
DOI 10.1007/s11063-005-2192-z
Neural Processing Letters (2006) 23:1–26 © Springer 2006

Adapting RBF Neural Networks to Multi-Instance
Learning

MIN-LING ZHANG and ZHI-HUA ZHOU�

National Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093,
China. e-mail: zhangml@lamda.nju.edu.cn, zhouzh@nju.edu.cn

Abstract. In multi-instance learning, the training examples are bags composed of instances
without labels, and the task is to predict the labels of unseen bags through analyzing the
training bags with known labels. A bag is positive if it contains at least one positive instance,
while it is negative if it contains no positive instance. In this paper, a neural network based
multi-instance learning algorithm named RBF-MIP is presented, which is derived from the
popular radial basis function (RBF) methods. Briefly, the first layer of an RBF-MIP neural
network is composed of clusters of bags formed by merging training bags agglomeratively,
where Hausdorff metric is utilized to measure distances between bags and between clusters.
Weights of second layer of the RBF-MIP neural network are optimized by minimizing a
sum-of-squares error function and worked out through singular value decomposition (SVD).
Experiments on real-world multi-instance benchmark data, artificial multi-instance bench-
mark data and natural scene image database retrieval are carried out. The experimental
results show that RBF-MIP is among the several best learning algorithms on multi-instance
problems.

Key words. content-based image retrieval, Hausdorff distance, machine learning, multi-instance
learning, neural networks, principle component analysis, radial basis function, singular value
decomposition

1. Introduction

At present, roughly speaking, there are three frameworks for learning from exam-
ples [23]. That is, supervised learning, unsupervised learning and reinforcement learn-
ing. Supervised learning attempts to learn a concept for correctly labeling unseen
examples, where the training examples are with labels. Unsupervised learning
attempts to learn the structure of the underlying sources of examples, where the
training examples are with no labels. Reinforcement learning attempts to learn a
mapping from states to actions, where the examples are with no labels but with
delayed rewards that could be viewed as delayed labels.

The notion of multi-instance learning was proposed by Dietterich et al. [12] in
their investigation of drug activity prediction. In multi-instance learning, the train-
ing set is composed of many bags each containing many instances. If a bag con-
tains at least one positive instance then it is labeled as a positive bag. Otherwise it
is labeled as a negative bag. The labels of the training bags are known, but those

�Corresponding author.

2 MIN-LING ZHANG AND ZHI-HUA ZHOU

of the training instances are unknown. The task is to learn something from the
training set for correctly labeling unseen bags. Dietterich et al. [12] showed that
learning methods ignoring the characteristics of multi-instance learning could not
work well in this scenario. Due to its unique characteristics and extensive applica-
bility, multi-instance learning has been regarded as a new learning framework par-
allel to supervised learning, unsupervised learning, and reinforcement learning [23].

When the notion of multi-instance learning was proposed, Dietterich et al. [12]
indicated that a particular interesting issue in this area is to design multi-instance
modifications for neural networks. In this paper, this problem is addressed in the
way that a multi-instance neural network algorithm named RBF-MIP, i.e. Radial
Basis Function (RBF) for Multi-Instance Problems, is proposed. As its name
implied, RBF-MIP is derived from the popular RBF methods [6]. Briefly, the first
layer of an RBF-MIP neural network is composed of clusters of bags formed by
merging training bags agglomeratively, where Hausdorff metric [14, 31] is utilized
to measure distances between bags and between clusters. Second layer weights of
the RBF-MIP neural network are optimized by minimizing a sum-of-squares error
function and worked out through singular value decomposition (SVD) [26]. Exper-
iments on the drug activity prediction data, which is the only real-world bench-
mark test data for multi-instance learning at present, some artificial benchmark
multi-instance data and natural scene image database retrieval, show that RBF-
MIP is among the several top-ranked multi-instance learning methods. Further-
more, the performance of RBF-MIP is significantly better than that of BP-MIP
[37], which is another neural network based multi-instance learner derived from the
traditional Backpropagation algorithm [29].

The rest of this paper is organized as follows. In Section 2, the drug activity
prediction problem is briefly introduced. In Section 3, previous works on multi-
instance learning are reviewed. In Section 4, RBF-MIP is presented. In Section 5,
the experimental results on various multi-instance learning problems are reported.
Finally in Section 6, the main contribution of this paper is summarized and sev-
eral issues for future work are indicated.

2. Drug Activity Prediction

Most drugs are small molecules working by binding to larger protein molecules such
as enzymes and cell-surface receptors. The potency of a drug is determined by the
degree of binding. For molecules qualified to make a drug, one of its low-energy
shapes could tightly bind to the target area. While for molecules unqualified to make
a drug, none of its low-energy shapes could tightly bind to the target area.

In the middle of 1990’s, Dietterich et al. [12] investigated the problem of drug activ-
ity prediction. The goal was to endow learning systems with the ability of predicting
if a new molecule was qualified to make some drug, through analyzing a collection of
known molecules. As illustrated in Figure 1, the main difficulty of this problem is that
each molecule may have many alternative low-energy shapes. However, biochemists

ADAPTING RBF NEURAL NETWORKS 3

Figure 1. The shape of a molecule changes as it rotates an internal bond.

only know if a molecule is qualified to make a drug or not, instead of knowing
which of its alternative low-energy shapes is responsible for the qualification.

An intuitive solution is to use supervised algorithms by regarding all the low-
energy shapes of the molecules qualified to make the drug as positive training
examples, while regarding all the low-energy shapes of the molecules unqualified
to make the drug as negative training examples. However, as shown by Dietterich
et al. [12], such a method can hardly work because there may be a great many of
false positive examples.

In order to solve this problem, Dietterich et al. [12] regarded each molecule
as a bag, and regarded the alternative low-energy shapes of the molecule as the
instances in the bag, thereby formulated multi-instance learning. In order to repre-
sent the shapes, the molecules were placed in a standard position and orientation
and then a set of 162 rays emanating from the origin was constructed so that the
molecular surface was sampled approximately uniformly, as illustrated in Figure 2.
There were also four features that represented the position of an oxygen atom on
the molecular surface. Therefore each instance in the bags was represented by a
166-dimensional numerical feature vector.

Figure 2. The ray-based representation of the molecular shape.

4 MIN-LING ZHANG AND ZHI-HUA ZHOU

Based on such a representation, Dietterich et al. [12] proposed three Axis-Parallel
Rectangle (abbreviated as APR) algorithms, which attempt to search for appropri-
ate axis-parallel rectangles constructed by the conjunction of the features. Their
experiments showed that the iterated-discrim APR algorithm achieves the best
result on the Musk data, which is the only real-world benchmark test data for
multi-instance learning until now, while the performance of popular supervised
learning algorithms such as C4.5 decision tree and Backpropagation neural net-
work is very poor. Note that Dietterich et al. [12] indicated that since the APR
algorithms were optimized to the Musk data, the performance of iterated-discrim
APR might be the upper bound for this data.

It should be mentioned that multi-instance problems are not unique to drug
activity prediction. In fact, they reveal themselves in many real-world applica-
tions [21, 30]. But unfortunately, machine learning community had not paid special
attention to such kinds of problems until Dietterich et al. [12].

3. Previous Work

Long and Tan [22] initiated the investigation of the PAC-learnability of
axis-parallel rectangles under the multi-instance learning framework. Resorting to
P-concept [20], they described a high-order polynomial-time theoretical algorithm
and showed that if the instances in the bags are independently drawn from prod-
uct distribution, then the APR is PAC-learnable. Auer et al. [5] showed that if
the instances in the bags are not independent then APR learning under the multi-
instance learning framework is NP-hard. Moreover, they also presented a theoret-
ical algorithm without requiring product distribution and with reduced time and
sample complexity than that of Long and Tan’s algorithm. Later, this theoretical
algorithm was transformed into a practical algorithm named MULTINST [4].
Blum and Kalai [8] gave a reduction from the problem of PAC-learning under the
multi-instance learning framework to PAC-learning with one-sided or two-sided
random classification noise. With the help of Statistical-Query Model [19], they
also presented a theoretical algorithm with smaller sample complexity than that of
Auer et al.’s algorithm. Goldman et al. [16] presented an efficient on-line agnostic
multi-instance learning algorithm for learning the class of constant-dimension geo-
metric patterns, which tolerated both noise and concept shift. Later, this algorithm
was extended so that it could deal with real-valued output [17].

As reviewed above, theoretical machine learning community has contributed
much to multi-instance learning. But since most of their results are obtained under
the restrictive assumption that each bag must contain the same number of indepen-
dent instances, which is usually not the case in real problems, those results are hard
to be used directly in real-world applications.

Fortunately, some practical algorithms for multi-instance learning have been
presented by the applied machine learning community. A representative practi-
cal multi-instance learning algorithm is Diverse Density proposed by Maron and

ADAPTING RBF NEURAL NETWORKS 5

Lozano-Pérez [24], which has been applied to several applications including learn-
ing a simple description of a person from a series of images [24], stock pre-
diction [24], natural scene classification [25], and content-based image retrieval
(CBIR) [32, 34]. Wang and Zucker [31] extended k-nearest neighbor algorithm
for multi-instance learning through adopting Hausdorff distance. Two algorithms,
i.e. Bayesian-kNN and Citation-kNN, were presented. Bayesian-kNN labels a bag
through analyzing its neighboring bags with Bayes theory. Citation-kNN borrows
the notion of citation of science references, which labels a bag through analyz-
ing not only its neighboring bags but also the bags that regard the concerned bag
as a neighbor. Ruffo [28] presented a multi-instance version of C4.5 decision tree
named Relic and applied it to data mining area. Later, Chevaleyre and Zucker
[9] derived ID3-MI and RIPPER-MI, which are multi-instance versions of deci-
sion tree algorithm ID3 and rule learning algorithm RIPPER, where the key is
a multi-instance entropy and a multiple-instance coverage function respectively. In
2002, Zhou and Zhang [37] developed a multi-instance neural network named BP-
MIP, which extended the popular Backpropagation [29] algorithm with a global
error function defined at the level of bags instead of at the level of instances.
Gärtner et al. [15] developed a kernel on multi-instance data that can be shown
to separate positive and negative bags under natural assumptions. Furthermore,
they proposed another more efficient kernel that can easily deal with huge bag
sizes. Zhang and Goldman [33] proposed EM-DD, which combines the EM [10]
and Diverse Density algorithms to solve multi-instance problems. One year later,
Andrews et al. [3] presented two new formulations of multi-instance learning as a
maximum margin problem and applied them to applications such as drug activ-
ity prediction, automated image indexing and document categorization. Zhou and
Zhang [38] utilized ensemble learning paradigms to solve multi-instance learning
problems and obtained the best result up to now on a benchmark test.

In the early years of the research of multi-instance learning, most works
are on multi-instance classification with discrete-valued outputs. Recently, multi-
instance regression with real-valued outputs begins to attract the attention of some
researchers. Ray and Page [27] showed that the general formulation of multi-
instance regression is NP-hard, and proposed an EM-based multi-instance regres-
sion algorithm. Dooly et al. [13] confirmed the conclusion drawn by Ray and Page
and further proved that learning from real-valued multi-instance examples is as
hard as learning DNF. Amar et al. [2] extended Diverse Density and Citation-kNN
for multi-instance regression. Moreover, they designed some method for artificially
generating data sets for multi-instance regression. Their data sets are available from
http://www.cs.wustl.edu/∼sg/multi-inst-data/.

Multi-instance learning has even attracted the attention of the Inductive Logic
Programming community. De Raedt [11] showed that multi-instance problems
could be regarded as a bias on inductive logic programming. He also suggested
that the multi-instance paradigm could be the key between the propositional and
relational representations, being more expressive than the former, and much easier

6 MIN-LING ZHANG AND ZHI-HUA ZHOU

to learn than the latter. Zucker and Ganascia [39, 40] presented REPEAT, an ILP
system based on an ingenious bias which firstly reformulate the relational exam-
ples in a multi-instance database, and then induces the final hypothesis with a
multi-instance learner. Recently, Alphonse and Matwin [1] successfully employed
multi-instance learning to help relational learning. At first, the original relational
learning problem is approximated by a multi-instance problem. The resulting data
is fed to feature selection techniques adapted from propositional representations.
Then the filtered data is transformed back to relational representation for a rela-
tional learner. In this way, the expressive power of relational representation and
the ease of feature selection on propositional representation are gracefully com-
bined. This work confirms that multi-instance learning could act as a bridge
between propositional and relational learning.

It is worth noting that when Dietterich et al. [12] coined the term multi-instance
learning, they indicated that a particular interesting issue in this area is to design
multi-instance modifications for decision trees, neural networks, and other pop-
ular machine learning algorithms. During recent years, multi-instance version of
decision trees [9, 28], rule learning algorithms [9], lazy learning algorithms [31],
and support vector machines [3, 15], have already been presented. Especially, a
neural network based multi-instance learner named BP-MIP [37] derived from
the traditional Backpropagation [29] neural network has also been proposed. But
unfortunately, although BP-MIP performs comparably to many existing multi-
instance learners, it is not so good as several algorithms derived from other
popular machine learning algorithms, such as multi-instance decision tree named
Relic [28], multi-instance lazy learning algorithm named Citation-kNN and multi-
instance support vector machine named MI SVM [15], etc. Based on the above
observation, another multi-instance neural network named RBF-MIP, which is
derived from the popular RBF neural network [6], is proposed in the following
section.

4. RBF-MIP

RBF is a popular neural network learning algorithm where the activation of a hid-
den unit is determined by the distance between the input vector and a prototype
vector. Usually, a two-stage training procedure is used to train an RBF neural net-
work, i.e. the parameters governing the basis functions (corresponding to hidden
units) are determined using unsupervised methods while the final-layer weights are
obtained by the solution of a linear problem. Detailed description and theoretical
foundations of RBF neural networks can be found in the literature [6].

Suppose the training set is composed of N bags, i.e. {B1,B2, . . . ,BN}, the ith
bag is composed of Mi instances, i.e. {Bi1,Bi2, . . . ,BiMi}, each is a p-dimensional
feature vector, e.g. the j th instance of the ith bag is [Bij1,Bij2, . . . ,Bijp]T. The
desired output of a positive training bag is 1, while that of a negative training bag
is 0.

ADAPTING RBF NEURAL NETWORKS 7

Figure 3. Typical architecture of an RBF-MIP neural network.

Figure 3 illustrates the typical architecture of an RBF-MIP neural network. As
shown in Figure 3, there are two main architectural differences between the RBF-
MIP and the standard RBF neural networks. Firstly, the input of the RBF-MIP
neural network corresponds to a bag containing several vectors (instances) instead
of a single vector of the standard RBF neural network. Secondly, for the RBF-
MIP neural network, each node Ci(1 � i � M) in the first layer corresponds to
a cluster of training bags where

⋃M
i=1 Ci = {B1,B2, . . . ,BN } and Ci

⋂
i �=j Cj = Ø,

while that of the standard RBF neural network is a prototype vector determining
the center of basis function φi . The second layer weights wjk(0� j �M,1� k � c)

are shown as lines from the basis functions to the output units, and the biases are
shown as weights w0k from an extra “basis function” φ0 whose output is fixed at 1.

Similar to the training procedure used for traditional RBF neural network, a
two-stage training procedure is also employed to train the RBF-MIP neural net-
work. In the first stage, its first layer is automatically constituted by merging train-
ing bags agglomeratively, where Hausdorff metric is utilized to measure distances
between bags and between clusters. In the second stage, weights of its second
layer are optimized by minimizing a sum-of-squares error function and worked
out through SVD. The above two stages are scrutinized in Sections 4.1 and 4.2
respectively.

4.1. first layer clustering

As shown in the literature [6], for traditional RBF neural network, clustering algo-
rithms such as K-means or self-organizing feature map are usually employed to

8 MIN-LING ZHANG AND ZHI-HUA ZHOU

partition the training instances (vectors) into a number of disjoint subsets, i.e. clus-
ters of instances. After that, the centers of their basis functions in the first layer are
determined by the means of the training instances in each subset. While in multi-
instance learning paradigm, the training set is composed of bags each containing
many instances instead of individual instances in traditional supervised learning
paradigm. Thus, an intuitive way to fit RBF neural network into multi-instance
learning paradigm is to form clusters of bags instead of clusters of instances in the
first layer.

In order to form clusters of bags in the first layer, some kinds of distance met-
rics should be utilized to measure the distances between bags and between clus-
ters. In this paper, two types of Hausdorff metric, i.e. maximal Hausdorff distance
[14] and minimal Hausdorff distance [31] are adopted to fulfill this objective, since
Hausdorff metric has already shown its successful application in multi-instance
learning paradigm [31]. Formally, given two sets of objects A = {a1, . . . , am} and
B = {b1, . . . , bn}, the maximal and minimal Hausdorff distances are defined as
Equations (1) and (2):

max H(A,B)=Max
{

Max
a∈A

Min
b∈B

{dist(a, b)},Max
b∈B

Min
a∈A

{dist(b, a)}
}

, (1)

min H(A,B)= Min
a∈A,b∈B

{dist(a, b)}. (2)

As shown in the above equations, it is worth noting that both max H(∗,∗) (max-
imal Hausdorff distance) and min H(∗,∗) (minimal Hausdorff distance) are capa-
ble of measuring distances between bags (sets of instances) and between clusters
(sets of bags). In detail, when both A and B are sets of numerical vectors and
function dist(∗,∗) is Euclidean distance, max H(∗,∗) and min H(∗,∗) can be used
to measure distance between sets of instances (bags). Interestingly, on the other
hand, when both A and B correspond to sets of bags and function dist(∗,∗) is
either max H(∗,∗) or min H(∗,∗), i.e. measuring distance between bags using max-
imal or minimal Hausdorff distance, Equations (1) and (2) can also be utilized to
calculate distance between sets of bags (clusters).

For example, let C1 = {B1,B2} and C2 = {B3} be two clusters of bags, where
B1 = {1,3,7},B2 = {4,9} and B3 = {6,7,11} are three different bags each con-
taining several one dimensional instances. If minimal Hausdorff distance is used
to measure distance between bags and function dist(∗,∗) shown in Equation
(2) is Euclidean distance, then the distance between bags B1 and B2 can be
calculated as bag dist(B1,B2) = min H(B1,B2) = Mina∈B1,b∈B2 |a − b| = Min{|1 −
4|, |1 − 9|, |3 − 4|, |3 − 9|, |7 − 4|, |7 − 9|} = 1. Similarly, bag dist(B1,B3) = 0 and
bag dist(B2,B3) = 2 can also be verified by the readers. Furthermore, when
maximal Hausdorff distance is used to measure distance between clusters and
function dist(∗,∗) shown in Equation (1) is minimal Hausdorff distance, the
distance between clusters C1 and C2 can be calculated as clu dist

ADAPTING RBF NEURAL NETWORKS 9

(C1,C2)=max H(C1,C2)=Max{MaxA∈C1 MinB∈C2{min H(A,B)},Max B∈C2 MinA∈C1

{min H(B,A)}}=Max{Max{0,2}, Max{0}}=Max{2,0}=2.
In the above example, the distance between bags is measured using minimal

Hausdorff metric while the distance between clusters is measured using maxi-
mal Hausdorff metric. However, it is noteworthy that both Hausdorff metrics
can be utilized either as distance measure between bags or as distance measure
between clusters. Based on this, procedure for the first layer clustering of RBF-
MIP is shown in Figure 4, which is in fact the well-known agglomerative clustering
algorithm specifically adapted to the multi-instance learning framework.

4.2. second layer optimization

When the above stage of first layer clustering is accomplished, second layer weights
of an RBF-MIP neural network are obtained by the solution of a linear problem,
where the involved procedure is very similar to the one used to train traditional
RBF neural network [6]. In detail, the second layer weights of an RBF-MIP neural
network are optimized by minimizing the following sum-of-squares error function:

E = 1
2

N∑

n=1

c∑

k=1

{yk(Bn)− tnk }2, (3)

where tnk is the target value for output unit k when the network is presented with
input bag Bn. The corresponding actual output yk(Bn) is determined as follows:

Figure 4. Procedure for the first layer clustering of RBF-MIP.

10 MIN-LING ZHANG AND ZHI-HUA ZHOU

yk(Bn)=
M∑

j=0

wjkφj (Bn), (4)

where φ0 is an extra ‘basis function’ with activation value fixed at 1. For the case
of Gaussian basis functions we have:

φj (Bn)= exp

(

− (clu dist({Bn},Cj))
2

2σ 2
j

)

(1� j �M), (5)

where clu dist({Bn},Cj) calculates the distance between bag Bn and cluster Cj by
taking the input bag as a cluster of its own, while some form of bag dist(∗,∗) is
used at the same time to measure distance between bags as shown in Figure 4. The
standard deviation σj is a parameter whose value controls the smoothness prop-
erty of the basis function φj . For traditional RBF neural network, one heuristic
approach to determining the standard deviations is to choose all the σj to be equal
and to be given by some multiple of the average distance between the basis func-
tion centers [6]. Thus, in order to fit this heuristic approach into multi-instance
learning framework, each standard deviation used in the basis functions of RBF-
MIP is set to take the same value σ determined by the average distance between
every pair of clusters using Equation (6), where µ is a scaling factor.

σ =µ×
(∑M−1

i=1
∑M

j=i+1 clu dist(Ci,Cj)

M(M −1)/2

)

. (6)

Note that the Gaussian basis functions in Equation (5) are not normalized, since
any overall factors can be absorbed into the weights in Equation (4) without loss
of generality. Substituting Equation (4) into Equation (3), the sum-of-squares error
function can be rewritten as:

E = 1
2

N∑

n=1

c∑

k=1

⎧
⎨

⎩

M∑

j=0

wjkφj (Bn)− tnk

⎫
⎬

⎭

2

. (7)

Differentiating this expression with respect to wjk and setting the derivative to zero
gives the normal equations for the least-squares problem in the following form:

N∑

n=1

⎧
⎨

⎩

M∑

j ′=0

wj ′kφj ′(Bn)− tnk

⎫
⎬

⎭
φj (Bn)=0 (0� j �M,1�k � c). (8)

In order to find a solution to Equation (8) it is convenient to write it in a matrix
notation to give:

(�T�)W =�TT. (9)

Here � has dimensions N × (M + 1) and elements φj (Bn), W has dimensions
(M + 1)× c and elements wjk, and T has dimensions N × c and elements tnk . The

ADAPTING RBF NEURAL NETWORKS 11

matrix �T� in Equation (9) is a square matrix of dimensions (M + 1)× (M + 1).
Provided that it is non-singular we may invert it to obtain a solution to Equation
(9) which can be written in the form:

W = (�T�)−1�TT. (10)

However, in practice, the direct solution of the normal equations can lead to
numerical difficulties due to the possibility of �T� being singular or nearly sin-
gular. Fortunately, such problems can be conveniently resolved by using the tech-
nique of SVD [26] to find a solution for the weights. Thus, the second layer
weights can be found by fast, linear matrix inversion techniques.

It is worth noting that the appropriate parameter configuration of an RBF-MIP
neural network, i.e. M (the number of remaining clusters in the first layer) and
µ (the scaling factor), could be chosen based on the training data. For instance,
given a set of candidate configurations, the performance of each configuration
could be evaluated through performing 10-fold cross validation on the training
data or be estimated on a validation data set separated from the training data,
where the configuration with the best performance is chosen and an RBF-MIP
neural network is then trained on the entire training set using this configuration
to predict the labels of unseen bags.

5. Experiments

5.1. musk data sets

The Musk data is the only real-world benchmark test data for multi-instance learn-
ing at present. The data is generated by Dietterich et al. in the way described in
Section 2. There are two data sets, i.e. Musk1 and Musk2, both of which are pub-
licly available from the UCI Machine Learning Repository [7]. Musk1 contains
47 positive bags and 45 negative bags, and the number of instances contained in
each bag ranges from 2 to 40. Musk2 contains 39 positive bags and 63 negative
bags, and the number of instances contained in each bag ranges from 1 to 1,044.
Detailed information on the Musk data is tabulated in Table 1.

Leave-one-out test is performed on both data sets. In detail, for N bags, one bag
is used to test while the others are used to train an RBF-MIP neural network in
a loop of N iterations. In each iteration, in order to automatically determine the

Table 1. The Musk data (72 molecules are shared in both data sets).

Bags Instances per bag

Data set Dim. Total Musk Non-musk Instances Min Max Ave.

Musk1 166 92 47 45 476 2 40 5.17
Musk2 166 102 39 63 6,598 1 1,044 64.69

12 MIN-LING ZHANG AND ZHI-HUA ZHOU

parameter configuration of the algorithm, i.e. M (the number of remaining clus-
ters in the first layer) and µ (the scaling factor), the original training set (denoted
as ori set) is further divided into two portions. Concretely, a fraction of ori set is
randomly selected to form the validation set (denoted as vali set) while the remain-
ing portion of ori set (denoted as train set) is used for training. Thus, given a
set of candidate parameter configurations, RBF-MIP neural networks with one
output unit are trained using each candidate parameter configuration on train set
according to the two-stage procedure described in Section 4 and then tested on the
vali set. After that, the parameter configuration with which the RBF-MIP neural
network achieves the highest predictive accuracy on vali set is selected and then
employed to train a new RBF-MIP neural network on the original training set
ori set. For Musk1, 20% random fraction of ori set is used to form the vali set
while a parameter candidate set with 28 different configurations is used, i.e. M

ranges from 40 to 70 with an interval of 5 and µ ranges from 0.3 to 0.6 with an
interval of 0.1. For Musk2, 30% random fraction of ori set is used to form the
vali set while the parameter candidate set is the same as that used in Musk1. The
iterations are repeated in the way that each bag in the data set has been used as
the test bag once. When a trained RBF-MIP network is used in prediction, a bag
is positively labeled if and only if the output of the network is not less than 0.5. At
the end of the loop, the final predictive accuracy is calculated as the total number
of correctly labeled test bags divided by N .

On both Musk1 and Musk2, 10 times of leave-one-out tests are conducted
for each distance metric configuration of 〈bag dist(∗,∗), clu dist(∗,∗)〉. The corre-
sponding average predictive accuracy and standard deviation is reported in Table 2.

As shown by Table 2, it is obvious that when the distance metric between clus-
ters is fixed (1st line vs. 3rd line, 2nd line vs. 4th line), using min H(∗,∗) (minimal
Hausdorff distance) to measure distance between bags will result in better perfor-
mance than using max H(∗,∗) (maximal Hausdorff distance). On the other hand,
when the distance metric between bags is fixed (1st line vs. 2nd line, 3rd line vs.
4th line), using max H(∗,∗) to measure distance between clusters will lead to bet-
ter results than using min H(∗,∗). RBF-MIP achieves highest predictive accuracy
on both Musk1 and Musk2 when min H(∗,∗) and max H(∗,∗) are utilized respec-
tively to measure distances between bags and between clusters. In the rest of this

Table 2. The performance of RBF-MIP (% correct±std.
deviation) on the Musk data.

Distance metric Musk 1 Musk 2

〈 min H(∗,∗), min H(∗,∗) 〉 80.9±3.0 85.0±2.5
〈 min H(∗,∗), max H(∗,∗) 〉 90.2±2.6 88.0±3.5
〈 max H(∗,∗), min H(∗,∗) 〉 73.2±1.9 80.5±2.6
〈 max H(∗,∗), max H(∗,∗) 〉 77.3±1.5 82.1±1.6

ADAPTING RBF NEURAL NETWORKS 13

Table 3. Comparison of the performance (% correct ± std.
deviation) on the Musk1 data.

Algorithm Musk1 Evaluation

MI SVM [15] 92.4 LOO
Iterated-discrim APR [12] 92.4 10CV
Citation-kNN [31] 92.4 LOO
RBF-MIP-PCA 91.3±1.6 LOO
GFS elim-kde APR [12] 91.3 10CV
RBF-MIP 90.2±2.6 LOO
GFS elim-count APR [12] 90.2 10CV
Bayesian-kNN [31] 90.2 LOO
Diverse Density [24] 88.9 10CV
BP-MIP-PCA [35] 88.0 LOO
RIPPER-MI [9] 88.0 N/A
mi-SVM [3] 87.4 10CV
EM-DD [33] 84.8 10CV
BP-MIP [37] 83.7 LOO
Relic [28] 83.7 10CV
MI-SVM [3] 77.9 10CV
MULTINST [4] 76.7±4.3 10CV
Backpropagation [12] 75.0 10CV
C4.5 [12] 68.5 10CV

paper, all the reported experimental results of RBF-MIP were obtained with this
type of distance metric configuration.

Tables 3 and 4 compare the performance of RBF-MIP on both Musk data sets
with those reported in the literatures, where the value following “±” shows the
available standard deviation. Unfortunately, only very few literatures have reported
the standard deviations of their corresponding learning algorithms. The empirical
results shown in the tables have either been obtained by multiple 10-fold cross-val-
idation runs (10CV) or by leave-one-out estimation (LOO).1

Note that Zhou and Zhang [38] have showed that ensembles of multi-instance
learners could achieve better results than single multi-instance learners. However,
considering that RBF-MIP is a single multi-instance learner, the performance of
ensembles of multi-instance learners are not included in the tables for fair com-
parison.

On the other hand, both Dietterich et al.’s APR algorithms and Maron and
Lozano-Pérez’s Diverse Density algorithm [24] employed some feature selection
mechanisms. Furthermore, the technique of principle component analysis (PCA)
[18] has also been used to improve the performance of BP-MIP [37], where an
enhanced version of this algorithm named BP-MIP-PCA [35] is proposed.

1As what has been pointed out by Andrews et al. [3], the EM-DD algorithm described in [33] seems to
use the test data to select the optimal solution obtained from multiple runs of the algorithm. Thus, the
experimental results of EM-DD shown in Tables 3 and 4 are the results given by Andrews et al. [3].

14 MIN-LING ZHANG AND ZHI-HUA ZHOU

Table 4. Comparison of the performance (% correct ± std.
deviation) on the Musk2 data.

Algorithm Musk2 Evaluation

MI SVM [15] 92.2 LOO
RBF-MIP-PCA 90.1±1.7 LOO
Iterated-discrim APR [12] 89.2 10CV
RBF-MIP 88.0±3.5 LOO
Relic [28] 87.3 10CV
Citation-kNN [31] 86.3 LOO
EM-DD [33] 84.9 10CV
MI-SVM [3] 84.3 10CV
MULTINST [4] 84.0±3.7 10CV
mi-SVM [3] 83.6 10CV
BP-MIP-PCA [35] 83.3 LOO
Diverse Density [24] 82.5 10CV
Bayesian-kNN [31] 82.4 LOO
BP-MIP [37] 80.4 LOO
GFS elim-kde APR [12] 80.4 10CV
RIPPER-MI [9] 77.0 N/A
GFS elim-count APR [12] 75.7 10CV
Backpropagation [12] 67.7 10CV
C4.5 [12] 58.8 10CV

In this paper, PCA is also embedded into RBF-MIP to yield better results on
the Musk data sets. Briefly speaking, PCA is one of the most popular methods
for irrelevant feature reduction, which is usually employed to discover the intrin-
sic dimensionality of a data set based on the covariance matrix R computed from
the data. The q eigenvectors corresponding to the q largest eigenvalues of R define
a linear transformation matrix T, which projects the original p-dimensional space
into a q-dimensional space in which the features are uncorrelated. In this paper,
for both Musk1 and Musk2, the original 166-dimensional feature spaces are trans-
formed into new 100-dimensional feature spaces by PCA, where the experimental
setups are the same as used above. The performance of RBF-MIP combined with
PCA (i.e. RBF-MIP-PCA) is also reported in Tables 3 and 4.

Tables 3 and 4 show that, RBF-MIP is among the top-ranked learning algo-
rithms on both Musk1 and Musk2. Especially, the performance of RBF-MIP is
significantly better than that of BP-MIP [37], i.e. another neural network based
multi-instance learner, on the Musk data. By incorporating the particular fea-
ture selection strategy of PCA, the performance of RBF-MIP is further improved
and RBF-MIP-PCA also outperforms BP-MIP-PCA [35]. In addition, RBF-MIP
has some advantages compared with other multi-instance learners. For example,
Dietterich et al.’s APR algorithms [12] were specially designed for the Musk data,
while RBF-MIP is a general algorithm so that its applicability is better than that
of the APR algorithms. More important, through adopting the same notations
and algorithm description in Section 4 and then converting the discrete-valued

ADAPTING RBF NEURAL NETWORKS 15

output of each bag into the corresponding real-valued one, RBF-MIP is easy to
be adapted for multi-instance regression problems.

Tables 3 and 4 also indicate that the performance of all the multi-instance learn-
ing methods is better than that of Backpropagation and C4.5, which is especially
obvious on Musk2 that is more difficult to learn than Musk1. This observation
supports Dietterich et al.’s claim [12] that traditional supervised learning methods
can hardly work well on multi-instance problems because they have not incorpo-
rated the characteristics of multi-instance learning.

It is noteworthy that, in multi-instance learning area, it is always the best per-
formance of each algorithm been reported when making comparison. For instance,
the experimental results of MI SVM [15] and Iterated-discrim APR [12] reported
in Tables 3 and 4 are the best performance of each algorithm out of 26 and more
than 50 different parameter configurations respectively. While in Tables 3 and 4,
the reported results of RBF-MIP are not obtained by evaluating many different
parameter configurations and then picking the best one. However, the parameters
used to train RBF-MIP neural network, i.e. M (the number of remaining clusters
in the first layer) and µ (the scaling factor), are automatically determined using
the training data. Therefore, to make a fair comparison, the performance of RBF-
MIP is also evaluated under a number of (36) different parameter configurations
on both data sets and the best performance of RBF-MIP is recorded. In detail, M

ranges from 40 to 80 with an interval of 5 and µ ranges from 0.3 to 0.6 with an
interval of 0.1. Figures 5 and 6 illustrate the predictive accuracy of RBF-MIP with
each parameter configuration on Musk1 and Musk2 respectively, where leave-one-
out test is used to evaluate the performance. The horizontal axis indicates the num-
ber of remaining clusters in the first layer. For Musk1 (as shown in Figure 5), the
best performance of the RBF-MIP neural network is 94.6% (the best performance
on Musk1 shown in Table 3 is 92.4%), which is obtained with 65 clusters remain-
ing in the first layer and the value of µ set to be 0.4. For Musk2 (as shown in
Figure 6), the best performance of the RBF-MIP neural network is 92.2% (the best
performance on Musk2 shown in Table 4 is also 92.2%), which is obtained with 70
clusters remaining in the first layer and the value of µ set to be 0.3. These results
suggest that the rank of RBF-MIP among multi-instance learning methods may be
even higher than that was shown in Tables 3 and 4.

5.2. artificial data sets

In 2001, Amar et al. [2] presented a method for creating artificial multi-instance
data. This method generates an artificial receptor at first. Then, artificial molecules
with several instances per bag are generated, with each feature value considered as
the distance from the origin to the molecular surface when all molecules are in the
same orientation. Each feature has a scale factor to represent its importance in the
binding process. The binding energies between the artificial molecules and receptor
are calculated based on the Lennard–Jones potential for intermolecular interactions.

16 MIN-LING ZHANG AND ZHI-HUA ZHOU

40 45 50 55 60 65 70 75 80
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

number of remaining clusters in the first layer

pr
ed

ic
ti

ve
 a

cc
ur

ac
y

mu=0.3

mu=0.4

mu=0.5

mu=0.6

Figure 5. The predictive accuracy of RBF-MIP on Musk1 changes as the number of remaining clusters
increasing.

40 45 50 55 60 65 70 75 80
0.65

0.70

0.75

0.80

0.85

0.90

0.95

number of remaining clusters in the first layer

pr
ed

ic
ti

ve
 a

cc
ur

ac
y

mu=0.3

mu=0.4

mu=0.5

mu=0.6

Figure 6. The predictive accuracy of RBF-MIP on Musk 2 changes as the number of remaining clusters
increasing.

The artificial data sets are named as LJ-r.f.s where r is the number of relevant
features, f is the number of features, and s is the number of different scale fac-
tors used for the relevant features. To partially mimic the Musk data, some data
sets only use labels that are not near 1/2 (indicated by the ‘S’ suffix) and all scale
factors for the relevant features are randomly selected between [0.9, 1]. Note that
these data sets are mainly designed for multi-instance regression, but they can also

ADAPTING RBF NEURAL NETWORKS 17

be used for multi-instance classification through rounding the real-valued label to
0 or 1.

Leave-one-out test is performed on four artificial data sets, i.e. LJ-160.166.1,
LJ-160.166.1-S, LJ-80.166.1, and LJ-80.166.1-S. Each data set contains 92 bags. In
detail, for N bags, one bag is used to test while the others are used to train an RBF-
MIP neural network in a loop of N iterations. In each iteration, the same mechanism
used in the experimental procedure of the Musk data is also used to automatically
determine the parameter configuration. Concretely, for each artificial data set, 20%
random fraction of the original training set is used to form the validation set while a
parameter candidate set with 28 different configurations is used, i.e. M ranges from
40 to 70 with an interval of 5 and µ ranges from 0.3 to 0.6 with an interval of 0.1.
The parameter configuration with which the RBF-MIP neural network achieves the
lowest squared loss on the validation set is selected and then employed to train a new
RBF-MIP neural network on the original training set. The iterations are repeated
in the way that each bag in the data set has been used as the test bag once. At the
end of the loop, the final squared loss and predictive error are both calculated as the
average results of all test bags.

Ten times of leave-one-out tests are conducted for each artificial data set. The
performance of RBF-MIP is compared with those of BP-MIP, Diverse Density and
Citation-kNN, where the performance of BP-MIP and those of Diverse Density
and Citation-kNN are reported in the literatures [37] and [2] respectively. The aver-
age predictive error and squared loss are shown in Tables 5 and 6 respectively,
where the value following “±” is the standard deviation which is only available for
RBF-MIP.

Tables 5 and 6 show that, with respect to both the predictive error and squared
loss, the performance of RBF-MIP is worse than that of Citation-kNN [31], but

Table 5. Comparison of the predictive error (% error±std. deviation)
on the artificial data sets.

Data set RBF-MIP BP-MIP Diverse density Citation-kNN

LJ-160.166.1 5.1±0.7 16.3 23.9 4.3
LJ-160.166.1-S 1.1±0.7 18.5 0.0 0.0
LJ-80.166.1 6.6±0.8 18.5 N/A 8.6
LJ-80.166.1-S 18.5±1.2 18.5 53.3 0.0

Table 6. Comparison of the squared loss (loss±std. deviation) on the
artificial data sets.

Data set RBF-MIP BP-MIP Diverse density Citation-kNN

LJ-160.166.1 0.0108±0.0001 0.0398 0.0852 0.0014
LJ-160.166.1-S 0.0075±0.0002 0.0731 0.0052 0.0022
LJ-80.166.1 0.0167±0.0005 0.0487 N/A 0.0109
LJ-80.166.1-S 0.0448±0.0042 0.0752 0.1116 0.0025

18 MIN-LING ZHANG AND ZHI-HUA ZHOU

it is apparently better than that of BP-MIP [37]. Furthermore, compared with
the performance of Diverse Density [24], that of RBF-MIP is apparently better
on LJ-160.166.1 and LJ-80.166.1-S, and it is comparable on LJ-160.166.1-S. The
above results reveal that, although RBF-MIP is worse than Citation-kNN in multi-
instance regression, it is better than BP-MIP and Diverse Density in both multi-
instance classification and multi-instance regression.

5.3. natural scene image database retrieval

In CBIR, the query, i.e. the example image posed by the user is actually ambiguous
and difficult to be perceived. For instance, suppose a user poses the image shown
in Figure 7 and asks the system to retrieval “similar” images from the database.
This kind of query is rather ambiguous since the query can be regarded as “river”,
“mountains”, “clouds”, “trees”, etc, while it is hard to ask the user precisely spec-
ify which one he or she really wants. However, if the query can be processed as an
image bag that preserves original semantic meanings of the image, then the ambigu-
ity can be tackled by multi-instance learning techniques. Briefly speaking, the query
images posed by the user are firstly transformed into corresponding positive and
negative bags by certain image bag generator. Then the system can learn what the
user requires (i.e. the target concept) from those training bags with multi-instance
learning algorithms. Finally, the images in the database are sorted according to the
learned target concept and returned to the user by the system.

Several multi-instance learning based CBIR systems have been developed [25,
32, 34], where many image bag generators have been proposed and several multi-
instance learning algorithms such as Diverse Density and EM-DD have been used
to learn and retrieval images from the database. In this paper, the performance

Figure 7. A sample query image.

ADAPTING RBF NEURAL NETWORKS 19

of RBF-MIP is further evaluated by retrieving images from a natural scene image
database.

An image database consisting of 2,000 images is used in the experiments, which
includes 400 images from each of the five natural scene image types: desert, moun-
tains, sea, sunset, and trees. Each image is transformed into an image bag by the
popular SBN [25] (i.e. single blob with neighbors) image bag generator.2 In detail,
each image is smoothed by a Gaussian filter and subsampled to an 8 × 8 matrix
of color blobs where each blob is a 2 × 2 set of pixels within the 8 × 8 matrix.
An SBN is defined as the combination of a single blob with its four neighboring
blobs (up, down, left, right). The sub-image is described as a 15-dimensional vec-
tor, where the first three attributes represent the mean R, G, B values of the cen-
tral blob and the remaining 12 attributes correspond to the differences in mean
color values between the central blob and other four neighboring blobs respec-
tively. Therefore, each image bag is represented by a collection of nine 15-dimen-
sional feature vectors obtained by using each of the nine blobs not along the
border as the central blob.

A potential training set of 400 images is created by randomly choosing 80 images
from each of the five image types. The remaining images constitute a test set
consisting of 1,600 images, 320 from each of the five image types. Separating the
potential training set from the test set is to ensure that results of using various
multi-instance learning algorithms could be compared fairly. In this paper, each
image type corresponds to a concept class to be learned. For each image type, an
initial training set is created by randomly picking several positive examples of the
target concept and several negative examples, all from the potential training set.
SBN is used to generate image bags and the concept is learned by some specific
multi-instance learning algorithm. After the concept has been learned, the 1600
images in the test set are sorted based on the learned concept. Two different train-
ing schemes are used: 3p3n that picks three positive examples and three negative
examples to form the initial training set; and 5p5n that picks five positive exam-
ples and five negative examples to form the initial training set. Figure 8 shows a
sample run of RBF-MIP (combined with SBN) using training scheme 5p5n where
the target concept is mountains.

In this paper, the retrieval performance of RBF-MIP is compared with those of
BP-MIP [37], Diverse Density [24] and EM-DD [33].3 For the problem of CBIR,
the training set is too small (six examples for 3p3n and 10 examples for 5p5n) to
effectively estimate the parameter configuration of RBF-MIP as in Sections 5.1

2Note that the purpose of the experiments is to compare the performance of different multi-instance
learning algorithms instead of testing the effectiveness of different image bag generators, thus only one
image bag generator is used for all comparing algorithms.
3For RBF-MIP and BP-MIP, the test images are sorted based on the maximum output of any of the
image’s instances on the trained neural networks; While for Diverse Density and EM-DD, the test
images are sorted based on the minimum distance of any of the image’s instances from the learned con-
cept point.

20 MIN-LING ZHANG AND ZHI-HUA ZHOU

Figure 8. A sample run of RBF-MIP (combined with SBN) for retrieving mountains using training
scheme 5p5n. (a) User-selected positive examples; (b) User-selected negative examples; (c) Final retrieval
from test set (top 15 images).

and 5.2. Thus, in the following experiments, the number of remaining clusters M in
the first layer of RBF-MIP is simply set to be the same number of training exam-
ples, i.e. by taking each training example as a cluster of its own. The scaling factor
µ is fixed to be 0.3. For BP-MIP, the number of hidden neurons is set to be 15,
which equals the dimensionality of each instance in the bags. For Diverse Density
and EM-DD, the default parameters are adopted.

On way to evaluate image retrieval performance is to measure the precision and
recall. Precision is the ratio of the number of correctly retrieved images to the
number of all images retrieved so far. Recall is the ratio of the number of cor-
rectly retrieved images to the total number of correct images in the test set. Given
a specific training scheme, for each image type, 10 runs of experiments are per-
formed for each of the four multi-instance learning algorithms. Figure 9 gives the
precision-recall curves for training scheme 3p3n, where precision is plotted against
recall as the number of retrieved images increases. The curve of each algorithm
is the averaged results of five different image types each with 10 runs of experi-
ments. The higher the precision-recall curve, the better the performance. Similarly,
Figure 10 gives the precision-recall curves for training scheme 5p5n.

ADAPTING RBF NEURAL NETWORKS 21

Figure 9. Precision-recall curves for training scheme 3p3n, where the curve of each algorithm is the aver-
aged results of five different image types each with 10 runs of experiments.

Figure 10. Precision-recall curves for training scheme 5p5n, where the curve of each algorithm is the
averaged results of five different image types each with 10 runs of experiments.

For training scheme 3p3n (as shown in Figure 9), the performance of RBF-
MIP is better than those of Diverse Density, EM-DD and BP-MIP. For training
scheme 5p5n (as shown in Figure 10), RBF-MIP is comparable to Diverse Den-
sity and both of them outperform EM-DD and BP-MIP. For image database
retrieval, in most cases, the users may only be interested in the top portion
of the images returned by the system which correspond to the beginning of
the precision-recall curve. Therefore, Tables 7 and 8 report the precision and
recall of each comparing algorithm on the top 200 retrieved images with training
scheme 3p3n respectively, where the number following “±” is the corresponding

22 MIN-LING ZHANG AND ZHI-HUA ZHOU

standard deviation. Similarly, Tables 9 and 10 report the precision and recall of
each comparing algorithm on the top 200 retrieved images with training scheme
5p5n respectively.

Tables 7 and 8 show that, in terms of both precision and recall, RBF-MIP out-
performs EM-DD on all image types, outperforms BP-MIP on all image types
except sea, and outperforms Diverse Density on desert, sunset and trees, but is
inferior to Diverse Density on mountains and sea. On the average (as shown in the
last line of Tables 7 and 8), RBF-MIP performs slightly better than Diverse Den-
sity and both of them significantly outperform EM-DD and BP-MIP. Tables 9 and
10 show that, in terms of both precision and recall, RBF-MIP outperforms EM-
DD on all image types, outperforms BP-MIP on desert, mountains and trees, but

Table 7. Precision of each comparing algorithm on the top 200
retrieved images with training scheme 3p3n.

Image type RBF-MIP Diverse density EM-DD BP-MIP

Desert 0.362±0.130 0.333±0.145 0.269±0.099 0.265±0.094
Mountains 0.381±0.056 0.393±0.090 0.338±0.078 0.308±0.118
Sea 0.249±0.066 0.285±0.046 0.236±0.051 0.270±0.088
Sunset 0.511±0.083 0.445±0.104 0.426±0.098 0.433±0.145
Trees 0.469±0.113 0.379±0.124 0.366±0.066 0.116±0.087

Average 0.394±0.090 0.367±0.102 0.327±0.079 0.278±0.107

Table 8. Recall of each comparing algorithm on the top 200 retrieved
images with training scheme 3p3n.

Image type RBF-MIP Diverse density EM-DD BP-MIP

Desert 0.226±0.081 0.208±0.091 0.168±0.062 0.165±0.059
Mountains 0.238±0.035 0.245±0.056 0.211±0.049 0.192±0.074
Sea 0.156±0.041 0.178±0.029 0.147±0.032 0.168±0.055
Sunset 0.319±0.052 0.278±0.065 0.266±0.061 0.271±0.090
Trees 0.293±0.071 0.237±0.077 0.229±0.041 0.073±0.055

Average 0.246±0.056 0.229±0.064 0.204±0.049 0.174±0.067

Table 9. Precision of each comparing algorithm on the top 200
retrieved images with training scheme 5p5n.

Image type RBF-MIP Diverse density EM-DD BP-MIP

Desert 0.391±0.092 0.320±0.157 0.290±0.079 0.245±0.126
Mountains 0.427±0.057 0.389±0.125 0.315±0.063 0.408±0.085
Sea 0.316±0.041 0.309±0.047 0.282±0.044 0.349±0.075
Sunset 0.506±0.137 0.642±0.109 0.444±0.118 0.534±0.188
Trees 0.521±0.109 0.379±0.151 0.402±0.124 0.116±0.066

Average 0.432±0.087 0.407±0.118 0.346±0.086 0.330±0.108

ADAPTING RBF NEURAL NETWORKS 23

Table 10. Recall of each comparing algorithm on the top 200 retrieved
images with training scheme 5p5n.

Image type RBF-MIP Diverse density EM-DD BP-MIP

Desert 0.244±0.058 0.200±0.098 0.181±0.049 0.153±0.079
Mountains 0.267±0.036 0.243±0.078 0.197±0.039 0.255±0.053
Sea 0.197±0.025 0.193±0.030 0.176±0.028 0.218±0.047
Sunset 0.316±0.086 0.401±0.068 0.277±0.074 0.334±0.117
Trees 0.325±0.068 0.237±0.095 0.251±0.077 0.072±0.041

Average 0.270±0.055 0.255±0.074 0.216±0.054 0.206±0.067

is inferior to BP-MIP on sea and sunset, and outperforms Diverse Density on all
image types except sunset. On the average (as shown in the last line of Tables 9
and 10), RBF-MIP performs slightly better than Diverse Density and both of them
significantly outperform EM-DD and BP-MIP. The above results indicate that,
besides multi-instance classification and multi-instance regression, RBF-MIP could
also work well with application to CBIR.

6. Conclusion and Future Work

In this paper, a multi-instance neural network algorithm named RBF-MIP is pro-
posed. It is derived from the traditional RBF method through employing a partic-
ular two-stage training procedure, where its first layer is composed of clusters of
bags formed by merging training bags agglomeratively and its second layer weights
are optimized by minimizing a sum-of-squares function and worked out through
SVD. Experiments on the Musk data sets, several artificial data sets and natu-
ral scene image database retrieval show that RBF-MIP is among the top-ranked
learning algorithms on multi-instance problems.

In the trained RBF-MIP neural networks, there exist some clusters containing
only one bag when many clusters are remained in the first layer. Investigating some
appropriate methods to eliminate these “trivial” clusters is an interesting issue for
future work.

Furthermore, recent research has shown that neural network ensemble could sig-
nificantly improve the generalization ability of neural network based learning sys-
tems, which has become a hot topic in both machine learning and neural network
communities [36]. Besides, Zhou and Zhang [38] have proposed to build ensem-
bles of several multi-instance learners to solve multi-instance problems, and shown
that the investigated multi-instance learners can be enhanced by utilizing ensemble
learning paradigms. So, it is interesting to see if better results could be obtained
with ensembles of RBF-MIP neural networks.

Acknowledgements

The comments and suggestions from the anonymous reviewers greatly improved
this paper. This work was supported by the National Science Foundation of

24 MIN-LING ZHANG AND ZHI-HUA ZHOU

China under the Grant No. 60473046, the Foundation for the author of National
Excellent Doctoral Dissertation of China under the Grant No. 200343, and the
National 973 Fundamental Research Program of China under the Grant No.
2002CB312002.

References

1. Alphonse, E. and Matwin, S.: Filtering multi-instance problems to reduce dimensionality
in relational learning, Journal of Intelligent Information Systems, 22(1) (2004), 23–40.

2. Amar, R. A., Dooly, D. R., Goldman, S. A. and Zhang, Q.: Multiple-instance learning
of real-valued data, In: Proceedings of the 18th International Conference on Machine
Learning, pp. 3–10, Williamstown, MA, 2001. [http://www.cs.wustl.edu/∼sg/multi-inst-
data]

3. Andrews, S., Tsochantaridis, I. and Hofmann, T.: Support vector machines for multiple-
instance learning, In: Becker, S., Thrun, S. and Obermayer, K. (eds), Advances in Neural
Information Processing Systems 15, pp. 561–568, MIT Press, Cambridge, MA, 2003.

4. Auer, P.: On learning from multi-instance examples: empirical evaluation of a theoreti-
cal approach, In: Proceedings of the 14th International Conference on Machine Learning,
pp. 21–29, Nashville, TN, 1997.

5. Auer, P., Long, P. M. and Srinivasan, A.: Approximating hyper-rectangles: learning and
pseudo-random sets, Journal of Computer and System Sciences, 57(3) (1998), 376–388.

6. Bishop, C. M.: Neural Networks for Pattern Recognition, Oxford University Press,
New York, 1995.

7. Blake, C., Keogh, E. and Merz, C. J.: UCI repository of machine learning databases.
Department of Information and Computer Science, University of California, Irvine, CA,
1998. [http://www.ics.uci.edu/∼mlearn/MLRepository.html]

8. Blum, A. and Kalai, A.: A note on learning from multiple-instance examples, Machine
Learning, 30(1) (1998), 23–29.

9. Chevaleyre, Y. and Zucker, J.-D.: Solving multiple-instance and multiple-part learning
problems with decision trees and decision rules. Application to the mutagenesis prob-
lem, In: Stroulia, E. and Matwin, S. (eds), Lecture Notes in Artificial Intelligence 2056,
pp. 204–214, Springer, Berlin, 2001.

10. Dempster, A. P., Laird, N. M. and Rubin, D. B.: Maximum likelihood from incomplete
data via the EM algorithm, Journal of the Royal Statistics Society, Series B, 39(1) (1977),
1–38.

11. De Raedt, L.: Attribute-value learning versus inductive logic programming: the missing
links, In: Page, D. (ed.), Lecture Notes in Artificial Intelligence 1446, pp. 1–8, Springer,
Berlin, 1998.

12. Dietterich, T. G., Lathrop, R. H. and Lozano-Pérez, T.: Solving the multiple-instance
problem with axis-parallel rectangles, Artificial Intelligence, 89(1–2) (1997), 31–71.

13. Dooly, D. R., Goldman, S. A. and Kwek, S. S.: Real-valued multiple-instance learn-
ing with queries, In: Abe, N., Khardon, R. and Zeugmann, T. (eds), Lecture Notes in
Artificial Intelligence 2225, pp. 167–180, Springer, Berlin, 2001.

14. Edgar, G. A.: Measure, Topology, and Fractal Geometry, 3rd print, Springer-Verlag,
Berlin, 1995.

15. Gärtner, T., Flach, P. A., Kowalczyk, A. and Smola, A. J.: Multi-instance kernels, In:
Proceedings of the 19th International Conference on Machine Learning, pp. 179–186,
Sydney, Australia, 2002.

16. Goldman, S. A., Kwek, S. S. and Scott, S. D.: Agnostic learning of geometric patterns,
Journal of Computer and System Sciences, 62(1) (2001), 123–151.

ADAPTING RBF NEURAL NETWORKS 25

17. Goldman, S. A. and Scott, S. D.: Multiple-instance learning of real-valued geometric
patterns, Annals of Mathematics and Artificial Intelligence, 39(3) (2003), 259–290.

18. Jollife, I. T.: Principle Component Analysis, Springer-Verlag, New York, 1986.
19. Kearns, M. J.: Efficient noise-tolerant learning from statistical queries, In: Proceedings of

the 25th Annual ACM Symposium on Theory of Computing, pp. 392–401, San Diego, CA,
1993.

20. Kearns, M. J. and Schapire, R. E.: Efficient distribution-free learning of probabilistic
concepts, Journal of Computer and System Sciences, 48(3) (1994), 464–497.

21. Lindsay, R., Buchanan, B., Feigenbaum, E. and Lederberg, J.: Applications of Artificial Intel-
ligence to Organic Chemistry: The DENDRAL Project, McGraw-Hill, New York, 1980.

22. Long, P. M. and Tan, L.: PAC learning axis-aligned rectangles with respect to product
distribution from multiple-instance examples, Machine Learning, 30(1) (1998), 7–21.

23. Maron, O.: Learning from Ambiguity, PhD dissertation, Department of Electronical
Engineering and Computer Science, MIT, Cambridge, MA, Jun. 1998.

24. Maron, O. and Lozano-Pérez, T.: A framework for multiple-instance learning, In: Jordan,
M. I., Kearns, M. J. and Solla, S. A. (eds), Advances in Neural Information Processing Sys-
tems 10, pp. 570–576, MIT Press, Cambridge, MA, 1998.

25. Maron, O. and Ratan, A. L.: Multiple-instance learning for natural scene classification,
In: Proceedings of the 15th International Conference on Machine Learning, pp. 341–349,
Madison, WI, 1998.

26. Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P.: Numerical Recipes
in C: The Art of Scientific Computing, 2nd edn, Cambridge University Press, New York,
1992.

27. Ray, S. and Page, D.: Multiple instance regression, In: Proceedings of the 18th Interna-
tional Conference on Machine Learning, pp. 425–432, Williamstown, MA, 2001.

28. Ruffo, G.: Learning single and multiple decision trees for security applications, PhD dis-
sertation, Department of Computer Science, University of Turin, Italy, 2000.

29. Rumelhart, D. E., Hinton, G. E. and Williams, R. J.: Learning internal representations
by error propagation, In: Rumelhart, D. E. and McClelland, J. L. (eds), Parallel Dis-
tributed Processing: Explorations in the Microstructure of Cognition, Vol. 1, pp. 318–362,
MIT Press, Cambridge, MA, 1986.

30. Sebag, M. and Rouveirol, C.: Tractable induction and classification in first order logic,
In: Proceedings of the 15th International Joint Conference on Artificial Intelligence, pp.
888–893, Nagoya, Japan, 1997.

31. Wang, J. and Zucker, J.-D.: Solving the multiple-instance problem: a lazy learning
approach, In: Proceedings of the 17th International Conference on Machine Learning,
pp. 1119–1125, San Francisco, CA, 2000.

32. Yang, C. and Lozano- Pérez, T.: Image database retrieval with multiple-instance learn-
ing techniques, In: Proceedings of the 16th International Conference on Data Engineering,
pp. 233–243, San Diego, CA, 2000.

33. Zhang, Q. and Goldman, S. A.: EM-DD: an improved multiple-instance learning tech-
nique, In: Dietterich, T. G., Becker, S. and Ghahramani, Z. (eds), Advances in Neural
Information Processing Systems 14, pp. 1073–1080, MIT Press, Cambridge, MA, 2002.

34. Zhang, Q., Yu, W., Goldman, S. A. and Fritts, J. E.: Content-based image retrieval
using multiple-instance learning, In: Proceedings of the 19th International Conference on
Machine Learning, pp. 682–689, Sydney, Australia, 2002.

35. Zhang, M.-L. and Zhou, Z.-H.: Improve multi-instance neural network through feature
selection, Neural Processing Letters, 19(1) (2004), 1–10.

36. Zhou, Z.-H., Wu, J. and Tang, W.: Ensembling neural networks: many could be better
than all, Artificial Intelligence, 137(1–2) (2002), 239–263.

26 MIN-LING ZHANG AND ZHI-HUA ZHOU

37. Zhou, Z.-H. and Zhang, M.-L.: Neural networks for multi-instance learning, Techni-
cal Report, AI Lab, Computer Science & Technology Department, Nanjing University,
China, Aug. 2002.

38. Zhou, Z.-H. and Zhang, M.-L.: Ensembles of multi-instance learners, In: Lavrač, N.,
Gamberger, D., Blockeel, H. and Todorovski, L. (eds), Lecture Notes in Artificial Intel-
ligence 2837, pp. 492–502, Springer-Verlag, Berlin, 2003.

39. Zucker, J.-D. and Ganascia, J.-G.: Changes of representation for efficient learning in
structural domains, In: Proceedings of the 13th International Conference on Machine
Learning, pp. 543–551, Bary, Italy, 1996.

40. Zucker, J.-D. and Ganascia, J.-G.: Learning structurally indeterminate clauses, In: Page,
D. (ed.), Lecture Notes in Artificial Intelligence 1446, pp. 235–244, Springer, Berlin, 1998.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

