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Abstract. Multi-instance learning is regarded as a new learning framework where the training

examples are bags composed of instances without labels, and the task is to predict the labels of
unseen bags through analyzing the training bags with known labels. Recently, a multi-instance
neural network BP-MIP was proposed. In this paper, BP-MIP is improved through adopting

two different feature selection techniques, i.e. feature scaling with Diverse Density and feature
reduction with principal component analysis. In detail, before feature vectors are fed to a
BP-MIP neural network, they are scaled by the feature weights found by running Diverse Den-

sity on the training data, or projected by a linear transformation matrix formed by principal
component analysis. Experiments show that these feature selection mechanisms can signifi-
cantly improve the performance of BP-MIP.

Key words. backpropagation, feature selection, machine learning, multi-instance learning,

neural networks

Abbreviations. DD – Diverse density; PCA – Principal component analysis

1. Introduction

In the middle of 1990’s, Dietterich et al. [7] investigated the problem of drug activity

prediction. The goal is to endow learning systems with the ability of predicting that

whether a new molecule could be used to make some drug, through analyzing a

collection of known molecules. The qualification of the molecule to make some drug

is determined by some of its shapes with low energy. However, at present biochemists

only know that whether a known molecule is qualified to make some drug instead of

knowing that which of its alternative shapes is responsible for the qualification. In order

to solve this problem, Dietterich et al. [7] initialized the notion ofmulti-instance learning.

In multi-instance learning, the training set is composed of many bags each

containing many instances. The bags are labeled in the way that if a bag contains

at least one positive instance then it is labeled as a positive bag. Otherwise it is

labeled as a negative bag. The task is to learn some concept from the training bags

for correctly labeling unseen bags. The difficulty of multi-instance learning lies in

that unlike standard supervised learning where all the training instances are labeled,

the labels of the individual instances are unknown in multi-instance learning.

?Corresponding author.

Neural Processing Letters 19: 1–10, 2004. 1
# 2004 Kluwer Academic Publishers. Printed in the Netherlands.



Dietterich et al. [7] showed that learning methods ignoring the characteristics of

multi-instance problem could not work well in this scenario. Due to its unique char-

acteristics and extensive applicability, multi-instance learning has been regarded as a

new learning framework different to supervised learning, unsupervised learning, and

reinforcement learning [11].

When the notion of multi-instance learning was coined, Dietterich et al. [7]

indicated that a particular interesting issue in this area is to design multi-instance

modifications for neural networks. Recently, this open problem has been addressed

by a multi-instance neural network named BP-MIP [21], which extended the popular

BP [17] algorithm with a global error function defined at the level of bags instead of

at the level of instances. Experiments [21] show that the performance of BP-MIP is

comparable to many existing multi-instance learning algorithms. However, it is not

so good as several algorithms with inbuilt feature selection mechanisms, such as

iterated-discrim APR [7] and Diverse Density [12]. Therefore, an interesting issue

to be explored is that whether the performance of BP-MIP could be significantly

improved with the help of feature selection. In this paper, two variants of BP-MIP,

i.e. BP-MIP-DD incorporating feature scaling with Diverse Density and BP-

MIP-PCA incorporating feature reduction with principal component analysis

(PCA) [9], are presented. Experiments on the drug activity prediction data, which

is the only real-world benchmark test data for multi-instance learning at present,

show that both methods significantly improve the performance of BP-MIP.

The rest of this paper is organized as follows. Section 2 reviews previous works on

multi-instance learning. Section 3 briefly introduces BP-MIP and then presents

BP-MIP-DD and BP-MIP-PCA. Section 4 reports experimental results on the drug

activity prediction data. Finally, Section 5 concludes and indicates several issues for

future work.

2. Previous Works Review

Long and Tan [10] described a high-order polynomial-time theoretical algorithm and

show that if the instances in the bags are independently drawn from product distri-

bution, then the APR is PAC-learnable. Auer et al. [3] showed that if the instances in

the bags are not independent then APR learning under the multi-instance learning

framework is NP-hard. Moreover, they also presented a theoretical algorithm with-

out requiring product distribution and with reduced time and sample complexity

than that of Long and Tan’s algorithm. Later, this theoretical algorithm was trans-

formed into a practical algorithm named MULTINST [2]. Blum and Kalai [5] gave a

reduction from the problem of PAC-learning under the multi-instance learning

framework to PAC-learning with one-sided or two-sided random classification noise,

and presented a theoretical algorithm with smaller sample complexity than that of

Auer et al.’s algorithm. Unfortunately, all the above theoretical analyses made the

restrictive assumption that each bag contains the same number of independent instan-

ces, which is usually not the case in practice.
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A representative practical multi-instance learning algorithm is Diverse Density

proposed by Maron and Lozano-Pérez [12], which has been applied to several appli-

cations including learning a simple description of a person from a series of images

[12], stock prediction [12], natural scene classification [13], and content-based image

retrieval [19]. There are also many other practical algorithms. Wang and Zucker [18]

extended k-nearest neighbor algorithm for multi-instance learning through adopting

Hausdorff distance, and provided two multi-instance learning algorithm called

Bayesian-kNN and Citation-kNN. Ruffo [16] presented a multi-instance version of

C4.5 decision tree named Relic and applied it to data mining. Chevaleyre and Zucker

[6] derived ID3-MI and RIPPER-MI, which are multi-instance version of decision

tree algorithm ID3 and rule learning algorithm RIPPER. Zhou and Zhang [21]

developed a multi-instance neural network named BP-MIP through employing a

new error function capturing the nature of multi-instance learning. Zhang and

Goldman [20] proposed EM-DD, which combines the EM and Diverse Density

algorithms. Zhou and Zhang [22] applied ensemble learning paradigms to multi-

instance learning and obtained the best result up to now on a benchmark test.

Recently, some researchers begin to investigate multi-instance regression tasks

with real-valued outputs. Ray and Page [15] showed that the general formulation

of multi-instance regression is NP-hard, and proposed an EM-based multi-instance

regression algorithm. Dooly et al. [8] further proved that learning from real-valued

multi-instance examples is as hard as learning DNF. Amar et al. [1] extended Diverse

Density and Citation-kNN for multi-instance regression and designed a method for

artificially generating data sets for multi-instance regression.

3. Feature Selection for BP-MIP

Suppose the training set is composed of N bags, i.e. fB1;B2; . . . ;BNg the ith bag

contains Mi instances, i.e. fBi1;Bi2; . . . ;BiMi
g, each instance is a p-dimensional fea-

ture vector, e.g. the jth instance of the ith bag is ½Bij1;Bijv; . . . ;Bijp�
T. The training

set is further divided into n positive bags Bþ
1 ;Bþ

2 ; . . . ;Bþ
n and m negative bags

B�
1 ;B�

2 ; . . . ;B�
m where n+m=N. The desired output of a positive training bag is

1, while that of a negative training bag is 0.

3.1. BP-MIP

Suppose a neural network with p input units and one output unit is used to learn

from the training set. Since the goal of multi-instance learning is to predict the labels

of unseen bags, the global error of the network on the training set is defined as:

E ¼
XN

i¼1

Ei ¼
XN

i¼1

1

2
max

14 j4Mi

oij � di

� �2
ð1Þ

where Ei is the error of the network on Bi; oij is the actual output of the network on

Bij and di is the desired output of Bi.
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Note that the error function shown as Equation (1) is defined at the level of training

bags instead of at the level of training instances. Thus, the nature of multi-instance

learning, i.e. a positive bag contains at least one positive instance while a negative

bag contains no positive instances, is appropriately addressed.

With the defined error function, the BP algorithm [17] is easy to be updated for

multi-instance learning. In detail, in each training epoch of BP-MIP, the training

bags are fed to the network one by one. For bag Bi, if it has been correctly predicted

then no weight in the network is changed. Otherwise the weights are modified

according to the error on the instance whose corresponding actual output is the

maximal in Bi. After that, Biþ1 is fed to the network and the training process is

iterated until the global error E decreases to a threshold or the number of training

epochs increases to a threshold.

It is worth noting that although the predictive accuracy of BP-MIP on the drug

activity prediction data is better than many multi-instance learning algorithms, it

is not so good as several algorithms such as iterated-discrim APR [7] and Diverse

Density [12] that have inbuilt feature selection mechanisms. Therefore an intuitive

way to boost the performance of BP-MIP is to resort to feature selection techniques.

3.2. BP-MIP-DD

Diverse Density [12] is a famous multi-instance learning algorithm. The diverse

density of a point in the feature space is the measure of how many different positive

bags have instances near that point and how far the negative instances are from that

point. Strictly speaking, for any point t in the feature space, the probability of t being

the target point (i.e. the diverse density of t), given all the positive and negative bags, is

Prðt jBþ
1 ; . . . ;Bþ

n ;B�
1 ; . . . ;B�

mÞ. So the target point that maximizes this probability is

argmax Pr
t

ðt jBþ
1 ; . . . ;Bþ

n ;B�
1 ; . . . ;B�

mÞ ð2Þ

Using Bayes’ rule, assuming an uninformative prior over the concept location

Pr(t) and conditional independence of the bags given the target concept t, the

above equals

argmax
t

Y
i

Prðt jBþ
i Þ

Y
i

Prðt jB�
i Þ ð3Þ

This is a formal definition of maximizing Diverse Density. Maron and Lozano-Pérez

[12] used the ‘noisy-or’ model [14] such that

Prðt jBþ
i Þ ¼ 1�

Y
j

ð1� PrðBþ
ij ¼ tÞÞ ð4Þ

Prðt jB�
i Þ ¼

Y
j

ð1� PrðB�
ij ¼ tÞÞ ð5Þ

and made the following assumption:

PrðBij ¼ tÞ ¼ expð�kBij � tk2Þ ð6Þ
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where kBij � tk is the distance between the two vectors. It is worth mentioning

that not all dimensions are equally important, so they defined the distance to be a

weighted Euclidean distance:

kBij � tk2 ¼
Xp

k¼1

w2kðBijk � tkÞ
2

ð7Þ

where Bijk is the kth dimension in the vector Bij and jwkj is the corresponding non-

negative weight (jxj denotes the absolute value of x). Multiple gradient ascents (start-

ing from every instance in all positive bags) are performed to search for the point with

maximal diverse density as well as the best feature weights corresponding to that point.

BP-MIP-DD utilizes the weights found by Diverse Density to improve the

performance of BP-MIP. In detail, before feature vectors are fed to a BP-MIP

neural network for training or testing, they are scaled by the weights found by

running Diverse Density on the training data. In fact, the intention of BP-MIP-DD

is to rescale the feature space to stress important features with larger weights and

suppress insignificant features with smaller weights.

3.3. BP-MIP-PCA

Experiments on the drug activity prediction data show that BP-MIP-DD achieves

better results through feature scaling (as reported in Section 4), which indicates that

some features may have little responsibility in characterizing the original data.

Therefore, eliminating these redundant features while remaining the relevant ones

may probably lead to better performance.

PCA [9] is the most popular method for the reduction of irrelevant features, which

is usually employed to discover the intrinsic dimensionality of a data set based on the

eigenvalues of a covariance matrix R computed from the data. The M eigenvectors

corresponding to theM largest eigenvalues of R define a linear transformation matrix

T, which projects the N-dimensional space into anM-dimensional space in which the

features are uncorrelated. Note that M, i.e. the dimensionality of the transformed

data, is generally much smaller than N, i.e. the dimensionality of the original data.

BP-MIP-PCA incorporates PCA into BP-MIP to perform feature reduction.

Specifically, feature vectors are projected by the linear transformation matrix T

before they are fed to a BP-MIP neural network. Experiments on the drug activity

prediction data show that BP-MIP-PCA can significantly increase the performance

of BP-MIP (as reported in Section 4). This observation supports Dietterich et al.’s

[7] claim that the number of relevant features of the drug activity prediction data will

probably be substantially less than 166.

4. Experiments

4.1. EXPERIMENTAL SETUP

The Musk data is the only real-world benchmark test data for multi-instance

learning at present. There are two data sets, both of which are publicly available
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from UCI Machine Learning Repository [4]. Characteristics of those two data sets

are summarized in Table I.

Leave-one-out test is performed on theMusk data. In detail, for N bags, one bag is

used to test while the others are used to train a neural network in a loop of N itera-

tions. In each iteration, BP-MIP, BP-MIP-DD, and BP-MIP-PCA are trained

according to the rules described in Section 3 respectively. The iterations are repeated

in the way that each bag in the data set has been used as the test bag once. At the end

of the loop, the final predictive accuracy is calculated as the total number of correctly

labeled test bags divided by N.

Since the computational cost of Diverse Density is even higher than that of

training a BP-MIP neural network, in the experiments Diverse Density is run only

once on the whole data set instead of in each iteration for BP-MIP-DD. For fair

comparison, PCA is also run only once so that the linear transformation matrix T

used in each iterations of BP-MIP-PCA is the same, i.e. T is derived from all the

instances in all N bags.

Feedforward neural networks with one output unit, one hidden layer with

80 units, and 166 input units each corresponds to a dimension of the 166-dimen-

sional feature vectors, are trained with the BP-MIP and BP-MIP-DD algorithms.

The learning rate is set to 0.05, while the number of training epochs varies from

50 to 1,000 with an interval of 50.

Configurations of BP-MIP-PCA are the same as that of BP-MIP and BP-MIP-DD

except the number of input units and the number of hidden units. In order to deter-

mine the number of input units, i.e. the number of remained features after feature

reduction, PCA is incorporated into another multi-instance learning algorithm

named Citation-kNN [18]. Figure 1 and Figure 2 show the predictive accuracy of

Citation-kNN on Musk1 and Musk2 with leave-one-out test respectively, where

the horizontal axis indicates the number of remained features.

Figure 1 shows that Citation-kNN achieves the highest predictive accuracy

93.48% on Musk1 when 41 or 42 features are remained. This indicates the intrinsic

dimensionality of the Musk1 data set may be around 40. As for Musk2, Figure 2

shows that Citation-kNN reaches the highest predictive accuracy 86.27% when

Table I. Some characteristics of the Musk data.

Data set Musk1 Musk2

Dimensionality 166 166

Number of bags 92 102

Number of positive bags 47 39

Number of negative bags 45 63

Number of instances 476 6,598

Average number of instances per bag 5.17 64.69

Maximal number of instances in a bag 40 1,044

Minimal number of instances in a bag 2 1
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remaining 48, 49, 55 or 56 features. According to the above facts, the number of

input units and the number of hidden units of BP-MIP-PCA are set to 41 and 40

respectively for Musk1, while 48 and 40 respectively for Musk2.

4.2. RESULTS

The predictive accuracy curves of BP-MIP, BP-MIP-DD, and BP-MIP-PCA on

Musk1 and Musk2 are shown in Figure 3 and Figure 4 respectively. The horizontal

axis indicates the number of training epochs.

For Musk1 (as shown in Figure 3), the best performance of BP-MIP-PCA is

88.0%, which is better than 85.9% and 83.7%, i.e. the best performance achieved

by BP-MIP-DD and BP-MIP respectively. Furthermore, BP-MIP-PCA and

Figure 1. Predictive accuracy of Citation-kNN combined with PCA on the Musk1 data set.

Figure 2. Predictive accuracy of Citation-kNN combined with PCA on the Musk2 data set.
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BP-MIP-DD significantly and persistently perform better than BP-MIP after 50 and

500 training epochs correspondingly.

ForMusk1, on the other hand, BP-MIP-PCA is better than BP-MIP-DD until the

number of training epochs increases to 900. It is expected that if BP-MIP-DD is

trained with more epochs, its predictive accuracy can be further improved. In addi-

tion, although the architecture and parameters of BP-MIP-PCA have not been finely

tuned, its best performance on Musk1, i.e. 88.0% between training epochs 350 and

500, is comparable to 88.9%, i.e. the result achieved by Diverse Density [12].

For Musk2 (as shown in Figure 4), as what has been exhibited on Musk1, the best

performance of BP-MIP-PCA, i.e. 83.33%, is also better than 80.39%, i.e. the best

performance identically achieved by BP-MIP-DD and BP-MIP. Furthermore,

Figure 3. Predictive accuracy on Musk1.

Figure 4. Predictive accuracy on Musk2.

8 MIN-LING ZHANG AND ZHI-HUA ZHOU



BP-MIP-PCA and BP-MIP-DD significantly and persistently perform better than

BP-MIP after 50 and 250 training epochs correspondingly.

For Musk2, on the other hand, BP-MIP-DD reaches the highest predictive

accuracy 80.39% after 600 training epochs, while BP-MIP rarely reach the same

highest predictive accuracy 350 training epochs later. In addition, the best perfor-

mance of BP-MIP-PCA, i.e. 83.33% on training epochs 850, is better than

82.50%, i.e. the result achieved by Diverse Density [12], even though the architecture

and parameters of BP-MIP-PCA have not been finely tuned.

5. Conclusion

BP-MIP is a multi-instance neural network derived from the popular BP algorithm

through employing a new error function capturing the nature of multi-instance

learning. In this paper, two variants of BP-MIP, i.e. BP-MIP-DD and BP-MIP-

PCA are developed. BP-MIP-DD scales the features with Diverse Density; and

BP-MIP-PCA eliminates features with principal component analysis. Experiments

on the drug activity prediction data show that the performance of BP-MIP can be

significantly improved with both methods. This indicates that incorporating feature

selection mechanisms may be a promising way to boost current multi-instance

learning algorithms.

It is worth noting that the experimental results reported in this paper is rather

preliminary because due to the time limitation, the architecture and parameters of

the neural networks have not been finely tuned. It is obvious that investigating better

configurations of the neural networks is an important issue to be explored in the near

future. Furthermore, investigating other feature selection methods to further

improve BP-MIP is another interesting issue for future work.
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