IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 31, NO. 4, AUGUST 2001 537

A Multiobjective Evolutionary Algorithm Toolbox
for Computer-Aided Multiobjective Optimization

K. C. Tan Member, IEEETong H. Lee Member, IEEED. Khoo, and E. F. Khor

Abstract—This paper presents an interactive graphical user Evolutionary algorithm is a global search optimization
interface (GUI) based multiobjective evolutionary algorithm technique based on the mechanics of natural selection and
(MOEA) toolbox for effective computer-aided multiobjective yon 0y ction. It has been found to be very effective in solving

(MO) optimization. Without the need of aggregating multiple S Lo
criteria into a compromise function, it incorporates the concept of complex multiobjective (MO) optimization problems where

Pareto’s optimality to evolve a family of nondominated solutions Cconventional optimization tools fail to work well [6]-[11].

distributing along the tradeoffs uniformly. The toolbox is also Without the need of linearly combining multiple attributes into
designed with many useful features such as the goal and priority 3 composite scalar objective function, evolutionary algorithms
settings to provide better support for decision-making in MO jncqrorate the concept of Pareto’s optimality or modified

optimization, dynamic population size that is computed adaptively lecti h t | familv of soluti | th
according to the online discovered Pareto-front, soft/hard goal selection schemes to evolve a family of solutions along the

settings for constraint handlings, multiple goals specification for tradeoff surface. Such a global optimization method has been
logical “AND"/“OR” operation, adaptive niching scheme for uni-  applied to many real-world applications including treatment
form population distribution, and a useful convergence represen- of cancer in medical fields [12], control engineering design
tation for MO optimization. The MOEA toolbox is freely available in power systems [13], physiological processes of biological

for download at http://vlab.ee.nus.edu.sg/~kctan/moea.htm, which - ;
is ready for immediate use with minimal knowledge needed in plants [14], and recognition of Chinese characters [15]. Several

evolutionary computing. To use the toolbox, the user merely needs Surveys are available for more information of evolutionary
to provide a simple “model” file that specifies the objective func- algorithms in MO optimization, e.g., [16]-[20].

tion corresponding to his/her particular optimization problem. Although evolutionary algorithms are powerful for MO opti-
Other aspects like decision variable settings, optimization process mization, the users require certain programming expertise with

monitoring and graphical results analysis can be performed easily : : - . )
through the embedded GUIs in the toolbox. The effectiveness considerable time and effort in order to write a computer pro

and applications of the toolbox are illustrated via the design 9ram for implementing the often sophisticated algorithm ac-
optimization problem of a practical ill-conditioned distillation ~ cording to their need. This work could be tedious and needs
system. Performance of the algorithm in MOEA toolbox is also to be done before users can start their design task for which
compared with other well-known evolutionary MO optimization  they should really be engaged in. A simple solution is to get

methods upon a benchmark problem. ready-to-use evolutionary optimization toolbox, which is often
Index Terms—Evolutionary algorithms, multiobjective opti- developed for general purposes but has the potential to be ap-
mization, software. plied to any specific application. Generally there are two types

of evolutionary algorithm toolboxes for MO optimization that
are available in the market. 1) The key functions of the evo-
lutionary algorithm are coded separately in the toolbox where
ANY real-world design tasks involve complex optimizathe users can build their own programs by calling the relevant
tion problems with various competing design specificdunctions. 2) A ready-to-use toolbox where users merely write a
tions and constraints which are often difficult, if not impossiblémodel” file that specifies the objective function corresponding
to be solved without the aid of powerful and efficient optimizato his/her particular optimization problem, and plugs the file into
tion algorithms [1]-[5]. Blessed with the rapid development dhe toolbox for immediate solutions.
computer technology, the high power of computation and visu-EXisting  evolutionary - algorithm toolboxes include the
alization available at the desk nowadays allows the embedd@@j?etic and evolutionary algorithm toolbox (GEATbX) for use
of computer-aided multiobjective optimization (CAMOO) techWith Matlab [21], which is developed by Pohlheim [22] and is
nology into a virtual problem-solving environment for Sophis(_:ommercmlly available. The toolbox is modular and contains

ticated optimization problems. Built upon a high-performanc®Me evolutionary functions that could be used for users’
wn programs. The interface with GEATbx can be performed

promotes active man-machine interactions and supports the IV either command-line interpretation or simple GUIs. This

damental changes from conventional manual tuning procesé%lbox IS, howevc_ar, not freely av_aﬂable and the current version
. : . of GEATbx (Version 1.92) provides no support for multiob-
automatic search of optimum solutions.

jective optimization. The genetic algorithms for optimization
toolbox (GAOT) developed by Houck et al., [23] in North
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long string of variables before each simulation, the toolbox Y \
also provides limited support for MO optimization and has no 5
easy access to graphical displays for results analysis. Similar 1
to GEATbx, GAOT requires users to be familiar with Matlab

and evolutionary computing in order to understand the various
functions as well as to specify the decision variables in the 4
relevantm-files, since these toolboxes are mainly text-based

driven with limited GUI supports. The FlexToolGA developed

from Flexible Intelligence Group [24] is a ready-to-use toolbox 1

which is also implemented in Matlab and is commercially

available. Although this toolbox supports GUIs, some of the T
1

settings need to be entered via text-based commands. More-
over, the toolbox does not fully support MO optimization irhg_ 1
identifying the entire tradeoffs for multiple conflicting criteria
problems.

Addressing the need of a more user-friendly and compreéhere P = {p1,p2....,p,}, is the candidate vector with
hensive evolutionary algorithm toolbox for MO optimizationdecision variables ané defines the set of candidate vectors;
this paper presents a global optimization toolbox that & = {f1, f2,.... fm} are them objectives to be minimized.
built upon the MOEA algorithm proposed in [25]. Theln the total absence of information for preference of objectives,
MOEA toolbox, which is freely available for download atPareto’s dominance is regarded as a useful approach to com-
http://vlab.ee.nus.edu.sg/~kctan/moea.htm, is ready for ipare strength or fitness between any two candidate solutions in
mediate use with minimal knowledge needed in Matlab O optimization [7]. For a minimization problem, an objective
evolutionary computing. It is fully equipped with interactivevector F, is said to dominate another objective vecky, de-
GUIs and powerful graphical displays for ease-of-use améted byF, < F, iff
efficient visualization of different simulation results, and hence
provides exclellent sluppolcrjts for decision-malking and optimdiza- foi < o Vie{1,2,...,m} and
tion in complex real-world optimization applications. Besides .
the ability Ef evolving a far?nily of nondgfninated solutions Jaj < Jo,j, for somej € {1,2,....,m} )
along the observed Pareto optimal front, each of the objectige

components can have different goal settings or preference%luuon to the above MO optimization problem is a family of

to guide the optimization for individual specifications rathe‘?Olnts known as Pareto optimal solutions, where each objective

than pre-weighting the multiobjective functions manuall;?ompgnk?ng()f ané/_ point Ialong the Pfa_reto-rfwront g_an (_)nly be im-

The toolbox also contains various analysis tools for users REPVed Dy degrading at least one of its other objective compo-

compare, examine or analyze different results or tradeoffs "t [26], [27]. To illustrate the concept of Pareto’s optimality,

anytime during the simulation. the Pareto ranking scheme proposed in [18] for a minimization
This paper is organized as follows: Section Il presentsP4oblem of two objectiveg; and f» is shown in Fig. 1. As

general architecture for computer-aided multiobjective opan be seen, it assigns the same smallest cost for all nondom-

mization. The role of MOEA toolbox for global optimization'nated strings, while the dominated strings are inversely ranked

and better decision-making in CAMOO is also illustrated. Thaccording to how many strings in the population dominate them.

design of MOEA toolbox which includes a brief description

of various useful features as well as further developments for

real-time optimization are also presented in Section Il. TH& General Architecture of CAMOO

effectiveness of the toolbox is demonstrated via the designy promote active man-machine interaction and to support

optimization problem of a practical ill-conditioned diSti"aﬂonautomatic search of Pareto optimal solutions in MO optimiza-
control appl|cat.|on in Section Ill. Section IV shows the perfort-ion’ a general architecture of CAMOO that accommodates
mance comparison results among the MOEA toolbox and thﬁFee interactive modules is shown in Eig. 2

well-known evolutionary methods upon a benchmark problem. 9.

Conclusions and future development of the toolbox are drawn * The human decision-making module that monitors and su-
in Section V. pervises the overall optimization process.

» The global optimization module that searches for Pareto
optimal solutions automatically.
[I. ROLES AND FEATURES OFMOEA TooLBOX e The evaluation module that formulates and simulates alll
specifications and objective functions corresponding to
the MO optimization problem on-hand.

In general, multiobjective optimization seeks to optimize a According to the simulation results in evaluation module
vector of noncommensurable and often competing objectivessgtd any optimization guidance such as optional goal and
cost functions. In other words, it tends to find a decision variabjgiority information from decision-making module, the opti-
set P for mization module automates the search toward the global and

Pareto optimal solutions, without the need of formulating a
MinpcoF(P) (1) convex or linearly parameterized objective function. Online

Multiobjective Pareto ranking scheme.

A. Background
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Fig.2. Ageneral architecture for computer-aided multiobjective optimization.
Fig. 3.  GUI window for quick setting of simulation parameters.

optimization progress and simulation results like tradeoffs or
convergence can be displayed graphically and fed back to fae GUIs of MOEA Toolbox

decision-making module. In this way, the overall optimization The MOEA toolbox is developed based upon the technique of
process is supervised and monitored closely, where the usgfglutionary computing and the concept of Pareto’s optimality
can examine different competing tradeoffs conveniently, adjusk effective MO optimization. Interfacing with the toolbox is
goal settings that are too stringent or generous, or even aligfough powerful GUI windows. Most simulation settings can
the objective functions anytime during the simulation if necege done by manipulating labeled graphical controls which have
sary. This man-machine interactive optimization process mgyo| tips attached for easy function identification. The toolbox
continue until user is satisfied with the required performancesso provides many help documentations in HTML (HyperText
or after all design specifications have been met. The CAMO®Qarkup Language) format as well as simpiefile templates
architecture allows the interactive optimization process to & assist users in writing “model” files. Besides, it is capable of
closely linked to the environment of the applications. Humagpresenting simulation results in various formats, such as text
decision-makers, for most of the part, are not required to déiés or graphical displays for the purpose of results viewing and
with any details related to the optimization algorithm, whiclnalysis. The file-handling capability of the toolbox also allows

greatly simplifies the overall design task. users to store or retrieve simulation data. The main features of
To achieve an efficient CAMOO, a powerful softwarghe toolbox are summarized as follows.

package is essential for the optimization module to obtain ,
the globally optimized solutions. The interactive GUI-based ,
MOEA optimization toolbox developed under the Matlab
programming environment is thus designed for this purpose. ,
Matlab is a popular high-performance programming language
used for technical computing. It integrates computation, visual- ,
ization and programming in an easy-to-use environment, where ,
problems and solutions can be expressed in familiar mathe- sion-making in MO optimization.

matical notation. It is chosen as the software environment for , powerful GUIs and easy linking to other program work-
MOEA toolbox implementation due to the following reasons  panch.

[23]: « Step-by-step guidance to interface with “model” files.
1) it provides many built-in auxiliary functions useful for « Comprehensive HTML help files and tutorials.
function optimization in engineering or nonengineering « Include a simple installation program.
applications; An installation program is included in the toolbox for easy
2) itis portable and is efficient for numerical computationshstallation and setup of Matlab search paths. After the installa-
3) it provides powerful and easy-to-use graphic utilities; tion, the main toolbox GUI window can be called from Matlab
4) it provides Application Program Interface (API) to inworkspace by the command “begin.” This GUI can be mini-
teract with data and programs that are external to Matlatized into a smaller window so that it occupies less space on the
environment, screen for easy access. Through the buttons on this GUI, many
5) itis capable of generating optimized code for embeddegher toolbox GUI windows can be easily accessed including
systems, rapid prototyping and hardware-in-the-loop dghe help files and simulation setup files. There are two types of
signs. setup available in the toolbox, e.g., the “Quick” setup and the
Although execution speed in Matlab may be slow as compar&@uided” setup. The GUI of “Quick” setup is shown in Fig. 3,
to other low-level programming languages like C/C++, functiowhich provides all simulation settings, such as the number of ob-
files in Matlab that require extensive computational effort can lpectives and decision variables, generation and population size,
compiled into “mex” files using software like Matcom [28] forselection strategy and so forth to be easily accessible within one
faster program execution, if so desired. GUI window. Fixed and dynamic niching schemes [25], [29] are

Support both single- and multi-objective optimization.
The ability to focus on finding Pareto optimal solutions
with powerful graphical displays.

Fixed and dynamic population size for optimal represen-
tation of Pareto-front.

Handle both hard and soft constraints.

Goal and priority information for better support of deci-
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| where
T summation of all decision variables;
Tr,  lower summation limit;
Ty upper summation limit;
s decision variable;
—- p:r, lower limit for decision variablé;
[ p:g upper limit for decision variablé
| n number of decision variables.
These constraints are automatically coded into the genetic struc-
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s | ture of strings in the simulation, i.e., all strings in the popula-
e - — tion reproduced after the crossover and mutation operations re-
= | || :..n.l:l.l..-l . . B . . ..
j | main as feasible strings, which avoids the need of repairing or
. | w0 I l.ﬂ-l.--l-a—” . |

rejecting any infeasible strings through specialized genetic op-

erators. Fig. 6 shows the genetic structure as given by
([ s, ifa; =i
. — P 3 3
. . . o PZ_PZLJFZ({O, else ) )
also included in this GUI, which allows sharing distance to be j=1
fixed or estimated adaptively based upon the online populatig

Fig. 4. “Guided” setup with loading setup details.

distribution at each generation. The “Quick” setup also includ Be genes in the chromosome represent packets of pre-speci-

features to incorporate random strings or reuse strings from | SF SIZES,51 .- 5, and the Va'“‘? (.Jf each gens, .. . ay, de- :
evolution if necessary. Besides, the “model” file or Simulinkermines the address of the decision variable that the packet is

[30] can be loaded directly through this GUI to achieve ea%;sngned 0. qu gerﬁaj =1 |nd|pates t.h‘?“ the packet of size
linking between MOEA toolbox and application setups. $; should contribute its value to thth decision variable. There-

For new users who have minor or no experience in Settiifl e the value of théth decision variable is the sum of all the
up the parameters for simulation, an alternative “Guided” set ckets Whoge gene has the address that is corresponding to it.
GUI window as shown in Fig. 4 is available to assist them b e packet distribution method has also been extended to handle

going through the whole setup process step-by-step with gu _nhn:a:c type ?f ctonstrfamt otpt|m|§gtlon problems via the ap-
ance information provided. The sparse multi-page arrangemgﬁ ac r? angu a'r:. ran7s otrhma“ggl[ t']. " set indow that
in “Guided” setup also allows more information to be incorpo- S shown in F1g. 7, he jective” Setup window tha

rated into the GUI window. Note that all parameter settings Speciﬁes the setting of objective functions for the optimization
oblem can be called from either the “Quick” or “’Guided”

“Quick” and “Guided” setups are interlinked, e.g., users m tup. Similar to th e f decisi iables. th ;
switch between these two GUI windows anytime as they wis.? up. simifar 1o the Setling of decision variables, there 1S no

where all current settings in one setup window are autom it ondtrI)e r:#mlperto; objt?[ctlves aIthoughTshqcrelelt m (ijiy b?
ically transferred to another. All settings in these two setu posed by the limited System resources. 1his window IS

can also be saved into a file for reloading purpose. From t 8"t to provi_de an easy and cor_np_lete_ setup for e_ach objective
“Quick” setup or “Strings” setting in ‘Guided’ setup as Showﬁ:omponent qulved in the op_tm_nzatlon, which includes _the
in Fig. 5(a), the “Model Parameter Options” GUI window a upport for setting of.goal, prlprlty and .h.ard(soft congtramts
shown in Fig. 5(b) can be opened to setup all decision variab é]. Note that the setting of a single specification (consists of a

involved in the optimization. Note that the toolbox does not ha\ﬁ?t of objective components with goal, priority and constraint)

a limit on the number of decision variables that it can handléan also be extend'ed to multiple specifications with logical
although such limit may be imposed by the limited system reAND 'OR” operations 1o accommodate more complex
sources. As shown in Fig. 5(b), settings over every ten decisi

8 cision-making in the toolbox as shown in Fig. 7(c).
variables can be easily accessed through the navigational co Cig. 8 shows the “Population Handling” GUI window of the
trols in the toolbox.

EA toolbox. This GUI window allows strings or decision
Fig. 5(c) shows the “Summation Limits” GUI window, Whichvariables to be manually edited, removed or replaced by random
is a primitive version of packet distribution method [31] for hanZ"es as hecessary. Any string in the population can be selected
dling simple constraints with linear decision variables. This cuf

ith its decision variables to be displayed on the left side of the
window allows linear constraint specifications of the foIIowingx”ndOW' At each generation, the fitness as well as the decision
format

ariables of the selected string is available for viewing or editing
on the right half of the window. This GUI window is useful for

n providing online or off-line results analysis via strings editing,
I, <T= va: STy where users can have better interaction and understanding of
i=1 the changing environment in the simulation. Note that strings
pin SpL S piw for the entire population can also be created via the “Population
por, < p2 < poy Handling” GUI, which could then be saved and reloaded as an

initial population for other setups.
The MOEA toolbox contains various GUIs for graphical dis-
Pl < Pn < Pl (3) plays, where simulation results can be represented in different
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Fig. 9. Graphical displays of simulation results in MOEA toolbox.

plotting for graphical analysis or visualization. These plottings The MOEA toolbox also comes with comprehensive online
can be updated at each generation for which users can intetaalp files in HTML format, which can be easily accessed via
tively manipulate controls to adjust the displays. One of sut¢futton/link in each GUI window or menu bar as shown in
GUI windows is shown in Fig. 9, where strings can be arranggty. 11. Whenever the help command is called, the relevant
in an ascending order based on any selected optimization ¢fé&lp document will be opened via the default Web browser in
teria. Fig. 10 shows the convergence trace for single- or mulffre system. The information contained in the help files include:

ol;gelcstglt?i r(])pt;rtn(lazglr?n :nSeVrV;:L?]S \t,\?rigr?n}\?g; (;f Sbr;r;%?a?\?:wgao General information on evolutionary algorithms and mul-
9 g 9 ; 9 d tiobjective optimization;

of how the population is evolving over generations. For MO Step-bv-step d trati f the toolbox:
optimization, the convergence trace is measured by means of €p-by-step demonstration ot the 100790x; -
progress ratio [25]. In the sense of evolution progress toward the® Guides to GL_”S O.f th“e t°°”?,°’.‘ as well as to writing of
direction that is normal to the tradeoff surface formed by the cur- ~ Matlab and Simulink “model” files; _
rent nondominated strings, the progress i atgeneration ~ ° LiSt Of possible error messages and ways of handling
n is defined as the ratio between the number of nondominated them-
zttrlngs at _generftlon dominatingthe nondominated st_nngsOD. Advanced Settings of MOEA Toolbox
generatior{n — 1) over the total number of nondominate
strings at generation. This GUI also allows simulation data The left side of Fig. 12 shows the GUI window for evolu-
such as strings in a population, fitness of strings and progrédismary parameter settings, where crossover and mutation rates
ratio to be saved as “mat” file in Matlab or as “text” file to becan be set graphically. There are two methods of selection
loaded by external programs like Microsoft Excel. available in the toolbox, e.g., roulette wheel and tournament
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selection schemes. Three types of mutation operator are prersa. A high progress ratio means that the performance of evo-
vided in “Mutation Settings” GUI window as shown in thelution is improving a lot and is likely to be far away from the
right side of Fig. 12. The first type is the classical mutatradeoff. A local search at this stage is less meaningful since
tion operator, where a gene is randomly mutated if a randdire evolution is less likely to reproduce strings within or near
generated number is smaller than the probability of mutatioto. the tradeoff region. In contrast, the progress ratio is generally
The second type is the approximate-number mutation, whdog when the evolution is approaching the tradeoff, and thus it
a number of randomly selected genes, equal to the roundsdanore meaningful to increase the number of perturbations at
product of the total number of genes and the probability ¢iis stage in order to obtain more neighboring strings for better
mutation, are mutated randomly. tradeoff representation. The setting of this relation is adjustable

The third mutation method is called fuzzy boundary locah the toolbox as shown in the right side of Fig. 12. When FBLP
perturbation (FBLP), which was proposed in [33] as a tool fas performed on a string, mutation probability for each gene de-
reproducing strings to fill up discontinuities among nondompends on its position in the respective decision variable. For each
nated strings in forming the Pareto-front for MO optimizationdecision variable, the closer the gene to the LSG (Least Signif-
Each string in FBLP is perturbed in such a way that the resitant Gene), the higher the probability of mutation is assigned
tant string from the perturbation is likely to be situated withimo this gene. By giving a higher chance of mutation for less sig-
a short distance from the original one. The number of perturificant genes, perturbed strings are likely to be located within
bations for each string is related to the status of progress raichort distance from the original string, thereby fulfilling the
[33], which is generally large for a small progress ratio and viqaurpose of local search in FBLP.
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Fig. 12. Settings of evolutionary operators and mutation types.
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Fig. 13. Settings of evolutionary operators and sharing distance scaling.

At the stage of “Evolution 2" in “Guided” setup as shown The MOEA toolbox also allows users to load an initial pop-
in the left side of Fig. 13, several advanced evolutionary setlation, generate a new population of random strings or use a
tings are available. The “niche induction” technique by meam®mbination of both before any simulations. The initial popula-
of sharing function [34] is used to evolve an equally distributetibn can be loaded from a file generated from last simulation ses-
population along the Pareto-front or multiple optima for evolwsion or entered via the “Population Handling” GUI. As shown
tionary optimization. To avoid the need afpriori knowledge in Fig. 14, the feature of dynamic population size [33] is also in-
to predefine a sharing distance as required by existing shartigded in the toolbox, which is particularly useful for automat-
methods, the toolbox includes a dynamic sharing scheme [2&4lly estimating an optimal population size at each generation
which computes suitable sharing distance at each generatsoras to sufficiently explore the search space as well as to repre-
adaptively. Since each decision variable or objective may hasent the Pareto-front effectively. Intuitively, it is hard to achieve
different desired scaling values, the toolbox provides a “Nichirgggood evolution if the population size is too small due to insuf-
Distance Scaling” GUIl window where the scale of each decisidicient exchange of genetic information. If the population size
variable or objective can be easily specified as shown in the righttoo large, the evolution may take extra computational effort
side of Fig. 13. Mating restriction [34], [35] is included in thewith greater demands on system resources and simulation time.
toolbox to restrict mating of strings in order to prevent reprodudhe merit of dynamic population is that it avoids the need of
tion of highly unfit strings as well as to maintain the populatiopresetting a constant population size that is usually obtained by
diversity. If the mating restriction is enabled, two strings will beepeating the simulation with different population size until a
selected for mating if they are located within a certain distanaggod solution is found. The toolbox also allows settings in the
e.g., the sharing distance; otherwise a random string is seled&dils to be saved in a “setup” file for reference or use later in
for mating if no such strings are found. other simulations, besides having the feature of “crash backup”
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Fig. 15. Simulink model of a first-order system (filename: Fstorder).

v Striny; ¥

I Evoution Pogtion Sze T35 o v T “model” files can also be written ag-file and easily be com-
) e piled into “mex” file with the help of Matcom [28] for similar
FF Evolution 2 intist Populsticn | New popuiation «] purpose

Last population nsted from; 3 . . . .

7 | Simuiation e e The MOEA toolbox is capable of running a model built with

resit Number f Generstions - [50 Simulink, which is a GUI-based software in Matlab for mod-

eling, simulation and analysis of dynamic systems. The toolbox
Sove Sotu o | vmnn || sueksene] provides a special template containing comments and sample

codes that assist users in creating “model” files for running
Simulink models. There are also various functions that allow
m-files to modify the parameters of Simulink functions or to run
Fig. 14. Population setting with optional feature of dynamic population sizé;.he S'mu@t'on in Simulink. The Simulink model can l?e loaded
by typing its model name at the Matlab command window be-
) . . . fore running the simulation. An “initiator” file can also be used
file that stores all simulation data at each generation for backtuonI 2 ) . . .
UIDOSE oad a Simulink model in a new window if none already exists.
PUrpose. For example, consider a Simulink model with step response sim-
E. Writing *Model” File glat|on of a flrgt—order system as shown in Fig. 15. The mo.del
) ] ) is saved as a file named “Fstorder.mdl,” and the “initiator” file
There are three types of user-written files in the toolbox, 4t opens this model consists of a command line “Fstorder”.

e.g., the “model” file, the "initiator” file and the *streod” |y the model file, the following lines can be written to de-
file. According to users’ optimization problem on-hand, thgjne the system:

“model” file that specifies the objective function must be
written in order to determine the fitness function of eagh

Done!

e

Heip! } Ciose Wkns:sawl Detat i

1 .

string in the population before any simulation. The MOEA%T:‘neSTT? Omloé?ogloe_
toolbox sends values of the decoded decision variables to|this o ’
“model” file and expects a cost vector to be returned for each"™ = [K;

. N y o . . den = [T\ 1];
of the strings. The “model” file is also used in “Populatign . )
Handling” GUI to allow any manual examination, modificatign fﬁt ‘param(,, F?tor?erlsyszt' L
or re-evaluation of strings of interest in a population. Besides “gzs;?;?r:;to[r ., [[ ‘ Fl{mnj:;(zn;:?;en)] , ]]’, )
providing help files in HTML format, several templates for =~ . _
writing the “model” files are included in the toolbox. There sim(fFstorder” t [ 1. [ I

are also notes, guides and reminders in the form of comments
in each template to assist users in writing the “model” file for “Fstorder” is the name of Simulink “model” file; “Syst” is
his/her particular optimization problem. The “initiator” file isthe name of blocks that represent the system; “Time” is the sim-
optional and is a function or a script that is run once at tHéation time index; “K” and “T” are the parameters of “num”
beginning of the simulation. This “initiator” may be used tqnd “den” that define the first-order system, respectively. Note
initiate a separate graphical display window or to initializ€&hat after each “model” evaluation in Simulink, the step response
constants for the simulation. Similarly, the setting of “streogdata of the first-order system will be returned to the main func-
file is also optional and is a function or a script that is run dton in Matlab, as desired.
the end of each generation, which can be useful for plottin
simulation results in graphical display that is generated by the
“initiator” or for producing backup data of the simulation. The MOEA toolbox is well suited for global MO optimiza-
Since the MOEA toolbox is written in Matlab, it is capable ofion where different noncommensurable or competing criteria
running any “model” file created in Matlab as well as makingan be optimized simultaneously without the need of a compro-
use of the versatile functions and resources in Matlab. Users eaise function. From Simulink and real-time workspace toolbox
also call their own C or Fortran “model” files from Matlab aqd36], the evaluation module in Fig. 2 can be extended easily
if they are built-in functions. This Matlab callable C or Forfor online evaluation and hardware in-the-loop optimization,
tran program is defined as “mex” file [21], which is dynamidif desired. Without loss of generality, Fig. 16 illustrates an
cally linked subroutine that Matlab interpreter can load and egxample of real-time control system design governed by the
ecute. Details of creating and executing “mex” file are availabMOEA toolbox, as an extension from off-ine CAMOO as
in Matlab application program interface guide [21]. The merghown in Fig. 2 to online real-time optimization.
of “mex” file is that it executes faster than its-file equivalent, In the extended evaluation module, Simulink is useful for
and hence reduces the overall simulation time. Alternativelgpntrol system modeling, simulation and controller design. The

MOEA Toolbox for Real-Time Optimization
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Fig. 16. Extended evaluation module for real-time optimization. Fig. 17. Typical distillation column control system.

controller that is developed via the block diagram of Simulinfhodel of the distillation column is shown in Fig. 17, which
can be compiled by real-time workshop toolbox into C/C+tonsists of multiple inputs (flows: refluk, boilupV/, distillate
codes, which are then compiled into executable codes for down: bottom flow B and overhead vapa#;-) and multiple outputs
loading onto the hardware. The interface software then initiqbompositions and inventories: top compositigp, bottom
izes the hardware, loads the executable application codes agéenpositionz 3, condenser holdup/p, reboiler holdup) s,
the memory area and initiates the program execution to perfopiessure).
the real-time control application. Atthe same time, a set of plantThis control problem usually has no inherent control limita-
data is fed back to the real-time workspace via the interface saféns caused by RHP-zeros, but the plant has poles in or close to
ware for the evaluation of the objective functions. Intuitively, thghe origin and needs to be stabilized. The RGA-matrix may also
overall design convergence of this architecture is guarantee@dve some large elements for high-purity separations [40]. An-
the convergence of MOEA is faster than the dynamics of thgher complication posed in this design is that the composition
process, which adds to the challenge of the MOEA toolboX. measurements are often expensive and unreliable [41]. Consider
Instead of using high-level programming like Matlab op distillation process inEV” configuration with two inputs (re-
Simulink block diagrams, fast and efficient low-level programfiux L and boilupV’), and two outputs (product compositions
and interface boards can also be used to provide the linkage andz ). The five-state model of EV” configuration with
between MOEA toolbox and control applications. In this casg,state-space realization given as
the interface software needs to allow controller parameters to
be altered on the interface board in real-time within the toolbox A B
environment, as well as to allow the real-time response data to G(s) = [C D}
be logged back onto the MOEA toolbox for fithess evaluations

and graphical _dlsplays. .AS re(_:ommen_ded n [3.7]’ this ta?/v%ereG(s) denotes the transfer matrix from the inpuisgnd
can be conveniently realized with the aid of special hardw

and software system such as dSPACE [38], MIRCOS [39]ac{)}ra) to the outputs,, andz p) respectively. The matrid, 5, C'

TMS320C40 DSP industry standard card, using an appro rigpdD are given in (6) shown at the bottom of the next page.
. y ' 9 PPIOPMAtEH o above five-state model was obtained via model reduction
analogue input/output module where the card can be sited in

PC to form a complete standalone dedicated control system.()fah1e o_ngma_l ”.‘Od.e' with 82 states [41]. The process to be con-
trolled is a distillation column with reflux flow and boilup as

manipulated inputs and product compositions as outputs. The
model has been scaled such that a magnitude of 1 corresponds
to the following: 0.01 mole fraction units for each outpyb(

To demonstrate the effectiveness and various featuresaimdx ), the nominal feed flow rate for the two inputs @nd
MOEA toolbox, a practical control design optimization problent’) and a 20% change for each disturbance (feediratad feed
of multiple-input and multiple-output (MIMO) ill-conditioned compositionzz).
distillation system is used as the case study in this section. IfThe set of design specifications for this distillation system
should be noted that the focus here is to illustrate how MOEd#e listed in Table I, which aims to obtain a distillation control
toolbox can easily assist the MO design optimization of system that meets a set of transient and steady-state performance
distillation control system. This control problem was originatecequirements, while satisfying certain system constraints such
from [40] and was studied later in [41]-[46]. The ordinaras actuator saturation. In Tabley, andy, are system outputs,

(®)

I1l. DESIGN APPLICATION OF A DISTILLATION
CONTROL SYSTEM
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DESIGN SPECIFICATIONS FOR THEMIMO | LL-CONDITIONED DISTILLATION SYSTEM

Design specification

1. Closed-loop Stability (Sta) Count{[Real(CL poles)] > 0} 0 Hard 1
2. Actuator saturation (Act) Max(leq], leerl) 1 Hard 2
3. Tracking undershoot (Utr) 1-min(yy, y2) for t > tovershoor | 0.1 Soft 3
4. Tracking overshoot (Otr) max(yy, y2) for all ¢ 0.1 Soft 3
5. Tracking steady-state error (Etr) max(ly1(e0)-11, ly,(c0)-11) 0.01 Soft 3
6. Coupling amplitude (Acp) max(lyil, by»l) for all 0.5 Soft 3
7. Coupling steady-state error (Ecp) max(tyi(eo)-11, [ya(c0)-11) 0.01 Soft 3

{MOEA Bptions 1 [abifunc.n]

Fig. 18. “Objective Setup” GUI window for the distillation control problem.

while u; anduy are actuator outputs of the system. These dand steady-state responses. Although determination of the pri-
sign specifications, treated as the design objectives in MO aprity settings may be a subjective matter and depends on the per-
timization, can be easily set via the “Objective Setup” GUI iformance requirements, ranking the priorities is only optional
the toolbox as shown in Fig. 18. The underlying aim of settingnd can be ignored for a “minimum-commitment” design [47].
the priorities in the last column of Table | is to obtain a conH, however, an engineer commits himself to prioritizing the ob-
troller that first stabilizes the system within the actuator saturgectives, it is a much easier task than pre-weighting the different
tion limit for hardware implementation. Note that the actuatatesign specifications as required by other objective function ag-
saturation is set as a hard constraint reflecting the hard limit gfegation approaches.

this performance requirement, which requires no further mini- Fig. 19 shows the overall design block diagram of the distil-
mization if the control actions is within the saturation limit. lation control system, wher& is the command signak’ the
Having fulfilled these requirements, the system should also satror signal,D the disturbance signal arid the plant output

isfy some time domain specifications as defined by the transigasponse. The design task here is to optimize the controller pa-

—0.005131 0 0 0 0 —0.629 0.624
0 —0.07366 0 0 0 0.055 —0.172
A= 0 0 —0.1829 0 0 , B=] 0030 —0.108
0 0 0 —0.4620  0.9895 —0.18 —0.139
0 0 0 —0.9895 —0.4620 —-1.23 —0.056
o= —0.7223 —0.5170 0.3386 —0.1633 0.1121} D:{o 0} ©)
—0.8913 0.4728 0.9876 0.8425 0.2186 |’ 0 0
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Fig. 19. Output feedback control system.
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Fig. 20. Graphical displays of progress ratio and ratio of strings meeting goal.

rameters of (s) for the distillation column#(s) so that it sat- used to observe the performance of the evolution, such as the
isfies all design specifications as listed in Table I. Since MOE£onvergence trace in the senses of progress ratio as well as the
toolbox is developed under the Matlab programming enviromatio of strings meeting goal (ratio of number of strings meeting
ment, users do not need to build the “model” files from scratchpal to the population size). As illustrated in Fig. 20, the evo-
i.e., any function libraries from any relevant Matlab toolboxdsition begins with a zero ratio of strings meeting the goal. This
can be utilized directly for this purpose. For example, the comalue grows significantly from generations 10 to 30 and satu-
trol system toolbox in Matlab was utilized in this problem taates at the value of one indicating all strings had met the goal
define the complete MIMO distillation control system, withousetting. This graph shows that all controllers in the final gen-
the need of writing the entire control block diagram or simulaeration satisfy all the design specifications as listed in Table I.
tion program. It can also be observed in Fig. 20 that the progress ratio of the
A full-matrix controller structure with simple 1st-orderoptimization is relatively high at the initial stage and decreases
transfer function is adopted for this distillation control problengsymptotically toward zero as the evolution proceeds or as the
which results in a total number of 16 controller parameters population gets closer to the global tradeoff surface. This con-
decision variables given as vergence feature is useful as an effective performance measure
or stopping criterion for MO optimization.

Hi(s) Hias) The tradeoff graph for some of the evolved controllers is il-
H(s)= Hai(s) Hoo(s) ;  Where lustrated in Fig. 21, where each line represents a solution found
Pss S+ Pris by the optimization. The heavily crossing lines in Fig. 21 sug-
H, ;(s) = M, i,7 €{1,2}. (7) gests that the solutions are nondominated and tradeoff against
P1iS +Poij each other. To further illustrate the relationship among different

specifications, the nondominated strings are plotted in Fig. 22

Primary settings of the evolutionary design optimization ai@ terms of objective 4 (Otr) and objective 7 (Ecp). As can be
shown in Fig. 3, which include the number of design objectivesgen, although all the plotted strings are nondominated to each
and decision variables, generation and population size, seleciather for objectives 1 to 7, they are not necessary tradeoff to each
strategy and so forth. Graphical displays in the toolbox can béher with respect to objectives 4 and 7 since the tradeoff may
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occur at other pair(s) of objective functions. If only strings thathere
are tradeoff to each other with respect to objectives 4 and 7 are

549

plotted, it can be observed that the tracking overshoot (Otr) per- N N 2
formance deteriorates as more stringent bounds on the coupling Spw = Z 2. — i Z T ©)
steady-state error (Ecp) are demanded as shown by the solid line = “ N = .
in Fig. 22. Further investigations between any other objectives N N 2
can also be carried out in a similar manner. 2 1
o . i Sir= e — = i k and 10
The guantitative assessments of correlation coefficient and &l ; Ti N ; Ji (10)

the slope of the least-square line can be used to provide statis-

N N N
tical information of the evolving decision variables toward the S .= } : e 1 2 : . } : 4
zf = xz,]fz,k L4 fz,k . (11)
=1 N =1 =1

objective components. For any decision variabjeand objec-
tive componentf;, the correlation coefficient, ; and slope of

;_he (Ijeast—jguares line,; for a population size ofV are de-  rpg correlation coefficient, ; gives a quantitative measure
ined as [48] of how strongly a decision variable; and an objective com-
ponentf;, is related. The value ofy ; is between-1 and+-1.

Ser

A value near to the upper limit of1 indicates a substantial

g VSsa\/Sts ’ S positive relationship, whereas ap ; close to the lower limit



550 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 31, NO. 4, AUGUST 2001

‘¢ 1EA Progioss [obflunc.m} 50101 | < A Progross Jobitunc.m] [ 151X
e, ol fin Blole el i NS g2 : Tie ot Tn Fire Hepl oo P S .
E LT o R N \” ; T R L e T
s rpre e e [SEG e v
g ”\3““’: )
oo e
i . = P W Faase .
s = me b s
e . 0o O - ‘
!a ; x-=| G M strngs Pt
co . RN b S
3 H X T ey | _} s =%' T S
: * 4 N
2! = . “ I = Nondominated st . . ” . ‘\ = Nordoninated st
T o stioge SLAT0e DA 088 B8 0 ondemnaisdstings ¢
Parametsr 2 wi| - Dominated stings L Pammetged s T . Derinated stings
Brogress 100%)- 5 Goal ) Goal
. 3 o] R E ” p . ’ =
R e e e W Do 40 U)o TR B T 00 e T
CERMERLING, T Tenk 1972 B a0 Py 200 i e \‘dmdmg 3 = En 100 ottt TR PO 38 ) N - “
o l S i : { § Cinge jA e R e § e S st ﬁe:&mm - Eiosh in | e
~ R 1 LY x»:lﬂedwmmv‘s z P o v . R i c 3 Spindted Poravdinet | 4
@ (b)

Fig. 23. Analysis of decision variables in correlation and sensitivity. (a) Population distribution. of, } and (b) population distribution dfx., f4}.

¢ 1A Progress {obitunc m]
o Model o~ Plols Hep

ir

o
o

=3
o
T

7 FulAxed
Rins | X
£ 3 Ganky

Putarialsr 10

=
P
T

o
=
T

LB i S .

-3 25 B ) i .5
Pasarrister 5

Pragrass (100%)

ey

Ges Yok o e 148 Eud 145 Sop 20

S s e Simddn, - pefisanei | Me“‘"«*ﬁ'wis;gu;mm-sm 3

@
Fig. 24. Distribution of the controller parameters: (a) 2-D and (b) 3-D.

of —1 suggests a prominent negative relationship. In the caseuseful for designers to manually change the controller pa-
where decision variable; and objective componerff, are not rameters to achieve better closed-loop performance according
correlated to each other, the valuergf; = 0 is found. For the to his/her particular needs.
slope of the least-squares ling,_;, its magnitude represents the The MOEA toolbox also supports other types of plotting in
measure of sensitivity of the decision variableto the objec- 2- or 3-dimension, such as the graph of decision variable versus
tive componenif;,. The larger the magnitude o, ;, the more decision variable as shown in Fig. 24. In the 3-dimensional plot,
sensitive the decision variable is. the z-axis represents the rank value where smaller rank im-
For example, consider the population distribution of thglies better or fitter candidate string. These graphical displays
optimized controller parameters for the distillation contrahre useful for better understanding and visualization of decision
problem, ther, ; of {x2, fa} and{z4, f4} are—0.6720(>4) variable distributions as well as contribution of each decision
and —0.1956(r4 4), respectively; and their magnitude of,, ; variable to the overall optimization performance. These tools
are0.0065(mz 4) and—0.7596(m4 4), respectively. This shows are also helpful in “Population Handling” GUI window which
that with respect to objective componght(tracking overshoot allows further manual modification or revaluation of any strings
or Otr), decision variable:; is more correlated tham,; and during or after the evolution process, as one desires. Fig. 25
both decision variables have a negative relationship with shows the transient and steady-state responses of tracking and
Therefore slight increment of decision variabte should be regulation performances for both channels in the system with
given more concern than the incrementigfwhen performing two patterns of command signals It can be seen that all the
manual reduction of,. On the other hand, as compareditg time-domain performance requirements as specified by objec-
the decision variable, is more sensitive to the objectivl. tives of 3—7 in Table | have been met successfully.
This indicates that a little variation af, will lead to a large  To illustrate the robustness of the distillation system in the
change infy. The visual impression of the correlation angresence of disturbance, a sinusoidal input acting as the distur-
sensitivity of{z2, f4} and{xz4, f4} is shown in Fig. 23, which bance signal in Fig. 19) was applied to the system. The dis-
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Fig. 26. Sinusoidal disturbance and its attenuated signals for the MIMO distillation system. (a) Disturbance attenuation for @utdut) disturbance
attenuation for outpug, .

turbance input has an amplitude and angular frequency of 1 vafter continuing the evolution for another two generations, the
and 0.05 rad/s, respectively. The sinusoidal and its attenuatetieoff moves toward satisfying the actuator limit (Act) at the
signal for all the Pareto optimal controllers are shown by thexpense of minor performance degradation for other objectives
dashed and solid line in Fig. 26, respectively. Clearly, the dias shownin Fig. 27(b). In Fig. 27(c), the evolution continues and
turbance has been attenuated substantially, with about five again leads to the satisfaction of all the goal settings by having
ten times in gain reduction of the original sinusoidal for outpuéss room for further improvements of other objectives (e.g., the
11 andys, respectively. fifth and seventh objectives) or having less Pareto optimal solu-
Another powerful feature of the toolbox is that all the goatjons as compared to the tradeoff found in Fig. 21. Clearly, this
priority and constraint settings can be conveniently examinedline interaction feature is useful where users can monitor or
and modified at any time during the evolution process. Thimodify the design at any time during the evolution so as to suit
can be easily performed with the embedded GUIs through thribeir special needs, without the need of restarting the entire de-
simple steps: pausing the evolution process, changing the s&g or evolution cycles.
tings and resuming the optimization process. For example, user
may want to change the goa_l setting for actuator I.|m|t (A(_:t) from IV, PERFORMANCE COMPARISONS OFMOEA TOOLBOX
1voltto 0.2 volt after a certain number of generations. Fig. 27 il-
lustrates the effects of the evolution process upon further modifi-In this section, performance of the MOEA algorithm in the
cation of this goal setting after the tradeoff shown in Fig. 21. Duseolbox and other seven evolutionary MO optimization methods
to the sudden change of a tighter goal setting, none of the strirge compared upon a benchmark MO optimization problem. The
manage to meet all design specifications as shown in Fig. 27 (@ased-space minimization problem proposed in [49] is used
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Fig. 27. Effects of the evolution upon online modification of goal setting, (a) Stringent the goal setting of Act from 1volt to 0.2 volt, (b) Aftenénatigas,
(c) After another two generations.

here, which is to minimize a two-objective function and is matr
ematically defined as:

(X)) =1 (12)
g(X) = 9min + (gmax - gmin)
D S LA a
N max N min )
Do T =D T ~
£\ osb
Mo =1-(2) as o
g 08
J2(X) = g(X) x h(f1,9) (15) o
where the values™™® and z** is minimum and maximum 02f
value of the variable;;, while g,,;, and gy, is the minimum - @ @ @ @@ @@ @ N
and maximum value that the functigrcan take. Pareto-optimal 0 01 02 03 04 05 06 07 08 09 1
region occurs wheig takes the value of,,;,, which happens A

whenz; = " Vi = 2,..., N [49]. As shown in Fig. 28, Fio. 28. Pareto-optimal in the obiective domai

the shaded region represents the unfeasible space in the objg(':— - rarelo-oplimal culve in fne objective domain.

tive domain while the bold line is the Pareto-optimal curve for

the two-objective biased-space minimization problem. This teBherefore random-like search methods are likely to face diffi-
function is chosen since it has a large and nonlinear tradeofflties in finding the tradeoff in this problem. Similar to [49],
curve that challenges the MO evolutionary algorithm’s abilitthe parameter values @f.;, = 1, gmax = 2,7 = 0.25, N =

to find and maintain the entire Pareto-front uniformly. Beside§, z** = 0 andz™® = 1Vi = 1,2,..., N are used for the
qualitative optimization performance for this problem can b&udy here.

easily visualized and compared. As stated in [49], the difficulty There are many performance measures for MO optimization
of this MO optimization problem can be introduced by the pgroposed in the literatures, e.g., [50]-[52]. In general, these
rametery which controls the bias in the search space. The demeasures compare the performance of evolutionary optimiza-
sity of solution away from the Pareto-frontis large whegt 1.  tion in: (1) to attain the Pareto-front, e.d’, from [52], error
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Fig.29. Box plotbased off measure. Each rectangle, refers to the measué Af;, X 1— ), represented by box plots arranged left to right, betwiesgorithm
and algorithms ranging from 1 to 8. The scale-i8.05 at the bottom and 1.05 at the top of each rectangle.

ratio and generational distance from [51]; (2) to spread the naonmatically at the time of 120 sec, in the same platform that
dominated strings along the available Pareto-front, e.g., sizei®ffree from other computation or being interrupted by other
space covere8SCrom [52], Spread from [27]. The measures programs. Here, 30 independent simulation runs have been per-
of C andSSQproposed by Zitzler and Thiele [52] are employedormed for each method so as to study the consistency and ro-
here to access the performance of different evolutionary aldmistness of the algorithms. Note that randomly generated popu-
rithms, since these two measures consider both cases (1) katidn with an initial population size of 100 is used for all the
(2), and are generally applicable without the need of pre-findir8 simulations except MIMOGA and SPEA. For MIMOGA
the actual or best found Pareto optimal solutions. and SPEA, combinations dfP, '}, namely{80, 20}, where

The MOEA algorithm in the toolbox has been compared with + P’ = 100, is used as similar to the setting in [52]. For the
various evolutionary MO optimization methods, which includeneasure 06§SCthat works on the normalized fitness space, the
(1) VEGA from [53]; (2) MIMOGA from [54]; (3) HLGA from standard ranges in fitness spacécf fi < 1and0 < fo <2
[55]; (4) NPGA from [3]; (5) MOGA from [7]; (6) NSGA from are chosen, which are determined based upon the space covered
[27]; and (7) SPEA from [52]. These methods are chosen fby the Pareto-front.
comparison since they have been frequently referenced by othefhe performance measure®©fX;, X ;) for the comparison
researchers. In addition, these algorithms consist of differesdts between algorithmisand j where,i,7 = 1,2,...8, are
type of evolutionary methods for MO optimization and somshown in Fig. 29. Box plots [56] are used to summarize the
of them have been applied to real-world applications, especiaflgmple distributions of 30 independent runs per each case,
MOGA. These algorithms have been indexed according to thaich has been applied in [52] to visualize the distribution
above sequence, where the MOEA algorithm is assigned the laissimulation data efficiently. Each box plot represents the
index number (8). distribution of a sample population where a thick horizontal

Since the control parameter settings may be different frolime within the box encodes the median, while the upper and
one algorithm to another, the setting of these parameter valleser ends of the box are the upper and lower quartiles. Dashed
are based upon two principles in this study: (1) the value of tl@pendages illustrate the spread and shape of distribution, and
parameters that are commonly used by several algorithms dogs represent the outside values. In each rectangle containing
identical to those algorithms and, (2) the value of the paramesx plots, the sequence of box plots from the left to right is
ters that are used in specific algorithms are decided based upased on the indexes of each algorithm under compared. As
the recommended values from their original literature. Fitnesan be seen(’(X;, X ;) for ¢ = j always takes the value of
sharing [7] is applied to all methods that use sharing schemmero since two identical populations cannot dominate each
in their algorithms. The sharing distance for MOGA, NSGApther. There is also no clear evidence that any of the population
NPGA and HLGA are set as 0.01 in the normalized space sirftad completely dominated any other population in all the
the population size was set at 100. No sharing parameter $-runs since there appears no cases WhHEX,;, X;) = 0
tings are required by SPEA [52] and MOEA in the toolbox. Thand C(X ;, X;) = 1, fori # j. However, MOEA appears
MOEA applies dynamic sharing scheme where sharing distaritoedominate other algorithms in most of the cases, besides
can be computed adaptively at each generation. Tournamenttsgng dominated the least by other algorithms as shown in the
lection scheme with tournament size of 2 is used in MOGAectangle ofC(X g, X1—g).
SPEA and MOEA as suggested in their original literatures. TheFig. 30 summarizes the performance of each algorithm with
Pareto tournament selection scheme with, = 10% of the respect to the measure 86C The higher the value @SC the
population size was used in NPGA for tight and complete pofarger the dominated volume covered by the Pareto-front and
ulation distribution as recommended in [26]. hence the better is the MO optimization performance. As can

All methods under comparison were implemented with thee seen, the MOEA (indexed 8) has the highest value with best
same common sub-functions in Matlab on an Intel Pentium performance in spreading strings along the Pareto-front as com-
450 MHz processor. Each of the simulation was terminated gquared to other methods. Besides MOEA, it can be observed that
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Fig. 31. Best selected distribution of nondominated strings with resp&$@®

MIMOGA (indexed 2), SPEA (indexed 7) and MOGA (indexedas been discussed in the paper. A powerful GUI-based MOEA
5) also perform satisfactorily for this performance measure. toolbox has been presented which applies the concept of

Fig. 31 unveils the distribution of final evolved nondomiPareto’s optimality for uniform distribution of nondominated
nated strings in the objective domain. These distributions aselutions along the tradeoff. The toolbox is also fully equipped
best selected among the 30 independent runs with respecivtth many useful features for better decision-making in MO
the measure d8SC In general, the purpose of producing theseptimization, and is capable of representing simulation results
figures is to visually inspect the performances of various ah various formats, such as text files or interactive graphical dis-
gorithms in terms of their final population distribution, i.e., tgplays for results viewing and analysis. It is freely available for
evaluate the performances qualitatively. By inspection, it is ndewnload at http://vlab.ee.nus.edu.sg/~kctan/moea.htm, which
ticeable that MOEA produces more nhondominated strings aloisgready for immediate use with minimal knowledge needed in
the Pareto-front, and the final tradeoffs found by the MOEAvolutionary computing. Practical usefulness of the toolbox has
is better and more uniformly distributed as compared to othieeen demonstrated through the MO design optimization of an
methods in literature. Besides having many interactive GUIs aMdMO distillation control application. Extensive simulations
useful features, the MOEA toolbox presented in this paper alsw the MOEA toolbox and other well-known evolutionary
shows excellent performance for MO optimization as illustratadethods upon a benchmark problem have also been performed.
in Fig. 31. The performances are compared both statistically and quali-
tatively, which shows that the MOEA toolbox is effective for
MO optimization with more nondominated solutions evenly
distributed along the final Pareto-front.

A general computer-aided MO optimization architecture Although the MOEA toolbox presented in this paper is
that promotes active man-machine interaction and supports gwverful and ready for immediate use, other features are
automatic search of optimum solutions for MO optimizatiosurrently being incorporated into the toolbox. Besides MOEA,

V. CONCLUSIONS AND FUTURE WORK
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other nonevolutionary-based algorithms such as simulated9]
annealing [57] and Tabu search [58] are being included in the
toolbox to provide users with a wider choice of optimization 5
tools. To achieve faster program execution and to make the
toolbox independent to Matlab, conversion of the toolbox into
standalone executable software is also underway. For this, [gq;
link to Matlab will be provided in the toolbox so that users [22]
can easily access any built-in auxiliary functions in Matlab if
necessary. Other toolbox development includes the extensigpy;
for real-time learning and optimization, such that online
communication with real-world applications is possible.

[24]
(25]

REFERENCES

[1] E. M. Beale,Introduction to Optimization New York: Wiley , 1988.  [26]
Wiley-Interscience Series in Discrete Mathematics and Optimization.

[2] A. Grace, Optimization Toolbox User's Guide Natick, MA: The
MathWorks, Inc., 1992. [27]

[3] J.Hornand N. Nafpliotis, “Multiobjective Optimization Using the Niche
Pareto Genetic Algorithm,” Univ. lllinois, Urbana, llliGAL Rep. 93 005,
1993. [28]

[4] G. W. Greenwood, X. S. Hu, and J. G. D’Ambrosio, “Fitness func- [29]
tions for multiple objective optimization problems: Combining prefer-
ences with Pareto rankings,” Foundations of Genetic AlgorithmR.

K. Belew and M. D. Vose, Eds. San Mateo, California: Morgan Kauf-
mann, 1997, pp. 437-455.

[5] J. Lis and A. E. Eiben, “A multi-sexual genetic algorithm for multi-
objective optimization,” inEEE Int. Conf. Evolutionary Computatipn
1997, pp. 59-64.

[6] M. P. Fourman, “Compaction of symbolic layout using genetic algo-
rithms,” in Proc. of the First Int. Conf. Genetic Algorithm$985, pp.
141-153.

[7] C. M. Fonseca and P. J. Fleming, “Genetic algorithm for multiobjective [33]
optimization, formulation, discussion and generalization,Pioc. of
the Fifth Int. Conf. Genetic Algorithm$. Forrest, Ed.. San Mateo, CA,
1993, pp. 416-423.

[8] P. B. Wilson and M. D. Macleod, “Low implementation cost IIR dig-
ital filter design using genetic algorithms,” IEE/IEEE Workshop on [34]
Natural Algorithms in Signal Processinghelmsford, U.K., 1993, pp.
4/1-4/8.

[9] W. Jakob, M. Gorges-Schleuter, and C. Blume, “Application of genetic[35]
algorithms to task planning and learning,”Rarallel Problem Solving
from Nature, 2nd WorkshofR. Ménner and B. Nanderick, Eds. Ams-
terdam, The Netherlands, 1992, pp. 291-300. Lecture Notes in ComBG]
puter Science.

[10] H. Adeli and N. T. Cheng, “Augmented Lagrangian genetic algorithm [37]
for structural optimization,J. Aerosp. Engvol. 7, pp. 104-118, 1994.

[11] B. J. Ritzel, J. W. Eheart, and S. Ranjithan, “Using genetic algorithms
to solve a multi objective groundwater pollution containment problem,” [38]
Water Resources Resol. 30, pp. 1589-1603, 1994.

[12] O. C. Haas, K. J. Burnham, and J. A. Mills, “On improving physical
selectivity in the treatment of cancer: A systems modeling and opti-[39]
mization approach,Contr. Eng. Practicevol. 5, no. 12, pp. 1739-1745,

1997.

[13] M. Reformat, E. Kuffel, D. Woodford, and W. Pedrycz, “Application of [40]
genetic algorithms for control design in power systems Pioc. Inst.
Elect. Eng., Generation, Transm. Distrilbol. 145, 1998, pp. 345-354.

[14] T.Morimoto, T. Torii, and Y. Hashimoto, “Optimal control of physiolog- [41]
ical processes of plants in a green plant facto§ghtr. Eng. Practice
vol. 3, no. 4, pp. 505-511, 1995.

[15] D.S.LinandJ.J.Leou, “A genetic algorithm approach to chinese hand{42]
writing normalization,”IEEE Trans. Syst. Man, Cybern, ®ol. 27, pp.
999-1007, Dec. 1997.

[16] C.A. Coello-Coello, “An empirical study of evolutionary techniques for [43]
multiobjective optimization in engineering design,” Ph.D. dissertation,
Dept. Comput. Sci., Tulane Univ., New Orleans, LA, 1996.

[17] —, “A comprehensive survey of evolutionary-based multiobjective [44]
optimization techniques/fht. J. Knowl. Inform. Systvol. 1, no. 3, pp.
269-308, 1999.

[18] C. M. Fonseca and P. J. Fleming, “An overview of evolutionary algo- [45]
rithms in multiobjective optimization,Evol. Comput.vol. 3, no. 1, pp.

1-16, 1995.

(30]

(31]

(32]

555

D. A. Van Veldhuizen and G. B. Lamont, “Multiobjective evolutionary
algorithms: Analyzing the state-of-the arEVol. Comput.vol. 8, no. 2,

pp. 125-147, 2000.

E. Zitzler and L. Thiele, “Multiobjective optimization using evolu-
tionary algorithms—A comparative case study,” Parallel Problem
Solving from Nature VA. E. Eiben, Ed. Amsterdam, , The Nether-
lands: Springer-Verlag, 1998, pp. 292-301.

Using MATLAB Natick, MA: The MathWorks, Inc., 1998, ver. 5.
Genetic and Evolutionary Algorithm Toolbox (GEATbx) for
Use with Matlab, H. Pohlheim. (1998). [Online]. Available:
http://lwww/geatbx.com

C. Houck, J. Joines, and M. Kay. (1995) A genetic algorithm for
function optimization: A Matlab implementation. North Carolina
State Univ., Raleigh. [Online]. Available: http://www.ie.ncsu.edu/mi-
rage/GAToolBox/gaot/

Flex Tool (GA) (1999). [Online]. Available: http://www.flextool.com/
K.C.Tan, T. H. Lee, and E. F. Khor, “Evolutionary algorithms with goal
and priority information for multi-objective optimizationCongr. Evol.
Comput, vol. 1, pp. 106-113, 1999.

J. Horn, N. Nafpliotis, and D. E. Goldberg, “A niched Pareto genetic
algorithm for multiobjective optimizationProc. First IEEE Conf. Evo-
lutionary Computationvol. 1, pp. 82—87, 1994.

N. Srinivas and K. Deb, “Multiobjective optimization using nondomi-
nated sorting in genetic algorithmsg2vol. Comput.vol. 2, no. 3, pp.
221-248, 1994.

MATCOM Natick, MA: The MathWorks, Inc., 1999.

D. E. Goldberg and J. Richardson, “Genetic algorithms with sharing for
multi-modal function optimization,” ifProc. Second Int. Conf. on Ge-
netic AlgorithmsHillsdale, NJ, 1987, pp. 41-49.

Using Simulink Version.3 Natick, MA: The MathWorks, Inc., 1999,
ver. 5. The Math Works, Inc.

K. C. Tan, T. H. Lee, D. Khoo, and E. F. Khor, “Gene domain con-
straint handling technique via genetic structure designCongr. Evol.
Comput, Seoul, Korea, 2001, pp. 693-703.

K.C. Tan, T. H. Lee, E. F. Khor, C. M. Heng, and D. Khoo, “Nonlinear
constraint handling technique via angular transformation,Genetic
and Evolutionary Computation Conf. (GECC(an Francisco, CA,
2001, pp. 665-662.

K. C. Tan, T. H. Lee, and E. F. Khor, “Incrementing multi-objective
evolutionary algorithms: Performance studies and comparisons,” in
First Int. Conf. Evolutionary Multi-Criteria Optimization (EMO'0])
Zirich, Switzerland, 2001, pp. 111-125. Springer-Verlag Lecture Notes
on Computer Science 1993.

K. Deb and D. E. Goldberg, “An investigation on niche and species for-
mation in genetic function optimization,” iRroc. Third Int. Conf. Ge-
netic Algorithms San Mateo, CA, 1989, pp. 42-50.

C. M. Fonseca, “Multiobjective genetic algorithms with application to
control engineering problems,” Ph.D. thesis, Dept. Automat. Contr. Syst.
Eng., Univ. Sheffield, U.K., 1995.

Real-Time Workshop: For Use with SimulinkNatick, Ma: The Math
Works, Inc., 1995.

P. Schroder, B. Green, N. Grum, and P. J. Fleming, “On-line genetic
auto-tuning of mixed K/H... optimal magnetic bearing controllersiit.
Conf. Contro] vol. 2, pp. 1123-1128, 1998.

H. Hanselmann, “Automotive control: From concept to experiment to
product,” presented at the IEEE Int. Conf. Control Application and
System Design, Dearborn, Ml, 1996.

S. Rebeschiel3, “MIRCOS—Microcontroller-based real time control
system toolbox for use with Matlab/Simulink,” ifEEE Int. Conf.
Control Application and System Desidtawaii, 1999, pp. 267-272.

G. Zames, “On the input-output stability of time-varying nonlinear feed-
back systems, parts | and IIEEE Trans. Automat. Contwol. AC-11,

no. 2 & 3, pp. 228-238 and 465-476, 1966.

S. Skogestad, M. Morari, and J. Doyle, “Robust control of ill-condi-
tioned plants: High-purity distillation,JEEE Trans. Automat. Conr.
vol. 33, pp. 672-681, Dec. 1989.

|. Postlethwaite, J. L. Lin, and D. W. Gu, “Robust control of a high purity
distillation column using mu-k iteration,” iRroc. 30th Conf. Decision
and Contro) 1991, pp. 1586-1590.

T. Zhou and H. Kimura, “Controller design of ill-conditioned plant using
robust stability degree assignment,”fmoc. 30th Conf. Decision and
Control, 1991, pp. 1591-1595.

F. Diggelen and K. A. Glover, “Hadamard weighted loop shaping de-
sign procedure,” irProc. 31st Conf. Decision and Contrd992, pp.
2193-2198.

D. J. Limebeer, E. M. Kasenally, and J. D. Perkins, “On the design of
robust two degree of freedom controllergitomatica vol. 29, no. 1,

pp. 157-168, 1993.



556

[46] P. Lundstrom, S. Skogestad, and J. C. Doyle, “Two-degree-of-freedc
controller design for an ill-conditioned distillation process usingyn-
thesis,”IEEE Trans. Control Syst. Technolol. 7, no. 1, pp. 12-21,
1999.

[47] K. X. Guan and K. J. MacCallum, “Adopting a minimum commitment
principle for computer aided geometric design systems Auiitificial
Intelligence in Design'96J. S. Gero and F. Sudweeks, Eds. Norwell
MA, 1996, pp. 623-639.

[48] J. Devore and R. Pecl&tatistics: The Exploration and Analysis of
Data. London, U.K.: Duxbury, 1997.

[49] K. Deb, “Multi-objective genetic algorithms: Problem difficulties and

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 31, NO. 4, AUGUST 2001

Tong H. Lee (M’88) received the B.A. degree (with
First Class Honors) in the Engineering Tripos from
Cambridge University, U.K., in 1980 and the Ph.D.
degree from Yale University, New Haven, CT, in
1987.

He is a Professor in the Department of Electrical
and Computer Engineering, National University of
Singapore. He is also currently Head of the Control
Engineering Section in this Department, and the
Vice-Dean (Research) in the Faculty of Engineering.
His research interests are in the areas of adaptive

construction of test problemEvol. Comput.vol. 7, no. 3, pp. 205-230, systems, knowledge-based control, intelligent mechatronics and computational
1999. intelligence. He has published extensively in these areas, and is currently an
[50] C. M. Fonseca and P. J. Fleming, “On the performance assessmAgssociate Editor forAutomatica Control Engineering Practicqan IFAC
and comparison of stochastic multiobjective optimizers,Parallel  journal); the International Journal of Systems Scien@eylor and Francis,
Problem Solving from Naturéd.-M. Voigt, W. Ebeling, I. Rechenberg, London, U.K.); andVechatronicgOxford, U.K., Pergamon Press).
and H.-P. Schwefel, Eds. Berlin, Germany: Springer, 1996, pp. Dr. Lee was a recipient of the Cambridge University Charles Baker Prize
584-593. in Engineering. He is an Associate Editor for the IEEEANSACTIONS ON
[51] D. A. Van Veldhuizen and G. B. Lamont, “Multiobjective evolutionary SYSTEMS, MAN, AND CYBERNETICS

algorithm test suites,” iProc. Symp. Applied Computin§an Antonio,
TX, 1999, pp. 351-357.

[52] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: A
comparative case study and the strength Pareto apprd&gtt’ Trans.
Evol. Comput.vol. 3, no. 4, pp. 257-271, 1999.

[53] J. D. Schaffer, “Multiple-objective optimization using genetic algo-
rithm,” in Proc. First Int. Conf. Genetic Algorithm4985, pp. 93-100.

[54] T. Murata and H. Ishibuchi, “MOGA: Multi-objective genetic algo-
rithms,” in IEEE Proc. Congr. Evolutionary Computatipwol. 1, 1995,
pp. 289-294.

[55] P. Hajelaand C. Y. Lin, “Genetic search strategies in multicriterion o
timal design,”J. Struct. Optim.vol. 4, pp. 99-107, 1992.

[56] J. M. Chambers, W. S. Cleveland, B. Kleiner, and P. A. Turkef,

Graphical Methods for Data Analysis Pacifica, CA: Wadsworth &
Brooks/Cole, 1983.
[57] P. Czyzak and A. Jaszkiewicz, “Pareto simulated annealingPrac.

Gal, Eds, 1997, pp. 297-307.

[58] M.P.Hansen, “Tabu search in multiobjective optimization: MOTS,” pre-

sented at the Proc. MCDM’'97, Cape Town, South Africa, 1997.

K. C. Tan (S'95-A97-M'99) received the B.Eng.
degree (with First Class Honors) in electronics and

1997, both from the University of Glasgow, U.K.
He was with the Centre for Systems & Control an
the Evolutionary Computing Group, Glasgow, befor
joining the Department of Electrical and Compute
Engineering at the National University of Singapor
as an Assistant Professor in 1997. His research int
ests include computational intelligence, evolutional
multiobjective optimization, intelligent control and

electrical engineering 1994 and the Ph.D. degree in

R5. Khoo received the B.Eng. degree (with First Class Honors) in electronic and
lectrical engineering from University of Strathclyde, Glasgow, U.K., in 1998.
He is currently a Research Engineer in the Department of Electrical and Com-
puter Engineering at the National University of Singapore. His research interests
include evolutionary algorithm implementation and genetic coding of optimiza-

Xllth Int. Conf. Multiple Criteria Decision MakingG. Fandel and T. tion problems.

E. F. Khor was born in Malaysia in 1974. He
received the B.Eng. degree (with First Class Honors)
in electrical engineering from the University of
Technology (UTM), Malaysia, in 1998. He has
been pursuing the Ph.D. degree in the Centre
for Intelligent Control, National University of

engineering designs optimization. He has more than 60 technical publicati
in these areas, and has served as program committee or organizing membe
many international conferences. He is currently an Associate Editor fdnthe ;
stitution of Engineergournal, Singapore. e

Singapore, since 1998. His research interests include
evolutionary multiobjective optimization, artificial
intelligence, stochastic optimization and design
automation in control engineering.




