
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003 325

Design and Implementation of a Distributed
Evolutionary Computing Software

K. C. Tan, Member, IEEE, Arthur Tay, and J. Cai

Abstract—Although evolutionary algorithm is a powerful
optimization tool, its computation cost involved in terms of time
and hardware resources increases as the size or complexity of
the problem increases. One promising approach to overcome this
limitation is to exploit the inherent parallelism of evolutionary
algorithms by creating an infrastructure necessary to support
distributed evolutionary computing using existing Internet and
hardware resources. This paper presents a Java-based distributed
evolutionary computing software (Paladin-DEC), which enhances
the concurrent processing and performance of evolutionary
algorithms by allowing inter-communications of subpopulations
among various computers over the Internet. Such a distributed
system enables individuals to migrate among multiple subpop-
ulations according to some patterns to induce diversity of elite
individuals periodically, in a way that simulates the species evolve
in natural environment. The Paladin-DEC software is capable
of keeping data integrity throughout the computation, and is
incorporated with the features of robustness, security, fault
tolerance, and work balancing. The effectiveness and advantages
of the Paladin-DEC are illustrated upon two case studies of drug
scheduling in cancer chemotherapy and searching probe sets of
yeast genome.

Index Terms—Distributed systems, evolutionary algorithms,
parallel algorithms.

I. INTRODUCTION

EMULATING the Darwinian–Wallace principle in natural
selection and genetics, evolutionary algorithms (EAs)

have been found to be very effective in solving complex
optimization and machine learning problems [1]–[3]. Unlike
traditional single-point gradient-guided search techniques, an
evolutionary algorithm intelligently searches the solution space
by evaluating performances of multiple candidate solutions
simultaneously and approaches the global optimum in a non-
deterministic manner. Although evolutionary algorithm is a
powerful tool, the computational cost involved in terms of time
and hardware resources increases as the size or complexity
of the problem increases, since the algorithm often needs to
perform a large number of function evaluations during the
evolutionary search. Moreover, the EA usually requires a large
population and generation size in order to simulate a realistic
evolutionary model with good diversity and convergence,
which is sometimes cost prohibitive or impractical without the
help of high performance computing resources.

Manuscript received August 31, 2003; revised March 25, 2002 and June
17, 2003. This paper was recommended by Guest Editors W. Pedrycz and
A. Vasilakos.

The authors are with the Department of Electrical and Computer En-
gineering, National University of Singapore, Singapore 117576 (e-mail:
eletankc@nus.edu.sg).

Digital Object Identifier 10.1109/TSMCC.2003.817359

One promising approach to overcome these limitations is to
exploit the inherent parallel nature of evolutionary algorithms
by creating an infrastructure necessary to support distributed
evolutionary computing for parallel information processing, i.e.,
to divide a task into subtasks and to solve the subtasks simul-
taneously using multiple processors. This divide-and-conquer
approach has been applied to EAs in different ways and many
parallel EA implementations have been reported in literature
[4]–[6]. Levine [7] developed the package of PGAPack, which is
a parallel evolutionary algorithm library that supports for global
parallelization. The package was written in C programming lan-
guage and the communication can be carried out using MPI
which is a popular library specification for message-passing.

Andre and Koza [8] used the transputers hardware and
Tomassini and Fernandez [9] applied the MPI as a platform
for the implementation of parallel EAs. Tanevet al. [10]
developed a parallel EA based on distributed component object
model (DCOM) which is a protocol that enables software
components to communicate directly over the network. Chong
[11] proposed an application of Java applet on the Internet
that focuses on the massive distributed computing approach,
and the distributed resources evolutionary algorithm machine
(DREAM) is a project aimed to provide the technology and
software infrastructure necessary to support the next generation
of evolving infohabitants in a way that makes the infrastructure
universal, open and scalable [12].

The availability of powerful networked computers nowadays
presents a wealth of computing resources that can provide the
processing power required to solve problems unsolvable using
a single computer. This potential computational power can be
much stronger than a supercomputer, and allows many real and
large problems to be tackled by formulating the problems for
parallel processing in a distributed computing infrastructure,
i.e., to decompose a task into subtasks and to solve these sub-
tasks simultaneously using multiple processors connected over
the Internet. Although the distributed computing resources are
attractive, the heterogeneous hardware and software available
for the Internet have given insurmountable difficulties to the
implementation of an open and secured distributed system.
However, the recent emergence of Java technology, which is
an object-oriented and platform-neutral programming language
developed by Sun Microsystems, has provided an opportunity
for creating such a distributed system effectively and efficiently.

This paper presents a distributed evolutionary computing
software (Paladin-DEC), which enhances the concurrent
processing and performance of evolutionary algorithms by
allowing inter-communications of subpopulations among mul-
tiple computers distributed over the Internet. The Paladin-DEC
software incorporates different evolutionary algorithms, such

1094-6977/03$17.00 © 2003 IEEE

326 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003

as genetic algorithms (GAs), genetic programming (GP), and
evolutionary strategies (ES), which have been found to be
very effective in solving complex optimization and machine
learning problems [13]. The software is developed based upon
the technology of Java 2 platform of Enterprise Edition (J2EE),
and is an open system for which new codes could be easily
added by following the class hierarchy and new problems
could be solved by formulating the problems into java files for
execution in the system. There are also user-friendly GUIs pro-
vided in the software for easy use and configuration, e.g., users
can easily select a job from the job queue or set the working
parameters through GUIs in the control panel. Besides having
the features of reusability, security and work balancing, the
Paladin-DEC software is also designed with good robustness
and fault tolerance, i.e., single peer failures will have little
influence to the system and the server is sufficiently robust to
handle general exceptions while the program is running.

This paper is organized as follows. A brief introduction to
parallel and distributed evolutionary algorithms is presented in
Section II. The design and implementation of the Paladin-DEC
software that include a brief description of its various features
and GUIs are given in Section III. Section IV illustrates the
advantages of the Paladin-DEC software based upon two
case studies of drug scheduling in cancer chemotherapy and
searching probe sets of yeast genome. Conclusions are drawn
in Section V.

II. PARALLEL AND DISTRIBUTEDEVOLUTIONARY ALGORITHMS

Evolutionary algorithm is an umbrella term used to describe
computer-based problem solving systems which apply compu-
tational models of evolution as key elements in the design and
implementation. A variety of evolutionary algorithms have been
proposed, including evolutionary strategies (ES), evolutionary
programming (EP), genetic algorithms (GA), and genetic
programming (GP). These algorithms have been developed
upon the synthesis of natural evolution which exhibit global
search capabilities by simultaneously evaluating performances
at multiple points in the solution space. Before this simulated
evolution process begins, an initial population of multiple
coded chromosomes representing random candidate solutions
is formed, and every such chromosome is assigned a perfor-
mance index. At each generation of search, multiple candidates
are evaluated and the search will be directed intelligently
according to the Darwin’s “survival-of-the-fittest” principle.
Then useful search information and coordinates are exchanged
and altered for the next generation of candidate solutions. This
evolution cycle will be repeated until the final generation is
reached or the solution has been found. Although simplistic
from a biologist’s viewpoint, these algorithms are sufficiently
complex to provide robust and powerful mechanisms for global
search and optimization.

Intuitively, the computational workload involved in an
evolutionary search process could be extensive since multiple
candidate solutions need to be evaluated simultaneously,
particularly for difficult optimization problems where a high
computational effort is needed for a large population and gen-
eration size in order to search for the global optimal solutions.
Exploiting the intrinsic parallelism of EAs, various parallel

Fig. 1. Example of distributed evolutionary computing model.

evolutionary algorithms have been proposed to reduce the
computational effort needed in solving complex optimization
problems [4], [14]–[16]. Instead of evolving the entire popula-
tion in a single processor, the parallel evolutionary algorithms
applied the concept of multiple inter-communicating sub-
populations in analogy with the natural evolution of spatially
distributed populations [14]. Such inter-communication allows
individuals to migrate among the subpopulations based upon
some patterns to induce diversity of elite individuals period-
ically, in a way that simulates the species evolved in natural
environment. These parallel evolutionary algorithms have been
applied to solve many sophisticated problems in various fields,
such as image processing [17], VLSI [18], network design [19],
and drug scheduling [16].

As categorized by Rivera [6], there are four possible strate-
gies to parallelize EAs, i.e., global parallelization, fine-grained
parallelization, coarse-grained parallelization, and hybrid
parallelization. In global parallelization, only the evaluation
of individuals’ fitness values is parallelized by assigning a
fraction of the population to each processor to be evaluated.
The genetic operators are often performed in the same manner
as traditional EAs since these operators are not as time-con-
suming as the fitness evaluation. This strategy preserves the
behavior of traditional EA and is particularly effective for prob-
lems with complicated fitness evaluations. The fine-grained
parallelization is often implemented on massively parallel
machines, which assigns one individual to each processor and
the interactions between individuals are restricted into some
neighborhoods. In coarse-grained parallelization, the entire
population is partitioned into subpopulations. This strategy is
more complex since it consists of multiple subpopulations and
different subpopulations may exchange individuals occasion-
ally (migration). As stated by Cantú-Paz [4], coarse-grained
parallel EAs are more difficult to understand since the effects
of migration are not fully understood. Besides, this strategy
introduces fundamental changes in the EA operations and has
a different behavior than traditional EAs [20]. In hybrid par-
allelization, several parallelization approaches are combined,

TAN et al.: DESIGN AND IMPLEMENTATION OF A DISTRIBUTED EVOLUTIONARY 327

Fig. 2. Architecture overview of Paladin-DEC software.

and the complexity of these hybrid parallel EAs depends on the
level of hybridization in the algorithm.

As shown in Fig. 1, the implementation of distributed evo-
lutionary algorithms over the Internet can be extended from the
model of coarse-grained parallel EAs with certain modifications
in the features like migration scheme, task scheduling and fault
tolerance, in order to adapt the model to a distributed computing
environment. Unlike parallel evolutionary algorithms working
in a well-defined infrastructure, a distributed evolutionary algo-
rithm system must be able to bear with problems such as variant
communication overhead, unpredictable node crash, network
restrictions and other unpredictable events over the Internet. In
such a distributed evolutionary computing system, genetic oper-
ations can be performed in each node, and the period of migra-
tion (migration interval) as well as the number of individuals
migrate to other nodes (migration rate) can be fixed or adap-
tively determined along the evolution.

III. D ISTRIBUTED EVOLUTIONARY COMPUTING SOFTWARE

This section presents the architecture and implementation
of a distributed evolutionary computing software named
“Paladin-DEC,” which has been developed based on the
work of Tanet al. [16]. The software implements distributed
evolutionary algorithms in a general framework of Java-based
distributed system, which enhances the concurrent processing
and performance of evolutionary computing by allowing
inter-communications of subpopulations among multiple
computers distributed over the Internet. The Paladin-DEC
software aims to employ the resources of networked computers
and inexpensive bandwidth to conquer complex optimization
problems, which may be unsolvable or difficult-to-solve using
a single computer.

A. Architecture Overview

The Paladin-DEC software is built upon the foundation of
Java technology offered by Sun Microsystems and is equipped
with application programming interfaces (APIs) and tech-
nologies from J2EE. The Java technology offers the unique
advantages of platform independence and reusability, which
are unmatched by most programming languages. The J2EE is

a component-based technology provided by Sun Microsystems
for design, development, assembly and deployment of enter-
prise applications. It offers various features such as multitier
distributed application model, ability to reuse components,
integrated extensible markup language (XML) based data inter-
change, unified security model and flexible transaction control.
The J2EE has been widely used in large-scale e-commerce
and enterprise applications, which is believed to be a suitable
technology for developing the Paladin-DEC software based
upon the architecture of multi-tier in J2EE. As shown in Fig. 2,
the Paladin-DEC software consists of four main components,
i.e., client, controller, enterprise Java beans (EJBs) and data-
base. The EJB is a middle-tier component by which data are
presented and business logics are performed. Different tiers are
independent from each others and can be changed easily, e.g.,
changing the database or adding/removing certain business
logics.

The clients are the main computational components in
Paladin-DEC software, which perform computation according
to the class loaded from an http server. As shown in the client
interface in Fig. 3, users may upload their created job files
through an ftp client integrated in the client program. As shown
in the controller interface in Fig. 4, the controller functions
as the control panel by which administrator can check the
connections and jobs queued, to start, or stop a job. There are a
total of 6 EJBs running in the application server, i.e., two entity
beans, two stateful session beans, and two stateless session
beans. These EJBs are the main components for performing
different functions of the system which are described below.

The peerEntity bean is an entity bean for representing the
peer’s information, which is created when a client connects to
the server and is removed when the client logoffs or timeouts.
A peerEntity bean is uniquely identified by a valid email given
by the user installing the client program in his/her computer.
Once a peerEntity bean has been created, it waits for the con-
troller to launch a task and to assign a task name. The problem
bean is another entity bean in the system, which represents the
job launched and the information combined. A problem bean is
created when control bean launches a job from the job queue
and is removed when the job is finished or terminated by the
administrator. The control bean is a stateful session bean for the

328 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003

Fig. 3. Client user interface.

Fig. 4. Controller user interface.

controller program to manage the system. It is created when the
administrator runs the controller program and is removed when
the controller program is closed. Once the administrator decides
to launch a job file, the control bean will be triggered to create a
problem bean for the file. The peerEntity beans are then chosen
from the bean pool and are assigned the task names and the cor-
responding http server address. It should be noted that a recom-
mended peer number within the problem class file can be set
by the user submitting a problem file and the administrator can
change the number of the peerEntity beans before the task is ac-
tually launched.

The MigDataPool bean is the second stateful session bean
for data migration when some tasks are running and migration

operation is required. The migration is the core operation in
Paladin-DEC software and different migration strategies could
enhance or degrade the performance of the system. There
are three options for the migration: migDataPool bean, Java
message service (JMS) and peer agent. The migration through
stateful session bean has good performance and reliability in
the situation where not too many clients (e.g., below 40) are
involved. A migDataPool bean is created or removed when a
problem bean is formed or eliminated. It contains the interme-
diate individuals chosen to migrate to other subpopulations and
hence is the core component of the distributed evolutionary
system. The JMS is a Java API designed by Sun and several
partner companies that allows different clients to exchange

TAN et al.: DESIGN AND IMPLEMENTATION OF A DISTRIBUTED EVOLUTIONARY 329

Fig. 5. Class hierarchy of DGA.

messages asynchronously and reliably. Due to the inherent
parallelism of evolutionary algorithms, the JMS is a useful
tool for implementing the migration function. It should be
noted that both point-to-point (PTP) and publisher/subscriber
(Pub/Sub) approaches can be used to perform the migration.
Each job running in the system can be assigned a JMS queue
by which clients running the same job can migrate individuals
among each other.

The peer agent is extended from the work of Tanet al.[16], in
which RMI-IIOP is used for migration and communication. The
peer agent functions in the situation where massive communi-
cation is needed and many tasks are performed simultaneously.
If the peer agent scheme is activated, peers chosen in a group
can be assigned two roles, i.e., worker or agent. The worker per-
forms computation and contacts agents for migration and results
submission. The agent registers itself as an agent in the naming
server and waits for the migration and results submission ap-
plications from workers in the same group. If any termination
conditions are met, it will submit the best result to the server
and dismiss the group. Although the scheme has many advan-
tages, the agent chosen is not very robust since the server and
backup agent scheme does not provide good robustness in the
system. The crash or restart of individual agent computer can
cause the problems of wasting resources or lost of results. The
resultSubmit bean is a stateless session bean used to submit re-
sults and migration data from clients to server as well as to col-
lect the migration data from server to clients. The inform bean is
another stateless session bean used to collect the best result from
all results submitted by the clients performing the same task as
well as to inform the user who had submitted the job through
email.

B. Algorithms

As mentioned in the Introduction, the Paladin-DEC software
is developed for executing evolutionary algorithms in a dis-
tributed environment over the Internet for solving complex opti-
mization problems. There are three different evolutionary algo-

rithms incorporated in the software, i.e., distributed genetic al-
gorithms (DGA), distributed genetic programming (DGP), and
distributed evolutionary strategies (DES). Although these three
algorithms have been developed based upon the basic principle
of natural evolution, they are different in terms of implemen-
tation and functionality as described in the handbook of evo-
lutionary computation [13]. Since the Paladin-DEC software
provides a general framework for distributed computing, other
types of evolutionary algorithms can be easily incorporated in
the framework by expanding the class hierarchy if necessary.

Holland’s pioneering bookAdaptation in Natural and Arti-
ficial Systems[21] shows that evolutionary process can be ap-
plied to solve a wide variety of problems using a highly parallel
technique that is now called the genetic algorithm. The genetic
algorithm (GA) transforms a population of individual objects,
each with an associated fitness value, into a new generation of
the population using the Darwinian principle of reproduction
and “survival-of-the-fittest.” Each individual in the population
represents a possible solution for the problem and is usually rep-
resented as a fixed-length binary-coded chromosome. The ge-
netic algorithm attempts to find the near-optimal solutions to
the problem by genetically breeding the population of individ-
uals via the operations of selection, crossover, and mutation over
a series of generations. The class hierarchy of DGA is shown in
Fig. 5. For more details of genetic algorithms, readers may refer
to the book of Goldberg [1].

Genetic programming (GP) has been developed according
to the idea that desired program should evolve itself during the
evolution process [22] and [23]. Instead of solving a problem
or building an evolution program to solve the problem, one
should search the space of possible computer programs for the
best one. Genetic programming provides a way to run such
a search by adopting a tree-based chromosome structure for
genetic representation. The DGP in Paladin-DEC software
was developed based on the GNU public domain software of
groovy Java genetic programming (JGProg) package available
at http://jgprog.sourceforge.net. The class hierarchy of DGP
is shown in Fig. 6. Readers may refer to the books of Koza

330 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003

Fig. 6. Class hierarchy of DGP.

[22], [23] for more details of genetic programming and its
applications.

The evolutionary strategies (ES) algorithm has been devel-
oped for solving real-parameter optimization problems based
upon a single genetic mutation operator. In ES, a chromosome
represents individual as a pair of float-valued vectors, i.e.,

, where the first vector represents a point in the search
space and the second vectoris a vector of standard devia-
tions. The mutations are realized by replacingby

where is a vector of independent random
Gaussian numbers with a mean of zero and standard deviation

. The offspring is accepted as a new member of the population
if it has better fitness and all constraints are satisfied. The main
idea behind these strategies is to allow the control parameters
to self-adapt rather than changing their values in a deterministic
way. The class hierarchy of DES is shown in Fig. 7. Readers
may refer to the works of Backet al.[13] and Schwefel [24] for
more details of evolutionary strategies.

C. Workflow

The working process of a client is shown in Fig. 8 which
begins when a client is started and logons to the server. A
peerEntity bean, uniquely identified by a valid email address,
is then created and pooled. The client will check the status
at regular intervals to see whether it has been assigned a job.
Once the client detects that its corresponding bean is updated

due to the assignment of a job, it will read the information from
the bean, as well as extract class name, path, and http server
address before loading the class remotely from the server. If the
class loaded is consistent with the specification of the system,
the computation procedure will be initiated and the client will
check whether the instance needs any migration at each gen-
eration. If the conditions for migration are fulfilled, the client
will initiate a session with the resultSubmit bean in the server
and choose some individuals according to the migration rate.
It will then send the data to the migDataPool bean through the
resultSubmit bean and obtain the same number of individuals
from the server for migration. If a running job is cancelled by
the controller, those clients involved in the job will stop the
computation and resent to the ready status. If any client meets
the termination conditions, it will initiate a session with the
resultSubmit bean and submit the results before restoring to the
ready status.

The working process of the server is shown in Fig. 9. If the
controller launches a queuing job, the corresponding control
bean will create a problem bean uniquely identified by the class
name combined with the email of the submitter. A migDataPool
bean is then created by the problem bean to deal with the mi-
gration work in this task. After creating the problem bean, the
control bean will select peers from the pool and assign to them
the information about the class and http server from which the
client can load the problem class. After a client finishes the job,
it will submit the results to the server and set itself to the ready

TAN et al.: DESIGN AND IMPLEMENTATION OF A DISTRIBUTED EVOLUTIONARY 331

Fig. 7. Class hierarchy of DES.

Fig. 8. Working process of a client.

status. If all the clients finish their jobs and submit the results
or any terminating conditions have been met, the problem bean
will initiate the inform bean that will choose the best result from
all the results obtained and send it to the user submitting the
job via email. Subsequently, the problem bean will remove the
attached migDataPool bean and inform the control bean. The
control bean then removes the problem bean and updates those
peers involved to ensure that all the peers are restored to the
ready status. At this stage, all the peerEntity beans will be ready
and pooled for the next job.

The Paladin-DEC software requires the setup of Java 2 plat-
form standard edition (J2SE) 1.4.0 or higher version and J2EE

1.3.0 or higher version for building up the Java environment.
The http server and ftp server are also necessary in order to
receive the problem files uploaded from the users. Besides, a
database server is required for which a script is provided to
create the necessary database and tables. A template designed
for writing the problem file that specifies the function evalua-
tion and optimization variables corresponding to the user’s par-
ticular problem is also included in the software. The problem
class in the file implements two methods as its prerequisite, i.e.,
setPara() that contains a few subsections to control the whole
process of the computation andevaluateFuc() that is an inten-
sively used method to evaluate the fitness of individuals in the
evolution process.

D. Work Balancing

Since the processing power and specification for various
computers in a network might be different, the feature of work
balancing that ensures the peers are processed in a similar
pace is needed in a distributed evolutionary system. This is
important because peers that finish the computation relatively
faster than others may quit from the system early, which could
significantly affect the structure of inter-communications
among multiple subpopulations in a distributed evolutionary
algorithm. Intuitively, work balancing for a distributed evolu-
tionary system could be difficult due to the fact that the working
environment in a network is often complex and uncertain. The
Paladin-DEC software incorporates a simple work balancing
strategy for which subpopulation size in different peers with
different computational power is adjusted adaptively based
upon the general principle of assigning larger/smaller number
of subpopulations to faster/slower machines. In this approach,
the system computes the process status of each peer at every
10% of the generation size and adjusts the subpopulation size as
necessary. The schemes of reshuffle and best-worst have been
used in the Paladin-DEC software to reduce the computation
gaps between peers in the same group.

332 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003

Fig. 9. Working process of server.

In the reshuffle scheme, every peer will be assigned the same
amount of individuals in the subpopulations initially. At any
checkpoint, the system first normalizes the process according
to and removes any peers that cannot
reach a set threshold. It then reshuffles the subpopulation size
of each peer according to , where
is the total number of individuals in the whole groups;
denotes the process status of each peer in the check point;is
the number of peers in a group andis the remaining number
of peers in the group. The peers that have been removed or
having reduced population size will migrant its individuals to
the migDataPool bean, which then migrates an appropriate
amount of individuals to the peers that should be assigned more
individuals according to the above computation results. The
best-worst scheme follows the same procedure as the reshuffle
scheme before the reshuffle process. After deleting those peers
below the threshold, the best-worst scheme chooses the fastest
peer and the slowest peer in the remaining peers. If the fastest

peer is more than 10% faster than the slowest peer, 10% of the
individuals from the slowest peer will be moved to the fastest
peer directly. Empirically this scheme is more efficient and
capable of saving significant communication cost for a small
group of peers.

E. Robustness, Portability, and Security

Robustness in software development is often an important
issue, particularly for distributed systems with complex or un-
certain working environment among multiple computers over
the Internet. A key factor in Java programming is exception
handling where any action that can trigger an exception must
be caughta-priori and the corresponding codes that can safely
handle the exception to ensure the smooth working of the system
should be implemented. The data integrity in a system will be
lost if multiple programs are allowed to update the same infor-
mation simultaneously or when a system failed while processing

TAN et al.: DESIGN AND IMPLEMENTATION OF A DISTRIBUTED EVOLUTIONARY 333

a business transaction and left the affected data to be only par-
tially updated. By preventing both of these scenarios, software
transactions ensure data integrity by controlling the concurrent
access of data via multiple programs. In the event of a system
failure, transactions make sure that the data will be in a consis-
tent state after the recovery. In the Paladin-DEC system, a single
peer crash causes little influence to the overall results since the
elite individuals migrate among all the participated peers that
fortify the integral robustness of the system. A pre-examined
function is also incorporated in the Paladin-DEC software to
validate all problem files before allowing these files to be up-
loaded to the server in order to avoid any fatal bugs that could
crash programs in the peers.

The J2EE technology is a set of standards that brings the ad-
vantage of write once, run anywhere (WORA) to the system.
By using the software, the program can run on any platform
with Java support and the user can choose any application server
available that follows the standards without any extra configura-
tion. The Java remote method invocation (Java RMI) technology
runs over the Internet inter-orb protocol (RMI-IIOP) delivers
the common object request broker architecture (CORBA) dis-
tributed computing capabilities to the Java 2 platform. Similar to
CORBA, the RMI over IIOP is based on open standards defined
with the participation of hundreds of users in the object man-
agement group (OMG). The OMG has worked diligently to pro-
vide a greater level of portability by tightening up the CORBA
specification.

Security is one of the key attributes that make Java technology
a superior programming environment. There are features in the
language, virtual machine and core class libraries that facilitate
the creation of secure applications. The Java virtual machine
(JVM) relies on the software technology to present a secure
sandbox where the Java program runs. This sandbox verifies all
classes coming into the sandbox and performs numerous run-
time checks to ensure the Java program does not perform in-
valid operations. Besides, it also presents as a fence around the
runtime environment to control all access outside the sandbox.
The J2EE application programming model has insulated devel-
opers from the mechanism-specific implementation details of
application security in a way that enhances the portability of
applications and allows them to be deployed in diverse security
environments.

IV. CASE STUDIES OFPALADIN -DEC SOFTWARE

To illustrate the advantage of Paladin-DEC software, the
problems of drug scheduling in cancer chemotherapy and
searching probe sets of yeast genome have been studied. These
problems are difficult to solve and often require an extremely
long computation time for traditional evolutionary algorithms
running in a single computer. Using the Paladin-DEC software,
however, a large population size could be used to extend the
search power of an evolutionary algorithm and the compu-
tational workload can be shared among multiple computers
over the Internet. The logon server for the case studies runs
in a Linux server and the dispatcher server runs in a PC with
Windows 2000 operating system. The peers are computers
connected within the university network, which have been

installed with different operating systems, including Windows
ME, Windows 98 SE, and Windows 2000.

A. DGA for Drug Scheduling in Cancer Chemotherapy

1) Drug Scheduling Problem:An important problem in
cancer chemotherapy is to determine the control policy such that
after a fixed period of therapy, the tumor burden is minimized.
This is essential when surgery, or laser treatment, is scheduled
at some future date. The effects of cancer chemotherapy, as
outlined by Martin [25], are given by the following differential
equations

(1)

(2)

(3)

with the initial state and

if
if

(4)

where is a transformed variable that is inversely related to the
mass of the tumor. The tumor mass is given by
cells and the initial tumor cell population is set as cells
[25]. The variable is the drug concentration in the body in
drug units and is the cumulative effect of the drug.

Equation (1) describes the net change in the tumor cell pop-
ulation per unit time. The first term on the right-hand side of
the equation describes the increase in cells due to cell prolifer-
ation, and the second term describes the decrease in cells due
to the drug. The parameteris a positive constant related to the
growth function; is the proportion of tumor cells killed per unit
time per unit drug concentration which is assumed to be a posi-
tive constant. Equation (2) describes the net increase in the drug
concentration at the cancer site. The variableis the rate of de-
livery of the drug, and the half-life of the drug is . Equa-
tion (3) relates the cumulative toxicity of the drug to the drug
concentration, e.g., the cumulative effect is the integral of the
drug concentration over the period of exposure. The implication
of the function described in (4) is that there is a threshold drug
concentration level, , below which no tumor cells are killed.
The values of the parameters used are (per day),

(per day per D), (D), and (per
day). The performance index to be maximized is [25]

(5)

where the final time days. The control optimization is
performed subject to the following constraints

(6)

(7)

(8)

The constraints on the drug concentration,, and the cumula-
tive drug effect, , in (7) and (8) are to ensure that the patient
can tolerate the toxic side effects of the drug. In order to reduce

334 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003

TABLE I
AVERAGE RESULTS FORDIFFERENTNUMBER OF PEERS(DIFFERENTSUBPOPULATION SIZE)

Fig. 10. Average simulation time and performance index versus number of peers.

the likelihood of the emergence of drug-resistant cells, the tumor
size is forced to reduce by at least 50% every three weeks, so that

, , and .
2) Drug Scheduling via DGA:An evolutionary algorithm

has been applied to solve the problem of drug scheduling in
cancer chemotherapy using a simplified distributed computing
architecture [16]. In this paper, we are interested in studying
how the DGA running in a distributed computing environment
affects the overall scheduling performance and computational
speed as compared to traditional GA running on a single com-
puter. Without loss of generality, the DGA in Paladin-DEC has
been applied to solve the drug scheduling problem for different
number of peers ranging from 1–6 with similar genetic pa-
rameter settings: tournament selection size2; crossover rate

0.7; mutation rate 0.1; migration rate 0.01; migration
interval 10; number of preserved elite individuals 50. It
should be noted that these parameter values have been chosen
based on the common settings of genetic algorithms, which are
neither fine-tuned, nor adjusted to their optimal values for the
different setting of peer numbers.

The fitness function [16] is denoted by and for the
problem with and without point constraints, respectively

(9a)

(9b)

where, ;
; ;

; ; ; ;
; ; ; and is the performance

index as given in (5). The weight has been chosen such that
the value of is about equal, for , 2, and 3, in
order to distribute the penalty effect resulting from each of the
constraints.

The cancer chemotherapy model was simulated using the nu-
merical differentiation method of Runga-kutta [26] with a small
time interval of 0.01 day for good accuracy. We performed ten
independent runs with random initial population to minimize
any bias in the simulations. The pair-wise variable representa-
tion scheme [16] which encodes the information of dosage level
and start-day as variable pairs is adopted here (eight pairs for
case I and five pairs for case II). The average simulation results
are shown in Table I and Fig. 10, where case I is for the problem
with all constraints satisfied and case II with the 3 state con-
straints omitted. By keeping the overall population size constant
at 2000 and with different subpopulation size according to the
number of peers ranging from 1–5, the DGA can dramatically
reduce the computation time without sacrificing scheduling per-
formance as the number of peers is increased. For example, in
case I, the average computation time for five peers (each peer
with 400 individuals) is 308 s, which is more than three times
shorter than the 1033 s needed for one peer (with 2000 individ-
uals), although they both achieved a similar performance index
of 16.88.

As shown in Table II and Fig. 11, for the simulations with
different number of peers ranging from 1–6 and each peer with

TAN et al.: DESIGN AND IMPLEMENTATION OF A DISTRIBUTED EVOLUTIONARY 335

TABLE II
AVERAGE RESULTS FORDIFFERENTNUMBER OF PEERS(CONSTANT SUBPOPULATION SIZE OF 1000)

Fig. 11. Comparisons of average performance index for different number of peers.

a constant subpopulation size of 1000, the average scheduling
performance is improved as the number of peers is increased al-
though the computation time needed remains the same. For ex-
ample, in case I, the average performance index is 17.26 for six
peers (each peer with 1000 individuals), which is much better
than the average performance index of 16.88 for one peer (with
1000 individuals) in this maximization problem, although they
both required a similar computation time (e.g., 1061 s for six
peers and 933 s for one peer). The slight extra time needed for
six peers (as compared to one peer) is mainly due to the inter-
communications overhead for migration, workload balancing
and results collection among the multiple computers over the
Internet. One observation from case II in Table II is that the
computation time needed for two peers appears to be larger than
that of three–five peers. This result is because the communi-
cation status and speed of the Internet often vary from time to
time, which may cause minor fluctuation in terms of computa-
tion time for a distributed system occasionally.

B. DES for Searching Probe Sets of Yeast Genome

1) Background: The DNA microarray, also known as
DNA CHIP, is a revolutionary technology that involves im-
mobilization of a large numbers of different DNA molecules
within a small confined space [27] and [28]. Over the years,
several technologies have been developed to attach DNA
molecules to solid platform. Oligonucleotides (short single
stranded DNA molecules) can be synthesized in situ using
photolithographic techniques or phosphoramidite chemistry
by ink jet printing technology [29] and [30]. The precision

of photolithographic technology allows the synthesis of high
resolution and extremely high density DNA microarrays. Such
arrays are currently marked by Affymetrix. Alternatively,
DNA molecules, typically in the form of double stranded PCR
(polymerase chain reaction) products or oligonucleotides, can
be attached to glass slides or nylon membranes [31]. The latter
method is a more practical and cost-effective avenue of making
DNA microarrays by most standard laboratories. In addition,
it offers the flexibility of printing DNA of choice onto solid
platform.

The stability and association between complementary DNA
molecules critically depend on the melting temperature. The

is operationally defined as the temperature at which 50% of
a single stranded DNA annealed with its complement to form
a perfect duplex. The is governed by several factors: base
composition, DNA concentration, salt concentration, and the
presence of destabilizing chemical reagents. As an GC base pair
is held together by three hydrogen bonds while an AT base pair
has only two hydrogen bonds, the GC rich sequence has a higher

as compared with the AT rich sequence. A higher concen-
tration of DNA favors duplex formation and consequently the

is higher. As cations stabilize DNA duplexes, higher salt
concentration raises the . Chemicals such as formamide or
DMSO destabilize DNA duplexes and therefore have a negative
effect on . In a typical microarray experiment, thousands of
DNA spots on the microarray interact with a very complex mix-
ture of labeled DNA under a single condition. Therefore an op-
timal hybridization condition is necessary to obtain the best re-
sult, and one way to attain the optimal hybridization is to control
the of the immobilized DNA on the microarray.

336 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003

TABLE III
AVERAGE RESULTS FORSEARCHING THE PROBE SET OF AN ORF (6310)

The yeast Saccharomyces cerevisiae is the first eukaryote
genome that has been sequenced which has approximately 6000
genes. The gene structure of this yeast is relatively simple as
compared to higher eukaryotes. For example, there are very
few genes contain introns and most of the open reading frames
(ORF), which are protein coding sequences, are preceded by
promoters. Since detailed sequence information is known for
all predicted gene in this organizm, the Paladin-DEC software
is applied to find the unique DNA sequences with optimized
melting temperature that can be printed onto the DNA micro-
arrays. The yeast is simpler both in its behavior and its genome
structure as compared to complex Vertebrates [32]. Yeast ge-
nomics remains an interesting area of research, as most biol-
ogists are concerned with the information and clues extracted
from the yeast DNA array, and the eventual goal is to search for
the probe set of the human genome that is currently not avail-
able. One of the main limitations or obstacles in using the mi-
croarray is that ORF’s are extremely variable in length and
(is the melting point of the particular ORF), making compar-
ison between any two genes on the array virtually impossible.
The problem is thus to search for probes within each ORFs so
that the probes are unique, approximately the same length and
melting temperature.

2) Fitness Function:There are three criteria for a qualified
sequence: uniqueness of the sequence, the sequence should
have a melting temperature within a special range, and the
sequence should not have any complementary part that could
cause folding back of the sequence. A qualified probe/sequence
is thus one that satisfies all these three criteria. The pseudo-code
for calculating the fitness function is given as follows (the
fitness scale is chosen empirically).

a) Uniqueness criterion:As discussed, the qualified se-
quence/probe should not appear in other ORFs. There are two
main characteristics of the uniqueness criterion. First, the com-
putational cost of the uniqueness test is substantially high. A
sequence/probe is first determined by randomly choosing two
base-pairs from the ORF, i.e., the start point and the end point.
To determine whether one sequence appeared in this long data-
base is a computationally expensive task. Second, the feasible
region of the sequences that satisfy the uniqueness condition
is highly nonlinear. Some genes share high degree of sequence
conservation because they are evolved from a common ancestor
[33]. Even for those nonrelated sequences, they are still some
similar subsequences having the same functions [33]. These se-
quences are distributed all over in the ORF, making the feasible
region discrete and nonlinear.

b) Melting temperature criterion:The melting tempera-
ture of an oligonucleotide is referred to the temperature

at which the oligonucleotide is annealed to 50% of its exact
complement. This temperature is directly related to a wide va-
riety of applications including PCR, hybridization and anti-gene
targeting. For subsequent processing using the microarray, the
probes or subsequences should have ain the specific range.
A number of methods exist for the calculation of and one
of the more accurate equations for is the nearest neighbor
method [34],

(10)

where and is enthalpy and entropy for helix formation,
respectively. They represent the sum of the values of the nearest
pair bases. For example,

. The table of and values can be found in [34]. is
the molar constant, is the concentration of the probe and
is the concentration of the . In searching for the qualified
subsequence, is set as 1.987 cal/(mol), is equal to
50 mM and is equal to 250 pM. A suitable is chosen in
the range of 65 to 80 .

c) Non folding-back criterion:A qualified subsequence
must not have long complementary pair parts, which may cause
self-folding and disturb the micro-array test. This occurs if a
section of the subsequence/probe contains the complement of
another section within the same probe, e.g., A.C.C.G.G and
C.C.G.G.T. The longer the complementary pair appears, the
more likely the folding-back occurs. The parameter (specifying
the length of complementary pair) of the nonfolding test is set
as seven.

3) Simulation Results:The 6310 ORFs used for the
simulation are presented in plain text file, which are ob-
tained from the Web site (http://genome-www.stanford.edu/
Saccharomyces/lists_tables.html). An orf (no. 6310
ORFN:YPR204W YPR204W, Chr XVI from 944 598-947 696),
which has a difficult-to-search probe set, is cited as the can-
didate for comparison in the simulation. Without loss of
generality, the DES in the Paladin-DEC software has been
applied to find the probe set for this orf using different number
of peers ranging from one–three with the following parameter
settings: generation size 400; subpopulation size 150
(each peer contains 150 individuals); mutation rate0.1;
migration rate 0.02; migration interval 40; lower bound
of melting temperature 65; and higher bound of melting
temperature 80.

The average results for five independent simulation runs with
random initial population are listed in Table III. As can be seen,
while the melting temperature constraint has been satisfied for

TAN et al.: DESIGN AND IMPLEMENTATION OF A DISTRIBUTED EVOLUTIONARY 337

different number of peers ranging from one-three (e.g., in the
range of 65 to 80), the average computation time needed
is 45 s for three peers, which is much shorter than the 220 s re-
quired for the case of one peer. Besides, the average success rate
of finding a qualified sequence over the five simulation runs is
100% for three peers, which is much higher than the 20% suc-
cess rate obtained for the case of one peer (e.g., only 1 quali-
fied sequence is found out of the five runs/trials). It should be
noted that the DES has managed to find the qualified sequences
for all the 6310 ORF’s and the results obtained are consistent
with the ones shown in Table III. This illustrates the advantages
of applying distributed evolutionary computing approach for
searching the probe sets of yeast genome, i.e., the DES can dra-
matically decrease the computation time and increase the possi-
bility of finding a qualified sequence, which could be a potential
tool for finding more complicated genomes such as the human
genome.

V. CONCLUSIONS

This paper has presented a Java-based distributed evolu-
tionary computing software (Paladin-DEC), which enhances
the concurrent processing and performance of evolutionary al-
gorithms by allowing inter-communications of subpopulations
among various computers over the Internet. Such a distributed
system has enabled individuals to migrate among multiple
subpopulations according to some patterns to induce diversity
of elite individuals periodically, in a way that simulates the
species evolve in natural environment. The Paladin-DEC
software is capable of keeping data integrity throughout the
computation, and has been incorporated with the features of
robustness, security, fault tolerance and work balancing. The
effectiveness and advantages of the Paladin-DEC have been
illustrated upon two case studies of drug scheduling in cancer
chemotherapy and searching probe sets of yeast genome.
On-going work includes the development of peer-to-peer (p2p)
computing using JXTA (Juxtapose) technology to improve the
performance of the distributed system. The use of advanced
application server such as BEA Weblogic could also enhance
the performance and scalability of the system, and features of
the server such as cluster and integrated Java message service
could be explored to further enhance the system.

REFERENCES

[1] D. E. Goldberg,Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Reading, MA: Addison Wesley, 1989.

[2] Z. Michalewicz,Genetic Algorithms+ Data Structure= Evolutionary
Programs, 2nd ed. Berlin, Germany: Springer-Verlag, 1994.

[3] K. C. Tan, T. H. Lee, D. Khoo, and E. F. Khor, “A multi-objective evolu-
tionary algorithm toolbox for computer-aided multi-objective optimiza-
tion,” IEEE Trans. Syst., Man, Cybern. B, vol. 31, pp. 537–556, 2001.

[4] E. Cantú-Paz, “A survey of parallel Genetic Algorithms,” inCalcula-
teurs Paralleles, Reseaux et Systems Repartis. Paris, France: Heimes,
1998, vol. 10, pp. 141–171.

[5] D. E. Goldberg, “Sizing populations for serial and parallel genetic al-
gorithms,” inProc. 3rd Int. Conf. Genetic Algorithms, San Mateo, CA,
1989, pp. 70–79.

[6] W. Rivera, “Scalable parallel genetic algorithms,”Artif. Intell. Rev., vol.
16, pp. 153–168, 2001.

[7] D. Levine. (1995) Users Guide to the PGAPack Parallel Genetic
Algorithm Library ANL-95-18. [Online]. Available: http://www.mcs.
anl.gov/pgapack.html

[8] D. Andre and J. R. Koza, “Parallel genetic programming on a network
of transputers,” inProc. Workshop Genetic Programming: From Theory
RealWorld Applications, vol. 95–2, 1995, pp. 111–120.

[9] M. Tomassini and F. Fernandez, “An MPI-based tool for distributed ge-
netic programming,” inProc. IEEE Int. Conf. Cluster Computing, 2000,
pp. 209–216.

[10] I. Tanev, T. Uozumi, and K. Ono, “Parallel genetic programming: Com-
ponent object-based distributed collaborative approach,” inProc. 15th
Int. Conf. Information Networking, 2001, pp. 129–136.

[11] F. S. Chong, “A Java Based Distributed Genetic Programming on the
Internet,” M.S. thesis, School of Computer Science, Univ. Birmingham,
Birmingham, AL, 1997.

[12] B. Paechter and T. Back, “A distributed resources evolutionary algorithm
machine (DREAM),” inProc. IEEE Congress Evolutionary Computa-
tion, vol. 2, 2000, pp. 951–958.

[13] Handbook on Evolutionary Computation, T. Back, D. B. Fogel, and
Z. Michalewicz, Eds., New York: Oxford Univ. Press, Bristol, U.K.,
2000.

[14] V. Cristea and G. Godza, “Genetic algorithms and intrinsic parallel char-
acteristics,” inProc. IEEE Congr. Evolutionary Computation, vol. 1,
2000, pp. 431–436.

[15] J. Nang and K. Matsuo, “A survey on the parallel genetic algorithms,”
J. Soc. Instrum. Contr. Eng., vol. 33, no. 6, pp. 186–191, 1994.

[16] K. C. Tan, E. F. Khor, J. Cai, C. M. Heng, and T. H. Lee, “Automating the
drug scheduling of cancer chemotherapy via evolutionary computation,”
Artif. Intell. Med., vol. 25, no. 2, pp. 169–185, 2002.

[17] Y. W. Chen, Z. Nakao, and F. Xue, “A parallel genetic algorithm based on
the island model for image restoration,” inProc. 13th Int. Conf. Pattern
Recognition, vol. 3, 1996, pp. 694–698.

[18] N. Yoshida and T. Yasuoka, “Multi-GAP: Parallel and distributed ge-
netic algorithms in VLSI,” inProc. IEEE Int. Conf. Systems, Man, Cy-
bernetics, vol. 5, 1999, pp. 571–576.

[19] A. Sleem, M. Ahmed, A. Kumar, and K. Kamel, “Comparative study
of parallel vs distributed genetic algorithm implementation of ATM net-
work environment,” inProc. 5th IEEE Symp. Computers Communica-
tions, 2000, pp. 152–157.

[20] R. Subbu and A. C. Sanderson, “Modeling and convergence analysis of
distributed co-evolutionary algorithms,” inProc. IEEE Congress Evolu-
tionary Computation, vol. 2, 2000, pp. 1276–1283.

[21] J. H. Holland,Adaptation in Natural and Artificial Systems. Ann
Arbor, MI: Univ. Michigan Press, 1975.

[22] J. R. Koza,Genetic Programming II: Automatic Discovery of Reusable
Programs. Cambridge, MA: MIT Press, 1994.

[23] J. R. Koza, F. H. Bonnett III, D. Andrew, and M. A. Keane,Genetic Pro-
gramming III: Darwinian Invention and Problem Solving. San Fran-
cisco, CA: Morgan Kaufmann, 1999.

[24] H. P. Schwefel,Evolution and Optimum Seeking. New York: Wiley,
1995.

[25] R. B. Martin, “Optimal control drug scheduling of cancer
chemotherapy,”Automatica, vol. 28, pp. 1113–1123, 1992.

[26] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,Nu-
merical Receipes in C: The Art of Scientific Computing, 2nd ed. New
York: Cambridge Univ. Press, 1992.

[27] R. J. Lipshutz, S. P. Fodor, T. R. Gingeras, and D. J. Lockhart, “High
density synthetic oligonucleotide arrays,”Nat. Gene., vol. 21, no. Sup-
plement 1, pp. 20–24, 2000.

[28] D. J. Lockhart and E. A. Winzeler, “Genomics, gene expression and
DNA arrays,”Nature, vol. 405, no. 6788, pp. 827–836, 2000.

[29] T. R. Hugheset al., “Expression profiling using microarrays fabricated
by an ink-jet oligonucleotide synthesizer,”Nature Biotech., vol. 19, no.
4, pp. 342–347, 2001.

[30] A. C. Pease, D. Solas, E. J. Sullivan, M. T. Cronin, C. P. Holmes, and
S. P. Fodor, “Light generated oligonucleotide arrays for rapid DNA se-
quence analysis,” inProc. Nat. Academy Sciences, vol. 91, 1994, pp.
5022–5026.

[31] M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, “Quantitative mon-
itoring of gene expression patterns with a complementary DNA mico-
rarray,”Science, vol. 270, pp. 467–470, 1995.

[32] J. L. Derisi, V. R. Iyer, and P. O. Brown, “Exploring the metabolic and
genetic control of gene expression on a genomic scale,”Science, vol.
278, no. 5338, pp. 680–686, 1997.

[33] D. Higgins and W. Taylor,Bioinformatics: Sequence, Structure, and
Databanks: A Practical Approach. Oxford, U.K.: Oxford Univ. Press,
2000.

[34] K. J. Breslauer, R. Frank, H. Blöcker, and L. A. Marky, “Predicting DNA
duplex stability from the base sequence,” inProc. National Academy
Sciences United States America, vol. 83, 1986, pp. 3746–3750.

338 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003

K. C. Tan (M’99) received the B. Eng. degree with first class honors in elec-
tronics and electrical engineering, and the Ph.D. degree from the University of
Glasgow, Glasgow, U.K., in 1994 and 1997, respectively.

He was with the Center for Systems and Control and the Evolutionary Com-
puting Group, Glasgow, Scotland, before joining the Department of Electrical
and Computer Engineering, National University of Singapore, as an Assistant
Professor in 1997. He has authored, or coauthored, more than 90 journal and
conference publications and has served as a program committee or organizing
member for many international conferences. His current research interests in-
clude computational intelligence, evolutionary computing, intelligent control,
and engineering designs optimization.

Dr. Tan is Associate Editor for IEEE TRANSACTIONS ON EVOLUTIONARY

COMPUTATION.

Arthur Tay received the B.Eng. degree with honors in electrical engineering
and the Ph.D. degree in electrical engineering, in 1995 and 1998 respectively,
from the National University of Singapore, Singapore.

He is a Visiting Scholar with the Information System Laboratory at Stan-
ford University, Stanford, CT, from 1998 to 2000. He is currently an Assistant
Professor with the Department of Electrical and Computer Engineering in the
National University of Singapore. His research interests include process con-
trol, application of control, optimization and signal processing in semiconductor
manufacturing, microlithography, and computational intelligence.

J. Cai received the B.Eng. degree from Tsinghua University, Beijing, China
in 2000 and the M.Eng. degree in Electrical and Computer Engineering from
National University of Singapore in 2003.

His research interests include evolutionary algorithms, distributed computing,
and artificial intelligence.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

