

xij ¼

PK
k ¼ 1 xkj

k
ð11Þ
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where xij represents a missing value in the jth variable of the ith
instance. K is the number of nearest neighbours and xkj is the
value of the jth variable of the kth nearest neighbour.

E6. Weighted K-nearest neighbours (WKNN) algorithm replaces
missing values with a weighted average of the K-nearest
neighbours, as presented in the following equation. Let us assume
that the value of the jth variable of the ith instance (xij) is missing.

Using WKNN algorithm, xij is replaced by

xij ¼

PK
k ¼ 1 wkxkjPK

k ¼ 1 wk

ð12Þ

where wk ¼ 1=dik

Here, wk is the weight associated to the kth nearest neighbour.
xkj is the value of the jth variable of the kth nearest neighbour. dik

is the Euclidean distance between the ith pattern (the instance
with the missing value) and the kth nearest neighbour. K is the
number of nearest neighbours. In other words, the weight wk of
the kth nearest donor is equal to the reciprocal of its Euclidean
distance to the instance with missing values.

E7. Expectation maximization (EM) is a procedure for parameter
estimation in the presence of missing data. It is an iterative two-
step (E-step and M-step) process.

The E (Expectation) step fills in the missing values using
estimated values for the model parameters (initially random
values are assigned to these parameters).

Then, the M (Maximization) step re-estimates the parameters
by using the observed and imputed values to maximize the log-
likelihood of the model.

The algorithm iterates from E to M steps until the log-
likelihood converges to a stationary point. The implementation of
EM assumes all attributes to be independent and normally
distributed.

E8. Single imputation with neural network-based algorithms:
Single imputation algorithms create a model for predicting the
conditional mean of the missing value. The candidate input variables
include the main variables and the indicator variables. The output
variable is the variable with missing values. Three neural network
models (MLP, RBFN, and GRNN) were designed for the imputation of
missing data. We also tested four neural network ensemble models:
heterogeneous ensemble with simple averaging for single imputa-
tion (HES SI), heterogeneous ensemble with weighted averaging for
single imputation (HEW SI), homogeneous ensemble with simple
averaging for single imputation (HOS SI), and homogeneous
ensemble with weighted averaging for single imputation (HOW
SI). The members in heterogeneous ensembles (HES SI and HEW SI)
are a MLP, a RBFN and a GRNN, whereas the members in
homogeneous ensembles (HOS SI and HOW SI) are GRNNs. Like
EM, neural networks (MLP, RBFN, and GRNN) and neural network
ensembles (HES SI, HEW SI, HOS SI, and HOW SI) impute missing
values by two iterative steps: (1) imputing missing values based on
initial estimates of model parameter values and (2) updating model
parameters. Currently, many powerful and flexible neural network
modelling software packages are available. Hence in this section, we
only discuss how the free parameters of single and ensemble neural
network models are fixed.

For each neural network topology, 100 networks with different
initial weight configurations were trained and the network with
the best performance on the validation set was chosen.

E8.1. Tuning of the free parameters of MLP
�
 Number of input nodes (input variables): The number of nodes in
the input layer is decided by SAGA.
�
 Number of hidden layers: Empirical studies suggest that generally
for most applications one hidden layer is sufficient. The new
findings also suggest that the risk of overfitting increases with
the number of hidden layers. After considering the pros and cons,
we chose one hidden layer for our MLP models.

�
 Number of hidden nodes: The number of nodes in the hidden

layer is equal to the number of hidden nodes plus one bias
node. Too few or too many hidden nodes can cause the MLP to
underfit or overfit during training. In most situations, there is
no way to determine the best number of hidden nodes except
through trial, error and observation. We determine the number
of hidden nodes with the trial and error procedure.

�
 Types of transfer functions: A transfer function ensures that the

values in a network remain within a reasonable range. The
transfer functions in different layers may or may not be
identical, but the transfer functions for all nodes in the same
layer should be identical, so that all input values for a hidden
or output node are within the same range. We scaled data in
the range of 0–1. Hence, the forecasted values are assumed to
be bounded in the range of 0–1. To satisfy this requirement,
the logistic-sigmoid function was chosen as the activation
function for the output node. The main purpose of the hidden
node transfer functions is to introduce nonlinearity into the
network. Common hidden node transfer functions are logistic
function, tangent hyperbolic function (tanh), and Gaussian
function. We tried each of these three functions individually
during our tests and in all cases the performance of the
network was pretty much the same. In this study, tanh is
selected as the activation function of hidden nodes.

E8.2. Parameter specification for radial basis function neural

networks (RBFN): Optimum number of hidden nodes: are
determined using a trial-and-error approach. Each hidden node
corresponds to a prototype pattern. These prototype patterns are
selected using the K-medoid clustering algorithm (described
below). The widths of the radial basis functions are optimized
using the real-valued particle swarm optimization (PSO) algo-
rithm, since the PSO was originally developed for real-valued
spaces (described in section E10).

We adjust connection weights of the RBFN using the back-
propagation technique.

E.1. K-Medoid clustering algorithm

Step 1: Begin with a decision on the value of K¼number of
clusters.
Step 2: Take the first K training input patterns as cluster
centres (centroids). Assign each of the remaining (N-K)
training input patterns to cluster with the nearest centroid.
After each assignment, re-compute the centroid of the gaining
cluster. The centroid is the input pattern with the minimum
average Euclidean distance to all members in the cluster.
Step 3: Take each sample in sequence and compute its
(Euclidean) distance from the centroid of each of the clusters.
If a sample is not currently in the cluster with the closest
centroid, switch this input pattern to that cluster and update
the centroid of the cluster gaining the new input pattern and
the cluster losing the input vector.
Step 4: Repeat step 3 until convergence is achieved, that is until a
pass through all training patterns causes no new assignments.

E9. Ensemble neural networks: ANN ensemble consists of
several individually trained ANN classifiers (base classifiers) that
are jointly used to solve a problem. In our experiments, two types
of ensembles—homogeneous and heterogeneous ensembles are
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constructed. A heterogeneous ensemble is a collection of different
neural networks (ERNN, GRNN, MLP, and RBFN) that together
‘‘vote’’ on a given example. All the individual networks in the
heterogeneous ensemble are trained on the same training data,
with the same predictors. In contrast, a homogeneous ensemble is
a collection of the same kind of neural networks trained using
different feature subsets as opposed to only one feature subset
used in a heterogeneous ensemble model. For generating homo-
geneous ensemble models, we used multiple GRNNs each trained
using different feature subsets. Each ensemble member tries to
predict the response variable. The base classifiers of heteroge-
neous ensemble models constructed for the substitution of
missing values include: GRNN, MLP, and RBFN.

The outputs of ensemble members are fused together to get
the final decision. Majority and weighted majority voting are
common methods for combining the outputs of ensemble
members. In our study, we evaluated four types (two homo-
geneous and two heterogeneous) of neural network ensembles:
(1) heterogeneous ensemble with majority voting, (2) hetero-
geneous ensemble with weighted majority voting, (3) homo-
geneous ensemble with majority voting, and (4) homogeneous
ensemble with weighted majority voting.

In majority voting, the final prediction of the ensemble on each
test data point is an average of the predictions of all ensemble
members as follows:

Yi ¼

Pn
j ¼ 1 y

_

ij

n
ð13Þ

where Yi is the actual output of the ith pattern, y
_

ij is the output of
the ith pattern predicted by the jth member, and n is the total
number of base classifiers.

In weighted majority voting, each ensemble member votes
with its confidence. The final output of the ensemble was
calculated using the following equation:

Yi ¼

Pn
j ¼ 1ðwjy

_

ijÞPn
j ¼ 1 wj

ð14Þ

where wj is the weight with which the jth ensemble member
participates in the final output and y

_

ij is the output of the ith
pattern predicted by the jth member.

The vote weights of the base classifiers were optimized by a
real-valued PSO. The vote weights are assigned to base classifiers
based on the global best-fitted combination. The optimization
process is described in detail here.

We normalize each variable to the range [0,1].

E10. Pseudo-code of real-valued PSO for optimizing the parameter

set

Step 1: Specify parameters
� Range of weights: Constrain ranges of values of parameters of

interest to be within 0 and 1.
� Population size: The swarms were set to 10 particles.
� Position of each particle: The ith particle of the swarm at time t

can be represented by a position vector. XiðtÞ ¼ ½Xi1ðtÞ,Xi2,
Xi3,Xi4,:::�, where each bit represents the position (i.e. value) of
a particular parameter of a paricle (parameter vector) and each
bit is a real value in the interval [0,1]. We randomly initialize
the position of each particle.
� Maximum and minimum velocities: We set maximum velocity

(Vmax) of any particle to be 1=3 or 0.33 and minimum velocity
(Vmin) to be 0.05. Velocity determines the change in a
parameter value at a particular time t.

� Velocity of each particle: The velocity of the ith particle at time t

is denoted by Vi(t)¼[Vi1(t),Vi2(t),Vi3(t),Vi4(t)] where each bit
represents the velocity of a particular parameter of a particle
and each bit is a real value in the interval [0.05–0.33 ]. Particle
velocities are initially randomly determined.

Step 2: Evaluate the fitness F (prediction accuracy) of each
particle by training a machine learning algorithm using the
particle’s current position Xi(t). The prediction accuracy was
estimated by 10-fold cross validation.Let F(Xi) is the fitness
score of the ith particle.F(Xi) is the prediction accuracy of ith
particle as a fraction, where 0rF(Xi)r1.
Step 3: The swarm was initialized randomly with each
particle’s personal best position (Pi,best) being the same as its
current position. Compare the fitness of each particle F(Xi) to
its best fitness so far F(Pi,best); and update each particle’s best
position. If F(Xi)4F(Pi,best), then F(Pi,best)¼F(Xi), and Pi,best¼Xi

Step 4: Update the global best particle (Pgbest) and its fitness
(F(Pgbest)):If F(Xi)4F(Pgbest), then F(Pgbest)¼F(Xi) and Pgbest¼Xi.
Step 5: Change the velocity of each bit of the particle according to

Vijðtþ1Þ ¼wVijðtÞþc1r1ðPij:best�XijÞþc2r2ðPgbest�XijÞ ð15Þ

where w¼ 1�ðTspent=TmaxÞ

If Vijðtþ1Þ4Vmax, then Viðtþ1Þ ¼ Vmax

If Vijðtþ1ÞoVmin, then Viðtþ1Þ ¼ Vmin

where Vij(t+1) and Vij(t) denote velocities of jth bit for the ith
particle at time (t+1) and t, respectively. w is the inertia weight
which shows the effect of previous velocity vector on the new
vector. Tmax denotes the total number of iterations and Tspent

denotes the number of iterations performed so far. r1 and r2 are
two random numbers between (0, 1). c1 and c2 are two positive
constants: c1¼c2¼2.
Step 6: Move each particle to the new position using

Xijðtþ1Þ ¼ XijðtÞþVijðtþ1Þ ð16Þ

If Xij(t+1)41; then Xij¼1 [since the maximum weight cannot
be greater than 1]If Xij(t+1)o0, then Xij(t+1)¼0 [since the
minimum parameter value cannot be less than 0].
Step 7: Go to step 2, and repeat until stopping criterion is met.

E11. Multipleimputation

We implemented the following multiple imputation algo-
rithms: Markov chain Monte Carlo (MCMC—a multiple-imputation
version of the EM algorithm), multilayer perceptron with multiple
imputation (MLP MI), radial basis function networks with multiple
imputation (RBFN MI), generalized regression networks with
multiple imputation (GRNN MI), HES MI (a multiple-imputation
version of the HES SI), HEW MI (a multiple-imputation version of
the HEW SI), HOS MI (a multiple-imputation version of the HOS SI),
HOW MI (a multiple-imputation version of the HOW SI), hot deck
multiple imputation (HD MI), K-nearest neighbours algorithm with
multiple imputation (KNN MI) and weighted K-nearest neighbours
algorithm with multiple imputation (WKNN MI). A commonly
practiced multiple imputation (MI) analysis consists of three steps:
imputation, analysis and pooling.

Imputation: In this step, each missing value is imputed for
several (M) times, which yields m complete datasets. In MCMC,
MLP MI, and RBFN MI, multiple imputations are generated by
randomly selecting M sets of initial parameter estimates. Starting
at different initial parameter guesses will generally lead to
different local optimal solutions. In GRNN MI, HOS MI, HOW MI,
HES MI, HEW MI, KNN MI and WKNN MI, M new training sets are
randomly extracted from the original training set, each compris-
ing 70% training examples. Different training sets will lead to
different imputation models. M different models will lead to
different complete dataset. In HD MI, M donors are randomly
chosen for each missing value from the pool of potential donors
that will lead to M different complete datasets. Like EM, each of
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the following multiple imputation algorithms :MCMC, MLP MI,
RBFN MI, GRNN MI, HES MI, HEW MI, HOS MI, and HOW MI is an
iterative process that alternatively fills in missing values and
makes inferences about the unknown parameters. However, these
algorithms do this in a stochastic or random fashion.

The Imputation I-step: Given an estimated mean vector and
covariance matrix of parameters, the I-step simulates the missing
values for each data point independently by randomly drawing
parameters from their conditional distribution.

The posterior P-step: Given a complete dataset obtained in the
previous step, the mean vector and covariance matrix are
recomputed. The new mean vector and covariance matrix are
then used in the next I-step.

The above two steps are iterated until the mean vector and
covariance matrix stabilize.

Analysis: Each of the M completed datasets are analyzed. This
step results in the m analysis results. For example, with m

imputations, m different sets of mean and variance for a missing
value can be computed. Let us suppose that Y

_

i and Ûi are the mean
and variance estimates from the ith imputed dataset, i¼ 1,2,. . .,m.

Multiple imputation algorithms construct two models—Model

1 for predicting the conditional mean (Y
_

i) of the missing value
and Model 2 for predicting the conditional variance (Ûi) of the
missing value. The output variable in Model 1 is the variable
with missing values, whereas the output variable in Model 2
is the squared residuals of the fitted Model 1. The predictor
variables of both models are the main variables and the indicator
variables.

Pooling: The m analysis results are integrated into a final result
(i.e. the vector of means and the variance–covariance matrix of
model parameters). Simple rules exist for combining the m

analysis results

Y ¼
1

M

XM
i ¼ 1

Y
_

i ð17Þ

Let us suppose that U is the within-imputation variance, which
is the average of the M complete data-estimates:

U ¼
1

M

XM
i ¼ 1

Ûi ð18Þ

And B is the between-imputation variance

B¼
1

ðM�1Þ

XM
i ¼ 1

ðY
_

i�YÞ2 ð19Þ

Then the variance estimate associated with Q is the total
variance [11]

T ¼Uþ 1þ
1

M

� �
B ð20Þ

We replicate each record of the original dataset mtimes. We
then impute the missing values setting them to Yþ

ffiffiffi
T
p

R where R

is a pseudo random number drawn from a normal distribution
with mean 0 and standard deviation 1.
Appendix F. Description of datasets

New real world dataset (smoking dataset): We received a three
stage cross sectional survey data on the smoking habits of
teenagers from the centre for tobacco control research at the
University of Stirling and Open University. The data were
collected from Scotland, England, Northern Ireland and Wales in
three survey stages: stage1 in 1999, stage 2 in 2002 and stage 3 in
2004. The response variable is a binary variable (1¼smoker,
0¼non-smoker). Explanatory variables include socio-demo-
graphic characteristics of respondents, their knowledge and
attitudes towards tobacco promotion of all sorts and their
smoking knowledge, attitudes and behaviour. This smoking
dataset contains 285 features, 3321 instances but has a large
number of missing values. This dataset contains about 37%
missing values. Among the respondents, an overall proportion of
11% (355 respondents) are smokers. We applied our proposed
missing data imputation algorithm (GEMI) to replace missing
values (details are available in Section 5). We did not add artificial
features to this dataset.

Public real-world datasets: The public real-world datasets are
obtained from UCI Machine Learning Repository [145]. The UCI
datasets on which we tested the algorithms are: (1) Abalone,
(2) Acute Inflammations, (3) Adult, (4) Annealing, (5) Arcene,
(6) Arrhythmia, (7) Automobile, (8) Auto MPG, (9) Balance Scale,
(10) Balloons, (11) Blood Transfusion Service Center, (12) Breast
Cancer Wisconsin (Diagnostic), (13) Breast Cancer Wisconsin
(Prognostic), (14) Car Evaluation, (15) Census-Income (KDD),
(16) Chess (King-Rook vs. King), (17) Chess (King-Rook vs. King-
Knight), (18) Chess (King-Rook vs. King-Pawn), (19) Congressional
Voting Records, (20) Communities and Crime, (21) Contraceptive
Method Choice, (22) Credit Approval, (23) Cylinder Bands,
(24) Dermatology, (25) Dorothea, (26) Echocardiogram, (27) Ecoli,
(28) Flags, (29) Forest Fires, (30)Gisette, (31) Glass Identification,
(32) Haberman’s Survival, (33) Hayes-Roth, (34) Heart Disease,
(35) Hepatitise, (36) Horse Colic, (37) Housing, (38) Internet
Advertisements, (39)Ionosphere, (40) Japanese Credit Screening,
(41) Ionosphere, (42) Iris, (43) Letter Recognition, (44) Low
Resolution Spectrometer, (45) Lung Cancer, (46) Magic Gamma
Telescope, (47) MONK’s Problems, (48) Mushroom, (49)Nursery,
(50) Parkinsons, (51) Pima Indians Diabetes, (52) Pittsburgh
Bridges, (53) Poker Hand, (54) Post-Operative Patient, (55) Soy-
bean (large), (56) Spambase, (57) SPECHT Heart, (58 )Statlog
(shuttle), (59) Statlog (vehicle Silhouettes), (60) Teaching Assis-
tant Evaluation, (61) Thyroid disease, (62)Tic-Tac-Toe Endgame,
(63) University, (64) Wine, (65) Wine Quality, (66) Yeast and
(67) Zoo.
F.1. Synthetic datasets

Feature interactions and feature redundancy are problematic
in most data mining settings. The principal motivation behind
generating synthetic datasets was to recreate these problems on
large scale and perform experiments on controlled datsets.

Each dataset includes 10,000 instances each of 100 features. All
features are continuous-valued. The response variable is a binary
variable. The following steps were taken to generate these datasets.

Step 1: Specify different mean vectors and different covariance
matrices for 90 features x1,x2,. . .,x90ð Þ for the 200 different
datasets. Since mean vectors and covariance matrices of no
two datasets are the same, the joint distribution of features is
different in each dataset.
Step 2: Generate 10,000 combinations of feature values for
each dataset from its unique mean vector and covariance
matrix.
Step 3: Create 10 new features x91,. . .,x100ð Þfrom the first 90
features, using the following equation:

xij ¼ a0þa1xiðj�15Þ þa2xiðj�22Þxiðj�27Þxiðj�50Þ�a3xiðj�66Þxiðj�74Þ þsjRij

ð21Þ
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where j¼91,92,y,99,100; and i¼1,y,10,000; and s40xij

represents the value of jth feature for the ith instance.
(a1,a2,a3) are model parameters.
To simulate interactions between features, we included two
interaction terms. Interaction terms are formed by the multi-
plication of two or more explanatory variables. We included
one two-way interaction term (xi(x�66)xi(x�74)), and one three-
way interaction term (xi(j�22)xi(j�27)xi(j�50)). Rij is a normally
le H1
average classification accuracy of GRNN classifier in imputed datasets under different

lgorithm Rate of missing values

5% 10% 20% 30%

EMI 99 (3) 97 (3) 99 (5) 93 (2)

ESI 97 (3) 93 (4) 87 (7) 66 (14)

M 99 (4) 82 (5) 72 (8) 66 (8)

RNN MI 98 (4) 87 (9) 89 (3) 80 (9)

RNN SI 98 (2) 84 (8) 67 (11) 67 (11)

D MI 99 (3) 92 (5) 71 (12) 55 (14)

D SI 98 (4) 90 (7) 64 (5) 62 (8)

ES MI 99 (4) 94 (5) 81 (2) 79 (9)

ES SI 99 (3) 84 (10) 97 (14) 65 (14)

EW MI 99 (5) 82 (8) 93 (6) 81 (6)

EW SI 99 (3) 99 (3) 90 (9) 70 (11)

OS MI 97 (3) 90 (8) 71 (12) 95 (18)

OS SI 98 (3) 86 (12) 60 (11) 62 (16)

OW MI 99 (4) 93 (4) 83 (4) 90 (9)

OW SI 99 (2) 87 (6) 89 (9) 93 (17)

NN MI 99 (3) 93 (9) 83 (8) 59 (16)

NN SI 99 (3) 81 (6) 61 (14) 60 (3)

CMC 98 (3) 98 (4) 83 (3) 83 (10)

LP MI 98 (3) 97 (5) 78 (7) 70 (11)

LP SI 99 (4) 82 (7) 72 (11) 56 (13)

S 99 (3) 82 (5) 64 (7) 66 (10)

BF MI 97 (3) 83 (10) 80 (9) 69 (10)

BF SI 98 (3) 85 (9) 70 (6) 72 (15)

KNN MI 99 (4) 86 (8) 78 (3) 71 (12)

KNN SI 97 (2) 82 (8) 76 (10) 76 (6)

I 98 (4) 80 (12) 54 (18) 60 (9)

le H2
average classification accuracy of LR classifier in imputed datasets under different lev

lgorithms Rate of missing values

5% 10% 20% 30%

EMI 98 (4) 96 (5) 93 (6) 85 (8)
ESI 94 (3) 85 (9) 75 (8) 63 (17)

M 98 (4) 77 (7) 62 (10) 60 (7)

RNN MI 98 (4) 82 (7) 76 (11) 69 (10)

RNN SI 98 (5) 81 (11) 62 (14) 59 (19)

D MI 98 (4) 79 (7) 64 (12) 52 (20)

D SI 98 (4) 88 (8) 60 (7) 50 (23)

ES MI 98 (4) 83 (7) 71 (14) 63 (14)

ES SI 98 (4) 77 (9) 66 (14) 56 (15)

EW MI 98 (5) 74 (5) 87 (7) 73 (14)

EW SI 98 (6) 72 (7) 69 (15) 54 (12)

OS MI 98 (4) 75 (10) 67 (19) 70 (20)

OS SI 98 (4) 77 (16) 51 (19) 47 (18)

OW MI 98 (4) 85 (10) 82 (11) 85 (10)
OW SI 98 (4) 80 (6) 71 (11) 64 (18)

NN MI 98 (3) 82 (10) 60 (14) 57 (18)

NN SI 98 (4) 72 (19) 57 (18) 47 (21)

CMC 98 (4) 95 (7) 73 (6) 76 (11)

LP MI 98 (3) 75 (11) 71 (11) 62 (15)

LP SI 98 (5) 79 (10) 47 (11) 51 (20)

S 98 (4) 73 (10) 50 (8) 47 (26)

BF MI 98 (4) 80 (13) 64 (13) 65 (11)

BF SI 98 (3) 80 (11) 56 (7) 37 (22)

KNN MI 98 (4) 79 (9) 65 (9) 53 (24)

KNN SI 98 (4) 79 (13) 53 (14) 41 (29)

I 98 (5) 70 (18) 51 (13) 47 (25)
distributed random number with mean 0 and standard
deviation 1, sj denotes the standard error of the feature xj.
Step 4: The probability of the event of interest for each instance
was estimated by the following model. Only 6 features among
100 features were included in the model

PðYÞ ¼ 1=1þexpð�ZÞ, Z ¼ b0þb1x91þb2x94þb3x95þb4x97�b5x99x100

ð22Þ
levels of missing rates (standard deviations in parentheses).

40% 50% 60% 70% 75%

84 (7) 81 (9) 72 (13) 64 (7) 56 (14)

66 (14) 63 (7) 54 (7) 55 (8) 54 (21)

67 (15) 65 (12) 55 (4) 45 (11) 47 (12)

70 (17) 55 (11) 59 (13) 50 (12) 41 (16)

56 (15) 56 (9) 55 (8) 51 (22) 54 (25)

59 (12) 59 (8) 63 (10) 42 (18) 46 (16)

66 (13) 54 (11) 51 (5) 50 (21) 57 (17)

58 (14) 70 (11) 57 (5) 40 (19) 41 (23)

57 (11) 53 (16) 58 (2) 54 (15) 49 (16)

72 (12) 55 (7) 67 (8) 51 (19) 55 (9)

55 (11) 51 (5) 67 (9) 43 (18) 45 (16)

71 (13) 63 (15) 58 (7) 51 (15) 46 (18)

63 (8) 57 (8) 53 (9) 43 (20) 58 (14)

75 (10) 68 (6) 58 (8) 70 (19) 48 (18)

45 (12) 58 (11) 57 (8) 55 (29) 56 (15)

73 (11) 54 (12) 55 (7) 56 (17) 51 (16)

60 (11) 53 (9) 71 (8) 47 (12) 56 (9)

72 (12) 54 (15) 53 (5) 45 (14) 50 (15)

63 (13) 58 (9) 62 (9) 46 (14) 43 (12)

59 (17) 59 (9) 53 (13) 47 (10) 55 (15)

57 (14) 59 (9) 64 (9) 51 (9) 47 (10)

49 (16) 54 (10) 51 (9) 52 (17) 49 (24)

54 (8) 49 (17) 55 (7) 37 (13) 49 (20)

67 (22) 56 (9) 52 (4) 48 (17) 46 (19)

66 (17) 61 (10) 64 (7) 53 (12) 41 (17)

64 (10) 57 (8) 55 (6) 45 (18) 60 (17)

els of missing rates (standard deviations in parentheses).

40% 50% 60% 70% 75%

74 (10) 64 (21) 59 (14) 52 (11) 56 (18)
66 (24) 54 (8) 52 (11) 55 (10) 39 (12)

51 (29) 51 (17) 49 (5) 44 (16) 44 (17)

48 (21) 55 (12) 51 (11) 44 (12) 45 (16)

55 (17) 49 (8) 51 (9) 33 (12) 46 (14)

55 (15) 58 (11) 50 (10) 38 (18) 44 (18)

59 (16) 53 (12) 47 (7) 38 (15) 52 (24)

47 (21) 53 (12) 50 (9) 41 (21) 39 (15)

47 (22) 52 (18) 55 (9) 53 (17) 42 (11)

60 (19) 52 (11) 53 (16) 39 (18) 38 (19)

55 (14) 50 (10) 43 (9) 43 (19) 43 (21)

53 (22) 49 (17) 53 (8) 45 (16) 38 (19)

55 (23) 51 (13) 50 (10) 39 (20) 46 (14)

74 (11) 58 (12) 52 (11) 36 (13) 47 (18)

45 (22) 46 (19) 43 (9) 40 (14) 43 (15)

55 (18) 54 (14) 48 (12) 36 (16) 40(20)

51 (20) 47 (10) 51 (10) 43 (16) 47 (23)

57 (15) 49 (14) 49 (8) 41 (20) 49 (18)

59 (18) 57 (14) 47 (10) 42 (16) 43 (22)

55 (19) 46 (13) 50 (16) 45 (14) 42 (15)

55 (32) 49 (7) 50 (13) 44 (17) 39 (18)

46 (24) 46 (12) 47 (12) 37 (11) 34 (18)

54 (14) 47 (17) 50 (9) 39 (15) 45 (16)

45 (21) 50 (12) 52 (12) 43 (12) 41 (16)

51 (18) 50 (11) 52 (9) 49 (21) 40 (18)

53 (14) 44 (9) 45 (8) 40 (18) 47 (17)



Table H3
The average classification accuracy of MLP classifier in imputed datasets under different levels of missing rates (standard deviations in parentheses).

Algorithms Rate of missing values

5% 10% 20% 30% 40% 50% 60% 70% 75%

GEMI 94 (5) 94 (5) 84 (6) 77 (10) 71 (10) 63 (22) 46 (23) 49 (17) 19 (13)

GESI 90 (5) 77 (4) 63 (10) 56 (15) 32 (13) 49 (14) 48 (11) 48 (15) 27 (12)

EM 95 (5) 65 (7) 50 (20) 53 (20) 38 (15) 43 (19) 42 (17) 40 (11) 37 (10)

GRNN MI 96 (5) 67 (14) 48 (20) 54 (12) 36 (19) 46 (19) 39 (10) 39 (17) 42 (16)

GRNN SI 94 (5) 74 (15) 62 (13) 45 (27) 54 (19) 44 (10) 44 (9) 32 (9) 39 (7)

HD MI 96 (4) 72 (8) 51 (14) 49 (26) 34 (21) 46 (15) 37 (3) 37 (17) 40 (16)

HD SI 95 (4) 63 (10) 59 (13) 42 (29) 26 (17) 45 (14) 44 (12) 28 (14) 30 (13)

HES MI 99 (4) 67 (14) 62 (18) 34 (20) 41 (34) 53 (27) 43 (17) 36 (18) 34 (12)

HES SI 93 (5) 77 (11) 23 (18) 41 (16) 40 (27) 44 (20) 42 (13) 22 (12) 38 (12)

HEW MI 97 (5) 89 (7) 39 (10) 45 (18) 51 (20) 42 (13) 26 (12) 33 (10) 29 (13)

HEW SI 95 (6) 71 (16) 45 (13) 54 (13) 47 (22) 47 (12) 39 (11) 40 (15) 37 (16)

HOS MI 94 (5) 71 (13) 66 (21) 34 (19) 32 (17) 42 (16) 45 (11) 35 (14) 32 (14)

HOS SI 97 (5) 57 (18) 48 (18) 46 (19) 52 (24) 49 (17) 50 (12) 37 (16) 37 (18)

HOW MI 95 (6) 79 (11) 75 (12) 50 (16) 53 (17) 48 (19) 39 (13) 22 (12) 28 (15)

HOW SI 92 (5) 80 (11) 52 (21) 31 (22) 39 (14) 38 (16) 42 (9) 26 (12) 38 (14)

KNN MI 96 (5) 63 (15) 41 (16) 47 (23) 39 (18) 51 (15) 42 (14) 27 (11) 27 (13)

KNN SI 94 (6) 65 (21) 50 (22) 45 (42) 53 (22) 45 (12) 23 (7) 42 (17) 25 (12)

MCMC 96 (6) 69 (9) 85 (13) 61 (12) 56 (17) 41 (19) 49 (13) 32 (14) 28 (14)

MLP MI 94 (4) 65 (10) 47 (15) 58 (18) 50 (18) 39 (12) 46 (11) 42 (21) 37 (14)

MLP SI 95 (6) 61 (15) 48 (10) 47 (22) 49 (19) 38 (14) 23 (12) 40 (11) 29 (11)

MS 97 (4) 65 (11) 49 (18) 40 (31) 39 (17) 48 (12) 33 (12) 35 (15) 36 (16)

RBF MI 96 (5) 74 (14) 62 (14) 59 (11) 39 (21) 46 (16) 46 (12) 31 (14) 33 (16)

RBF SI 95 (5) 68 (14) 55 (20) 37 (15) 45 (18) 49 (19) 48 (9) 39 (17) 36 (16)

WKNN MI 96 (5) 70 (15) 55 (21) 55 (27) 39 (17) 48 (16) 46 (11) 39 (15) 36 (15)

WKNN SI 95 (5) 64 (17) 48 (14) 38 (32) 49 (20) 42 (15) 40 (10) 37 (16) 37 (17)

ZI 94 (6) 56 (16) 44 (24) 38 (2) 48 (21) 38 (11) 43 (10) 37 (15) 37 (12)

Table H4
Pairwise comparisons among imputation algorithms in terms of interval estimation of missing data.

Rank Algorithm Significantly outperformed algorithms

With about 10% missing values
1 GEMI (1)MCMC, (2) HOW MI, (3) HEW MI, (4) GRNN MI, (5) HD MI, (6) WKNN MI, (7) HES MI, (8)

RBF MI, (9) MLP MI, (10) HOS MI, (11) KNN MI

2 MCMC (1) GRNN MI, (2) HD MI, (3) WKNN MI, (4) HES MI, (5) RBF MI, (6) MLP MI, (7) HOS MI, (8)

KNN MI

3 HOW MI, HEW MI, GRNN MI, HD MI, WKNN MI (1) HES MI, (2) RBF_MI, (3) MLP MI, (4) HOS MI, (5) KNN MI

4 HES MI (1) RBF MI, (2) MLP MI, (3) HOS MI, (4) KNN MI

5 RBF MI (1) MLP MI, (2) HOS MI, (3) KNN MI

6 MLP MI (1) HOS MI, (2) KNN MI

7 HOS MI (1) KNN MI

8 KNN MI 0

With about 20% missing values
1 GEMI (1) HOW MI, (2) HEW MI, (3) GRNN MI, (4) HES MI, (5) RBF MI, (6) WKNN MI, (7) HD MI, (8)

KNN MI, (9) MLP MI, (10) HOS MI

2 MCMC, HOW MI (1) HEW MI, (2) GRNN MI, (3) HES MI, (4) RBF MI, (5) WKNN MI, (6) HD MI, (7) KNN MI, (8)

MLP MI, (9) HOS MI

3 HEW MI (1) GRNN MI, (2) HES MI, (3) RBF MI, (4) WKNN MI, (5) HD MI, (6) KNN MI, (7) MLP MI, (8)

HOS MI

4 GRNN MI (1) HES MI, (2) RBF MI, (3) WKNN MI, (4) HD MI, (5) KNN MI, (6) MLP MI, (7) HOS MI

5 HES MI, RBF MI (1) WKNN MI, (2) HD MI, (3) KNN MI, (4) MLP MI, (5) HOS MI

6 WKNN MI (1) HD MI, (2) KNN MI, (3) MLP MI, (4) HOS MI

7 HD MI (1) KNN MI, (2) MLP MI, (3) HOS MI

8 KNN MI (1) MLP MI, (2) HOS MI

9 MLP MI (1) HOS MI

10 HOS MI 0

With about 30% missing values
1 GEMI (1) MCMC, (2) HOW MI, (3) HEW MI, (4) HOS MI, (5)HES MI, (6) GRNN MI, (7) HD MI, (8) RBF

MI, (9) MLP MI, (10)KNN MI, (11) WKNN MI

2 MCMC (1) HOS MI, (2)HES MI, (3) GRNN MI, (4) HD MI, (5) RBF MI, (6) MLP MI, (7)KNN MI, (8)

WKNN MI

3 HOW MI, HEW MI (1) GRNN MI, (2) HD MI, (3) RBF MI, (4) MLP MI, (5)KNN MI, (6) WKNN MI

4 HOS MI (1) RBF MI, (2) MLP MI, (3)KNN MI, (4) WKNN MI

5 HES MI, GRNN MI, HD MI, RBF MI (1) MLP MI, (2)KNN MI, (3) WKNN MI

6 MLP MI (1)KNN MI, (2) WKNN MI

7 KNN MI WKNN MI

8 WKNN MI 0
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Table H4 (continued )

Rank Algorithm Significantly outperformed algorithms

With about 40% missing values
1 GEMI (1) MCMC, (2) HEW MI, (3) HD MI, (4) HES MI, (5) MLP MI, (6) KNN MI, (7) WKNN MI, (8)

HOS MI, (9) RBF MI

2 HOW MI, GRNN MI (1) MLP MI, (2) KNN MI, (3) WKNN MI, (4) HOS MI, (5) RBF MI

3 MCMC,HEW MI, HD MI (1) KNN MI, (2) WKNN MI, (3) HOS MI, (4) RBF MI

4 HES MI, MLP MI (1) WKNN MI, (2) HOS MI, (3) RBF MI

5 KNN MI (1) HOS MI, (2) RBF MI

6 WKNN MI (1) RBF MI

7 RBF MI 0

With about 50% missing values
1 GEMI (1)HOW MI, (2) HES MI, (3) RBF MI, (4) MCMC, (5) HEW MI, (6) GRNN MI, (7) HD MI, (8) MLP

MI, (9) KNN MI, (10) HOS MI, (11) WKNN MI

2 HOW MI (1) MCMC, (2) HEW MI, (3) GRNN MI, (4) HD MI, (5) MLP MI, (6) KNN MI, (7) HOS MI, (8)

WKNN MI

3 HES MI, RBF MI (1) MLP MI, (2) KNN MI, (3) HOS MI, (4) WKNN MI

4 MCMC, HEW MI, GRNN MI, HD MI (1)HOS MI, (2) WKNN MI

5 KNN MI, HOS MI WKNN MI

6 WKNN MI 0

With about 60% missing values
1 GEMI (1) HOW MI, (2) HEW MI, (3) HES MI, (4) HD MI, (5) KNN MI, (6) GRNN MI, (7) HOS MI, (8)

MCMC, (9) RBF MI, (10) MLP MI, (11) WKNN MI

2 HOW MI (1) HOS MI, (2) MCMC, (3) RBF MI, (4) MLP MI, (5) WKNN MI

3 HEW MI, HES MI, HD MI, KNN MI (1) MCMC, (2) RBF MI, (3) MLP MI, (4) WKNN MI

4 GRNN MI, HOS MI (1) MLP MI, (2) WKNN MI

5 MCMC, RBF MI, MLP MI (1) WKNN MI

6 WKNN MI 0

With about 70% missing values
1 GEMI (1) HOW MI, (2) HEW MI, (3) HES MI, (4) HD MI, (5) KNN MI, (6) GRNN MI, (7) HOS MI, (8)

MCMC, (9) RBF MI, (10) MLP MI, (11) WKNN MI

2 HOW MI, HEW MI, HES MI, HD MI, KNN MI, GRNN MI, HOS MI,

MCMC, RBF MI, MLP MI, WKNN MI

0

Table H5
Pairwise comparisons among imputation algorithms in terms of the accuracy of estimating missing values.

Rank Algorithm Significantly outperformed algorithms

With about 10% missing values
1 GESI (1) HOW SI, (2)HD SI, (3) GRNN SI, (4) EM, (5) WKNN SI, (6) HEW SI, (7) KNN

SI, (8)ZI, (9) HES SI, (10)MLP SI, (11) HOS SI, (12) MS, (13) GEMI, (14) RBF SI,

(15) MCMC, (16) HOW MI, (17) WKNN MI, (18)HEW MI, (19)MLP MI, (20) KNN

MI, (21)GRNN MI, (22) RBF MI, (23) HOS MI, (24) HD MI, (25) HES MI

2 HOW SI, HD SI, GRNN SI, EM, WKNN SI (1)MLP SI, (2) HOS SI, (3) MS, (4) GEMI, (5) RBF SI, (6) MCMC, (7) HOW MI, (8)

WKNN MI, (9)HEW MI, (10)MLP MI, (11) KNN MI, (12)GRNN MI, (13) RBF MI,

(14) HOS MI, (15) HD MI, (16) HES MI

3 HEW SI (1) HOS SI, (2) MS, (3) GEMI, (4) RBF SI, (5) MCMC, (6) HOW MI, (7) WKNN MI,

(8)HEW MI, (9)MLP MI, (10) KNN MI, (11)GRNN MI, (12) RBF MI, (13) HOS MI,

(14) HD MI, (15) HES MI

4 KNN SI, ZI (1) GEMI, (2) RBF SI, (3) MCMC, (4) HOW MI, (5) WKNN MI, (6)HEW MI,

(7)MLP MI, (8) KNN MI, (9)GRNN MI, (10) RBF MI, (11) HOS MI, (12) HD MI,

(13) HES MI

5 HES SI, MLP SI, HOS SI, MS (1) RBF SI, (2) MCMC, (3) HOW MI, (4) WKNN MI, (5)HEW MI, (6)MLP MI, (7)

KNN MI, (8)GRNN MI, (9) RBF MI, (10) HOS MI, (11) HD MI, (12) HES MI

6 GEMI, RBF SI (1) MCMC, (2) HOW MI, (3) WKNN MI, (4)HEW MI, (5)MLP MI, (6) KNN MI,

(7)GRNN MI, (8) RBF MI, (9) HOS MI, (10) HD MI, (11) HES MI

7 MCMC (1) HOW MI, (2) WKNN MI, (3)HEW MI, (4)MLP MI, (5) KNN MI, (6)GRNN MI,

(7) RBF MI, (8) HOS MI, (9) HD MI, (10) HES MI

8 HOW MI (1) WKNN MI, (2)HET_MI2, (3)MLP MI, (4) KNN MI, (5)GRNN MI, (6) RBF MI,

(7) HOM_MI1, (8) HD MI, (9) HET_MI1

9 WKNN MI (1)HEW MI, (2)MLP MI, (3) KNN MI, (4)GRNN MI, (5) RBF MI, (6) HOS MI, (7)

HD MI, (8) HES MI

10 HEW MI (1)MLP MI, (2) KNN MI, (3)GRNN MI, (4) RBF MI, (5) HOM_MI1, (6) HD MI, (7)

HET_MI1

11 MLP MI (1) KNN MI, (2)GRNN MI, (3) RBF MI, (4) HOS MI, (5) HD MI, (6) HES MI

12 KNN MI (1)GRNN MI, (2) RBF MI, (3) HOS MI, (4) HD MI, (5) HES MI

13 GRNN MI (1) RBF MI, (2) HOS MI, (3) HD MI, (4) HES MI

14 RBF MI (1) HOS MI, (2) HD MI, (3) HES MI

15 HOS MI (1) HD MI, (2) HES MI

16 HD MI HES MI

17 HES MI 0
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Table H5 (continued )

Rank Algorithm Significantly outperformed algorithms

With about 20% missing values
1 GESI (1) EM, (2) MLP SI, (3) KNN SI, (4) HOS SI, (5) MS, (6) GEMI, (7) HD SI, (8)

WKNN SI, (9) HOW MI, (10) MCMC, (11) HES SI, (12) ZI, (13) RBF MI, (14) HEW

MI, (15) KNN MI, (16) GRNN MI, (17) WKNN MI, (18) HES MI, (19) MLP MI,

(20) HOS MI, (21) HD MI

2 GRNN SI (1) HD SI, (2) WKNN SI, (3) HOW MI, (4) MCMC, (5) HES SI, (6) ZI, (7) RBF MI,

(8) HEW MI, (9) KNN MI, (10) GRNN MI, (11) WKNN MI, (12) HES MI, (13) MLP

MI, (14) HOS MI, (15) HD MI

3 HOW SI, HEW SI, RBF SI, EM, MLP SI, KNN SI, HOS SI, MS (1) WKNN SI, (2) HOW MI, (3) MCMC, (4) HES SI, (5) ZI, (6) RBF MI, (7) HEW

MI, (8) KNN MI, (9) GRNN MI, (10) WKNN MI, (11) HET_MI1, (12) MLP MI, (13)

HOS MI, (14) HD MI

4 GEMI, HD SI, WKNN SI (1) HOM_MI2, (2) MCMC, (3) HES SI, (4) ZI, (5) RBF MI, (6) HEW MI, (7) KNN

MI, (8) GRNN MI, (9) WKNN MI, (10) HES MI, (11) MLP MI, (12) HOS MI, (13)

HD MI

5 HOW MI (1) MCMC, (2) HES SI, (3) ZI, (4) RBF MI, (5) HEW MI, (6) KNN MI, (7) GRNN MI,

(8) WKNN MI, (9) HES MI, (10) MLP MI, (11) HOS MI, (12) HD MI

6 MCMC (1) HES SI, (2) ZI, (3) RBF MI, (4) HEW MI, (5) KNN MI, (6) GRNN MI, (7) WKNN

MI, (8) HES MI, (9) MLP MI, (10) HOS MI, (11) HD MI

7 HES SI (1) ZI, (2) RBF MI, (3) HEW MI, (4) KNN MI, (5) GRNN MI, (6) WKNN MI, (7)

HES MI, (8) MLP MI, (9) HOS MI, (10) HD MI

8 ZI (1) RBF MI, (2) HEW MI, (3) KNN MI, (4) GRNN MI, (5) WKNN MI, (6) HES MI,

(7) MLP MI, (8) HOS MI, (9) HD MI

9 RBF MI (1) HEW MI, (2) KNN MI, (3) GRNN MI, (4) WKNN MI, (5) HES MI, (6) MLP MI,

(7) HOS MI, (8) HD MI

10 HEW MI (1) KNN MI, (2) GRNN MI, (3) WKNN MI, (4) HES MI, (5) MLP MI, (6) HOS MI,

(7) HD MI

11 KNN MI (1) GRNN MI, (2) WKNN MI, (3) HES MI, (4) MLP MI, (5) HOS MI, (6) HD MI

12 GRNN MI (1) WKNN MI, (2) HES MI, (3) MLP MI, (4) HOS MI1, (5) HD MI

13 WKNN MI (1) HES MI, (2) MLP MI, (3) HOS MI, (4) HD MI

14 HES MI (1) MLP MI, (2) HOS MI, (3) HD MI

15 MLP MI (1) HOS MI, (2) HD MI

16 HOS MI (1) HD MI

17 HD MI 0

With about 30% missing values
1 GESI (1) HES SI, (2) GRNN SI, (3) EM, (4) MLP SI, (5) KNN SI, (6) GEMI, (7) RBF SI, (8)

MS, (9) HES SI, (10) WKNN SI, (11) HOS SI, (12) RBF MI, (13) KNN MI, (14)

MCMC, (15) WKNN MI, (16) HOW MI, (17) HOW SI, (18) HD SI, (19) HEW MI,

(20) GRNN MI, (21) HD MI, (22) HES MI, (23) ZI, (24) MLP MI, (25) HOS MI

2 HEW SI, GRNN SI, EM, MLP SI, KNN SI, (1) KNN MI, (2) MCMC, (3) WKNN MI, (4) HOW MI, (5) HOW SI, (6) HD SI, (7)

HEW MI, (8) GRNN MI, (9) HD MI, (10) HES MI, (11) ZI, (12) MLP MI, (13) HOS

MI

3 GEMI, RBF SI, MS (1) MCMC, (2) WKNN MI, (3) HOW MI, (4) HOW SI, (5) HD SI, (6) HEW MI, (7)

GRNN MI, (8) HD MI, (9) HES MI, (10) ZI, (11) MLP MI, (12) HOS MI

4 HES SI, WKNN SI, HOS SI (1) WKNN MI, (2) HOW MI, (3) HOW SI, (4) HD SI, (5) HEW MI, (6) GRNN MI,

(7) HD MI, (8) HEW MI, (9) ZI, (10) MLP MI, (11) HOS MI

5 RBF MI (1) HOW MI, (2) HOW SI, (3) HD SI, (4) HEW MI, (5) GRNN MI, (6) HD MI, (7)

HES MI, (8) ZI, (9) MLP MI, (10) HOS MI

6 KNN MI (1) HOW SI, (2) HD SI, (3) HEW MI, (4) GRNN MI, (5) HD MI, (6) HES MI, (7) ZI,

(8) MLP MI, (9) HOS MI

7 MCMC, WKNN MI (1) HD SI, (2) HEW MI, (3) GRNN MI, (4) HD MI, (5) HES MI, (6) ZI, (7) MLP MI,

(8) HOS MI

8 HOW MI, HOW SI, HD SI (1) HEW MI, (2) GRNN MI, (3) HD MI, (4) HES MI, (5) ZI, (6) MLP MI, (7) HOS

MI

9 HEW MI (1) GRNN MI, (2) HD MI, (3) HES MI, (4) ZI, (5) MLP MI, (6) HOS MI

10 GRNN MI (1) HD MI, (2) HES MI, (3) ZI, (4) MLP MI, (5) HOS MI

11 HD MI (1) HES MI, (2) ZI, (3) MLP MI, (4) HOS MI

12 HES MI (1) ZI, (2) MLP MI, (3) HOS MI

13 ZI (1) MLP MI, (2) HOS MI

14 MLP MI (1) HOS MI

15 HOS MI 0

With about 40% missing values
1 GESI (1) GRNN SI, (2) MLP SI, (3) WKNN SI, (4)MCMC, (5) HD SI, (6) RBF MI, (7) KNN

MI, (8) HES SI, (9) HOS SI, (10) GRNN MI, (11) HOW MI, (12) HEW MI, (13) KNN

SI, (14) HES MI, (15) MS, (16) ZI, (17) HOS MI, (18) WKNN MI, (19) HD MI, (20)

MLP MI

2 RBF SI (1) HD SI, (2) RBF MI, (3) KNN MI, (4) HES SI, (5) HOS SI, (6) GRNN MI, (7) HOW

MI, (8) HEW MI, (9) KNN SI, (10) HES MI, (11) MS, (12) ZI, (13) HOS MI, (14)

WKNN MI, (15) HD MI, (16) MLP MI

3 EM (1) KNN MI, (2) HES SI, (3) HOS SI, (4) GRNN MI, (5) HOW MI, (6) HEW MI, (7)

KNN SI, (8) HES MI, (9) MS, (10) ZI, (11) HOS MI, (12) WKNN MI, (13) HD MI,

(14) MLP MI

4 GEMI, HEW SI (1) HES SI, (2) HOS SI, (3) GRNN MI, (4) HOW MI, (5) HEW MI, (6) KNN SI, (7)

HES MI, (8) MS, (9) ZI, (10) HOS MI, (11) WKNN MI, (12) HD MI, (13) MLP MI

5 HOW SI, GRNN SI, MLP SI, WKNN SI
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Table H5 (continued )

Rank Algorithm Significantly outperformed algorithms

(1) HOS SI, (2) GRNN MI, (3) HOW MI, (4) HEW MI, (5) KNN SI, (6) HES MI, (7)

MS, (8) ZI, (9) HOS MI, (10) WKNN MI, (11) HD MI, (12) MLP MI

6 MCMC, HD SI (1) HEW MI, (2) KNN SI, (3) HES MI, (4) MS, (5) ZI, (6) HOS MI, (7) WKNN MI,

(8) HD MI, (9) MLP MI

7 RBF MI, KNN MI (1) KNN SI, (2) HES MI, (3) MS, (4) ZI, (5) HOS MI, (6) WKNN MI, (7) HD MI, (8)

MLP MI

8 HES SI, HOS SI (1) HES MI, (2) MS, (3) ZI, (4) HOS MI, (5) WKNN MI, (6) HD MI, (7) MLP MI

9 GRNN MI (1) MS, (2) ZI, (3) HOS MI, (4) WKNN MI, (5) HD MI, (6) MLP MI

10 HOW MI, HEW MI, KNN SI (1) ZI, (2) HOS MI, (3) WKNN MI, (4) HD MI, (5) MLP MI

11 HES MI, MS, ZI (1) HOS MI, (2) WKNN MI, (3) HD MI, (4) MLP MI

12 HOS MI (1) WKNN MI, (2) HD MI, (3) MLP MI

13 WKNN MI (1) HD MI, (2) MLP MI

14 HD MI (1) MLP MI

15 MLP MI 0

With about 50% missing values
1 GESI (1) MLP SI, (2) GEMI, (3) GRNN SI, (4) HES SI, (5) MS, (6) MCMC, (7) HEW MI,

(8) HES MI, (9) HOS MI, (10) HOW MI, (11) GRNN MI, (12) ZI, (13) HD SI, (14)

MLP MI, (15) HOS SI, (16) HOW SI, (17)WKNN MI, (18) KNN

2 EM (1) MCMC, (2) HEW MI, (3) HES MI, (4) HOS MI, (5) HOW MI, (6) GRNN MI, (7)

ZI, (8) HD SI, (9) MLP MI, (10) HOS SI, (11) HOW SI, (12)WKNN MI, (13) KNN SI,

(14) HD MI, (15) RBF MI, (16) KNN MI

3 RBF SI (1) HOS MI, (2) HOW MI, (3) GRNN MI, (4) ZI, (5) HD SI, (6) MLP MI, (7) HOS SI,

(8) HOW SI, (9)WKNN MI, (10) KNN SI, (11) HD MI, (12) RBF MI, (13) KNN MI

4 HEW SI (1) HOW MI, (2) GRNN MI, (3) ZI, (4) HD SI, (5) MLP MI, (6) HOS SI, (7) HOW SI,

(8)WKNN MI, (9) KNN SI, (10) HD MI, (11) RBF MI, (12) KNN MI

5 WKNN SI (1) ZI, (2) HD SI, (3) MLP MI, (4) HOS SI, (5) HOW SI, (6)WKNN MI, (7) KNN SI,

(8) HD MI, (9) RBF MI, (10) KNN MI

6 MLP SI (1) HD SI, (2) MLP MI, (3) HOS SI, (4) HOW SI, (5)WKNN MI, (6) KNN SI, (7) HD

MI, (8) RBF MI, (9) KNN MI

7 GEMI, GRNN SI (1) MLP MI, (2) HOS SI, (3) HOW SI, (4)WKNN MI, (5) KNN SI, (6) HD MI, (7)

RBF MI, (8) KNN MI

8 HES SI, MS (1) HOS SI, (2) HOW SI, (3)WKNN MI, (4) KNN SI, (5) HD MI, (6) RBF MI, (7)

KNN MI

9 MCMC, HEW MI, HES MI, HOS MI (1) HOW SI, (2)WKNN MI, (3) KNN SI, (4) HD MI, (5) RBF MI, (6) KNN MI

10 HOW MI, GRNN MI, ZI (1)WKNN MI, (2) KNN SI, (3) HD MI, (4) RBF MI, (5) KNN MI

11 HD SI, MLP MI, HOS SI (1) KNN SI, (2) HD MI, (3) RBF MI, (4) KNN MI

12 HOW SI, WKNN MI, KNN SI (1) HD MI, (2) RBF MI, (3) KNN MI

13 HD MI (1) RBF MI, (2) KNN MI

14 RBF MI KNN MI

15 KNN MI 0

With about 60% missing values
1 GESI (1) HD SI, (2) MLP SI, (3) GEMI, (4) GRNN SI, (5) HES SI, (6) WKNN SI, (7) MS,

(8) MCMC, (9) HEW MI, (10) HOS MI, (11) HOW MI, (12) RBF MI, (13) ZI, (14)

MLP MI, (15) WKNN MI, (16) HOS SI, (17) HOW SI, (18) KNN SI, (19) HES MI,

(20) KNN MI, (21) HD MI

2 EM (1) WKNN SI, (2) MS, (3) MCMC, (4) HEW MI, (5) HOS MI, (6) HOW MI, (7) RBF

MI, (8) ZI, (9) MLP MI, (10) WKNN MI, (11) HOS SI, (12) HOW SI, (13) KNN SI,

(14) HES MI, (15) KNN MI, (16) HD MI

3 RBF SI (1) HEW MI, (2) HOS MI, (3) HOW MI, (4) RBF MI, (5) ZI, (6) MLP MI, (7) WKNN

MI, (8) HOS SI, (9) HOW SI, (10) KNN SI, (11) HES MI, (12) KNN MI, (13) HD MI

4 HEW SI (1) HOS MI, (2) HOW MI, (3) RBF MI, (4) ZI, (5) MLP MI, (6) WKNN MI, (7) HOS

SI, (8) HOW SI, (9) KNN SI, (10) HES MI, (11) KNN MI, (12) HD MI

5 GRNN MI, HD SI (1) RBF MI, (2) ZI, (3) MLP MI, (4) WKNN MI, (5) HOS SI, (6) HOW SI, (7) KNN

SI, (8) HES MI, (9) KNN MI, (10) HD MI

6 MLP SI (1) ZI, (2) MLP MI, (3) WKNN MI, (4) HOS SI, (5) HOW SI, (6) KNN SI, (7) HES

MI, (8) KNN MI, (9) HD MI

7 GEMI, GRNN SI (1) MLP MI, (2) WKNN MI, (3) HOS SI, (4) HOW SI, (5) KNN SI, (6) HES MI, (7)

KNN MI, (8) HD MI

8 HES SI, WKNN SI, MS (1) WKNN MI, (2) HOS SI, (3) HOW SI, (4) KNN SI, (5) HES MI, (6) KNN MI, (7)

HD MI

9 MCMC, HEW MI, HOS MI (1) HOS SI, (2) HOW SI, (3) KNN SI, (4) HES MI, (5) KNN MI, (6) HD MI

10 HOW MI, RBF MI, ZI (1) HOS SI, (2) KNN SI, (3) HES MI, (4) KNN MI, (5) HD MI

11 MLP MI, WKNN MI, HOS SI (1) KNN SI, (2) HES MI, (3) KNN MI, (4) HD MI

12 HOW SI, KNN SI (1) HES MI, (2) KNN MI, (3) HD MI

13 HES MI (1) KNN MI, (2) HD MI

14 KNN MI (1) HD MI

15 HD MI 0

With about 70% missing values
1 GESI, GEMI (1) HES SI, (2) GRNN SI, (3) EM, (4) MLP SI, (5) KNN SI, (6) RBF SI, (7) MS, (8)

HEW SI, (9) WKNN SI, (10) HOS SI, (11) RBF MI, (12) KNN MI, (13) MCMC, (14)

WKNN MI, (15) HOW MI, (16) HOW SI, (17) HD SI, (18) HEW MI, (19) GRNN

MI, (20) HD MI, (21) HES MI, (22) ZI, (23) MLP MI, (24) HOS MI

2 HES SI, GRNN SI, EM, MLP SI, KNN SI, RBF SI, MS, HEW SI, WKNN SI, HOS SI, RBF

MI, KNN MI, MCMC, WKNN MI, HOW MI, HOS_SI, HD SI, HEW MI, GRNN MI, HD

MI, HES MI, ZI, MLP MI, HOS MI

0
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Table H6
Comparison of the computational cost of imputation algorithms (standard deviations in parentheses).

Computation time in hours

Rate of missing values 5% 10% 20% 30% 40% 50% 60% 70% 75%

GEMI 39 (9) 48 (10) 66 (13) 93 (19) 110 (22) 147 (26) 94 (33) 58 (24) 56 (25)

GESI 25 (7) 28 (7) 35 (14) 46 (17) 52 (21) 61 (25) 45 (31) 45 (24) 48 (22)

EM 27 (10) 29 (12) 37 (13) 51 (20) 57 (24) 70 (28) 47 (34) 44 (26) 43 (24)

GRNN MI 36 (7) 43 (10) 57 (13) 77 (19) 92 (22) 110(27) 37 (34) 36 (25) 37 (22)

GRNN SI 24 (8) 25 (9) 30 (13) 37 (17) 40 (21) 43 (26) 35 (30) 33 (24) 31 (23)

HD MI 35 (7) 41 (9) 53 (14) 67 (18) 82 (21) 96 (26) 27 (16) 32 (24) 30 (22)

HD SI 23 (7) 23 (10) 26 (15) 29 (17) 34 (22) 36 (25) 24 (12) 24 (13) 27 (22)

HES MI 44 (9) 52 (15) 79 (19) 105 (22) 136 (24) 162 (30) 59 (36) 53 (29) 55 (24)

HES SI 30 (10) 33 (11) 42 (13) 49 (20) 56 (23) 59 (22) 35 (30) 47 (25) 47 (23)

HEW MI 47 (11) 56 (17) 75 (20) 122 (24) 148 (27) 178 (31) 62 (40) 60 (29) 62 (28)

HEW SI 30 (8) 39 (13) 46 (15) 72 (19) 77 (23) 89 (28) 48 (31) 39 (26) 40 (27)

HOS MI 38 (9) 45 (16) 62 (21) 95 (23) 110 (25) 140 (29) 43 (31) 45 (28) 44 (28)

HOS SI 26 (7) 27 (12) 31 (17) 44 (19) 48 (23) 56 (27) 32 (19) 31 (25) 32 (19)

HOW MI 43 (11) 50 (17) 70 (18) 102 (24) 129 (26) 152 (31) 46 (32) 48 (29) 48 (26)

HOW SI 28 (11) 31 (10) 38 (15) 63 (18) 69 (25) 80 (28) 34 (16) 30 (14) 31 (20)

KNN MI 34 (8) 51 (13) 54 (17) 68 (19) 82 (21) 100 (25) 41 (30) 37 (24) 35 (22)

KNN SI 22 (7) 23 (10) 27 (19) 29 (17) 31 (15) 34 (20) 38 (26) 31 (14) 30 (16)

MCMC 41 (10) 50 (14) 68 (17) 84 (20) 108 (24) 130 (30) 52 (34) 54 (26) 55 (22)

MLP MI 44 (11) 52 (17) 78 (21) 98 (21) 112 (25) 136 (30) 61 (37) 47 (24) 46 (25)

MLP SI 30 (9) 32 (14) 38 (14) 46 (15) 53 (22) 66 (28) 35 (13) 30 (11) 32 (20)

MS 0.04 (0.0001) 0.04 (0.0001) 0.04 (0.0001) 0.04 (0.0001) 0.04 (0.0001) 0.04 (0.0001) 0.04 (0.0001) 0.04 (0.0001) 0.04 (0.0001)

RBF MI 40 (10) 49 (15) 73 (14) 85 (24) 106 (26) 130 (32) 52 (39) 43 (29) 41 (27)

RBF SI 27 (8) 29 (12) 40 (17) 90 (19) 48 (23) 58 (27) 33 (12) 31 (16) 30 (14)

WKNN MI 41 (7) 47 (16) 61 (24) 80 (23) 96 (27) 119 (31) 50 (31) 41 (27) 40 (25)

WKNN SI 28 (8) 29 (12) 33 (15) 32 (14) 37 (21) 42 (26) 36 (18) 35 (14) 35 (22)

ZI 0.01 (0.0002) 0.01 (0.0002) 0.01 (0.0002) 0.01 (0.0002) 0.01 (0.0002) 0.01 (0.0002) 0.01 (0.0002) 0.01 (0.0002) 0.01 (0.0002)
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where P(Y) is the probability of the event of interest;
x1,x2,. . .,x100ð Þ represent different features; (b0,b1,b2,b3,b4,b5)

are the model parameters.
All the features in the model were arranged in the random
order in all datasets. The differences between the datasets are
mainly due to different combinations of feature values and
different values of model parameters. We specified different
sets of model parameters for different datasets
Step 5: Generate a uniformly distributed random number in
the range (0, 1) for each observation. If the random number is
greater than the probability of the event of interest, the value
of the response variable is 1, otherwise 0.

Appendix G. Simulation of missing data

We deleted values from the complete training data to simulate
ignorable and non-ignorable missing observations in a dataset.

MCAR missing values: were generated in following steps.

Step 1: Generate uniformly distributed random number in the
interval (0, 1) for each observation.
Step 2: Specify a range of values within the interval (0, 1)
depending on the percentage of data to be removed.
Step 3: Remove the observation if the corresponding random
number lies within the range.

Non-random (MAR and MNAR) missing values: For non-random
missing data, we have to remove data in such a way so that
removed values of variable xk depends on the variables xm and xn.

Step 1: To simulate non-random missing data, we used a model
for the non-responsiveness. The model estimates the probability
of removal values of a variable xk. We generate MAR missing
data using Eq. (23) and MNAR missing data using Eq. (24)

pðxikÞ ¼
1

1þexpð�ðb0þbmximþbnxin,. . .ÞÞ
ð23Þ

and
pðxikÞ ¼
1

1þexpð�ðb0þb1xikÞÞ
ð24Þ

where p(xik) is the probability of removal of xik in the ith

observation, xim is the value of variable xm in the ith observation,
xin is the value of variable xn in the ith observation. b0,bm,bn,y
are model parameters.
Step 2: Generate a uniformly distributed random number (Ri)
in the interval (0, 1) for each observation of the variable xk.
Appendix H. More results

See Tables H1–H6.
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