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Abstract— In this contribution we analyse the significance of
the granularity level (number of labels) in Fuzzy Rule-Based
Classification Systems in the scenario of data-sets with a high
imbalance degree. We refer to imbalanced data-sets when the
class distribution is not uniform, a situation that it is present
in many real application areas.

The aim of this work is to adapt the number of fuzzy labels
for each problem, applying a fine granularity in those variables
which have a higher dispersion of values and a thick granularity
in the variables where an excessive number of labels may result
irrelevant. We compare this methodology with the use of a fixed
number of labels and with the C4.5 decision tree.

I. INTRODUCTION

The problem of imbalanced data-sets occurs when the
number of instances for each class are very different among
them, and usually the less representative class is the one
which has more interest from the point of view of the
learning task. We must stress the importance of imbalanced
data-sets, since such type of data appears in most of the real
domains of classification. Some examples are face recogni-
tion [1], risk management [2] and medical applications [3]
among others.

We try to develop an empirical analysis in the context of
imbalance classification for binary data-sets when the class
imbalance ratio is high. In this study, we will make use
of Fuzzy Rule Based Classification Systems (FRBCSs), a
very useful tool in the ambit of Machine Learning, since
they provide a very interpretable model for the end user [4].
The good behavior of FRBCS when dealing with imbalanced
data-sets has been recently analysed in [5].

An FRBCS presents two main components: the Inference
System and the Knowledge Base (KB). The KB is composed
of the Rule Base (RB) constituted by the collection of
fuzzy rules, and of the Data Base (DB), containing the
membership functions of the fuzzy partitions associated to
the linguistic variables. The composition of the KB of an
FRBCS directly depends on the problem being solved. If
there is no expert information about the problem under
solving, an automatic learning process must be used to derive
the KB from examples.

The number of labels per linguistic variable (granularity) is
an information that has not been considered to be relevant for
the majority of FRBCS learning methods. However, the fuzzy
partition granularity of a linguistic variable can be viewed as

Pedro Villar is with the Department of Software Engineering. University
of Granada. Granada, Spain (email: pvillarc@ugr.es)

Alberto Fernández and Francisco Herrera are with the Department of
Computer Science and Artificial Intelligence. University of Granada. Gra-
nada, Spain (emails: {alberto,herrera}@decsai.ugr.es

a sort of context information with a significative influence
in the FRBCS behavior. Considering a specific label set for
a variable, some labels can result irrelevant, that is, they
can contribute nothing and even can cause confusion. In
other cases, it would be necessary to add new labels to
appropriately differentiate the values of the variable. The
high influence of granularity in fuzzy modeling has analysed
in [6] and some approaches for automatic learning of the
KB in fuzzy modeling and fuzzy classification include the
granularity learning [7], [8], [9], [10]

Our objective is to analyse wether the granularity learning
is important for data-sets with high imbalance. Thus, we
develop a genetic learning process to obtain an FRBCSs.
This method uses a Genetic Algorithm (GA) for granularity
learning and considers a classical FRBCS learning method
to derive the rule base, the Chi et al.’s approach [11]. We
compare the results obtained using an appropriate granularity
level with the ones obtained by Chi et al.’s method, that
requires a predefined number of labels per variable (normally,
the same in all the variables is chosen). We also want
to check the performance of our method compared with a
non-FRBCS classification model, C4.5 [12], a decision tree
algorithm that has been used as a reference in the imbalanced
data-sets field [13], [14], [15].

We have selected a large collection of data-sets with
high imbalance from UCI repository [16] for developing
our empirical analysis. In order to deal with the problem
of imbalanced data-sets we will make use of a preprocessing
technique, the “Synthetic Minority Over-sampling Techni-
que” (SMOTE) [17], to balance the distribution of training
examples in both classes. Furthermore, we will perform a
statistical study using non-parametric tests [18], [19], [20] to
find significant differences among the obtained results.

This contribution is organized as follows. First, Section II
introduces the problem of imbalanced data-sets, describing
its features, how to deal with this problem and the metric
we have employed in this context. Next, in Section III we
will expose the characteristics of our proposal, a GA for
granularity learning. Section IV contains the experimental
study. Finally, in Section V, some conclusions will be pointed
out.

II. IMBALANCED DATA-SETS IN CLASSIFICATION

Learning from imbalanced data is an important topic that
has recently appeared in the Machine Learning community
[21]. The significance of this problem consists in its presence
in most of the real domains of classification, such as face



recognition [1], risk management [2] and medical applica-
tions [3] among others.

We refer to imbalanced data when the class distribution
is not uniform. In this situation, the number of examples
that represents one of the classes of the data-set (usually
the concept of interest) is much lower than that of the other
classes.

Standard classifier algorithms have a bias towards the
majority class, since the rules that predicts the higher number
of examples are positively weighted during the learning
process in favour of the accuracy metric. Consequently, the
instances that belongs to the minority class are misclassified
more often than those belonging to the majority class [22].
Other important issue of this type of problem is the small
disjuncts that can be found in the data-set [23] and the
difficulty of most learning algorithms to detect those regions.
Furthermore, the main handicap on imbalanced data-sets is
the overlapping between the examples of the positive and the
negative class [24]. These facts are depicted in Fig. 1.a and
1.b.

Small Disjuncts
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Fig. 1. Example of the imbalance between classes: a) small disjuncts b)
overlapping between classes

We will use the imbalance ratio (IR) [25] as a threshold
to categorize the different imbalanced scenarios, which is
defined as the ratio of the number of instances of the majority
class and the minority class. We consider that a data-set
presents a high degree of imbalance when its IR is higher
than 9 (less than 10% of positive instances).

In a previous work on this topic [5], we analysed the
cooperation of some preprocessing methods with FRBCSs,
showing a good behaviour for the oversampling methods,
specially in the case of the SMOTE methodology [17].
According to this, we will employ in this contribution the
SMOTE algorithm in order to deal with imbalanced data-
sets.

In short, its main idea is to form new minority class
examples by interpolating between several minority class
examples that lie together. Thus, the overfitting problem is
avoided and causes the decision boundaries for the minority
class to spread further into the majority class space.

Most of proposals for automatic learning of classifiers
use some kind of accuracy measure like the classification
percentage over the example set. However, these measures
can lead to erroneous conclusions working with imbalanced
data-sets since it doesn’t take into account the proportion
of examples for each class. Therefore, in this work we use

the Area Under the Curve (AUC) metric [26], which can be
defined as

AUC =
1 + TPrate − FPrate

2
(1)

where TPrate is the percentage of positive cases correctly
classified as belonging to the positive class and FPrate is
the percentage of negative cases misclassified as belonging
to the positive class.

III. GENETIC ALGORITHM FOR GRANULARITY
LEARNING

In this section, we propose an standard generational GA
for the DB that allows us to learn the number of labels for
each variable (granularity learning). Once the granularity for
each feature are determined, the DB is built. Uniform par-
titions with triangular membership functions are considered
due to its simplicity. Next, we use a quick method that derives
the fuzzy classification rules and then the chromosome can
be evaluated. Fuzzy learning methods are the basis to build
a FRBCS. The algorithm used in this work is the method
proposed in [11], that we have called the Chi et al.’s rule
generation method. A brief description of this algorithm is
presented next:

To generate the fuzzy RB this FRBCSs design method
determines the relationship between the variables of the
problem and establishes an association between the space
of the features and the space of the classes by means of the
following steps:

1) Establishment of the linguistic partitions. Once the
domain of variation of each feature Ai is determined,
the fuzzy partitions are computed.

2) Generation of a fuzzy rule for each example xp =
(xp1, . . . , xpn, Cp). To do this is necessary:
2.1 To compute the matching degree µ(xp) of the

example to the different fuzzy regions using a
conjunction operator (usually modeled with a
minimum or product T-norm).

2.2 To assign the example xp to the fuzzy region with
the greatest membership degree.

2.3 To generate a rule for the example, whose ante-
cedent is determined by the selected fuzzy region
and whose consequent is the label of class of the
example.

2.4 To compute the rule weight.
We must remark that rules with the same antecedent can be

generated during the learning process. If they have the same
class in the consequent we just remove one of the duplicated
rules, but if they have a different class only the rule with the
highest weight is kept in the RB.

We denote our proposal as GA-GL (Genetic Algorithm for
Granularity Learning). The main purpose of GA-GL is to
obtain FRBCSs with good accuracy and reduced complexity
taking the granularity learning as a base. Unfortunately, it
is not easy to achieve these two objectives at the same
time. Normally, FRBCSs with good performance have a high



number of rules, thus presenting a low degree of readability.
On the other hand, the KB design methods sometimes lead
to a certain overfitting to the training data-set used for
the learning process. In order to avoid these problems, our
genetic process try to design a compact and interpretable
KB by penalizing FRBCSs with high granularity average as
it will be explained in Section III-C.

The next four subsections describe the main components
of GA-GL.

A. Encoding the DB

For a classification problem with N variables, each ch-
romosome will be composed of an integer array of length
N to encode the number of linguistic terms for variable
(i.e. the granularity). In this contribution, the possible values
considered are taken from the set {2, . . . , 7}.

If gi is the value that represents the granularity of variable
i, a graphical representation of the chromosome is shown
next:

C = (g1, g2, . . . , gN )

B. Initial Gene Pool

The initial population is composed of three parts. The
generation of the initial gene pool is described next:
• In the first group all the chromosomes have the same

granularity in all its variables. This group is composed
of #val chromosomes, with #val being the cardinality
of the significant term set, in our case #val = 6,
corresponding to the six possibilities for the number of
labels, 2 . . . 7. For each number of labels, one individual
is created.

• The second part is composed of 10 chromosomes and
each one of them has the same granularity in all its
variables. This value is randomly selected.

• The third part is composed for the remaining chromoso-
mes, and all of their components are randomly selected.

C. Evaluating the chromosome

There are three steps that must be done to evaluate each
chromosome:
• Generate the DB using the information contained in

the chromosome. For all the variables a uniform fuzzy
partition with triangular membership functions is built
considering the number of labels of the variable (gi).

• Generate the RB by running the the Chi et al.’s method
using the DB obtained.

• Calculate the value of the evaluation function: The
usual way to proceed in this type of genetic learning
is to choose a kind of accuracy measure over the
training data-set, like the AUC metric. However, as
mentioned before, we will lightly penalize FRBCSs with
a high granularity levels in order to avoid the possible
overfitting, thus improving the generalization capability
of the final FRBCS. To do that, once the RB has been
generated and its AUC over the training set has been
calculated, the fitness function to be minimized is:

FC = ω1 · (1−AUC) + ω2 ·AL

being AL the granularity average of all the variables.
In order to normalize these two values, we calculate ω2

taking two values as a base: the AUC of the FRBCS
obtained with the RB generation method considering
the DB with the maximum number of labels (max g)
per variable and uniform fuzzy partitions:

ω2 = αω2 ·
AUCmax g

max g

with αω2 being a weighting percentage.

D. Genetic operators

The following operators are considered.
1) Selection: We will employ the tournament selection

with k = 2, in which two chromosomes are selected at random
from the population, and the one with highest fitness is taken
to be included in the next population, after the application
of the genetic operators.

2) Crossover: An standard crossover operator in one point
is applied. This operator performs as follows. Let C =
(g1, g2, . . . , gN ), a crossover point p is randomly generated
(the possible values for p are {2, . . . , N}) and the two parents
are crossed at the p-th variable.

3) Mutation: The mutation operator selected performs a
slight change in the selected variable. Once a granularity
level is randomly selected to be muted, a local modification
is developed by changing the number of labels of the variable
to the immediately upper or lower value (the decision is made
at random). When the value to be changed is the lowest (2)
or highest one (7), the only possible change is carried out.

IV. EXPERIMENTAL STUDY

We will study the performance of GA-GL employing a
large collection of imbalanced data-sets with a high im-
balance ratio (IR > 9). Specifically, we have considered
twenty-two data-sets from UCI repository [16] with different
IR, as shown in Table I, where we denote the number of
examples (#Ex.), number of attributes (#Atts.), class name of
each class (minority and majority), class attribute distribution
and IR. This table is in ascendant order according to the
IR. Multi-class data-sets are modified to obtain two-class
imbalanced problems, defining the joint of one or more
classes as positive and the joint of one or more classes as
negative

In order to reduce the effect of imbalance, we will employ
the SMOTE preprocessing method [17] for all our experi-
ments, considering only the 1-nearest neighbour to generate
the synthetic samples, and balancing both classes to the 50%
distribution.

We will analyse the influence of granularity by means of
a comparison between the performance of GA-GL and the
FRBCS models obtained by Chi et al.’s method. Since Chi
et al.’s method need of the existence of a previous definition
for the DB, it is necessary to choose a number of labels of



TABLE I
SUMMARY DESCRIPTION FOR IMBALANCED DATA-SETS.

Data-set #Ex. #Atts. Class (min.; maj.) %Class(min., maj.) IR
Data-sets with High Imbalance (IR higher than 9)

Yeast2vs4 514 8 (cyt; me2) (9.92, 90.08) 9.08
Yeast05679vs4 528 8 (me2; mit,me3,exc,vac,erl) (9.66, 90.34) 9.35
Vowel0 988 13 (hid; remainder) (9.01, 90.99) 10.10
Glass016vs2 192 9 (ve-win-float-proc; build-win-float-proc, (8.89, 91.11) 10.29

build-win-non float-proc,headlamps)
Glass2 214 9 (Ve-win-float-proc; remainder) (8.78, 91.22) 10.39
Ecoli4 336 7 (om; remainder) (6.74, 93.26) 13.84
Yeast1vs7 459 8 (nuc; vac) (6.72, 93.28) 13.87
Shuttle0vs4 1829 9 (Rad Flow; Bypass) (6.72, 93.28) 13.87
Glass4 214 9 (containers; remainder) (6.07, 93.93) 15.47
Page-blocks13vs2 472 10 (graphic; horiz.line,picture) (5.93, 94.07) 15.85
Abalone9vs18 731 8 (18; 9) (5.65, 94.25) 16.68
Glass016vs5 184 9 (tableware; build-win-float-proc, (4.89, 95.11) 19.44

build-win-non float-proc,headlamps)
Shuttle2vs4 129 9 (Fpv Open; Bypass) (4.65, 95.35) 20.5
Yeast1458vs7 693 8 (vac; nuc,me2,me3,pox) (4.33, 95.67) 22.10
Glass5 214 9 (tableware; remainder) (4.20, 95.80) 22.81
Yeast2vs8 482 8 (pox; cyt) (4.15, 95.85) 23.10
Yeast4 1484 8 (me2; remainder) (3.43, 96.57) 28.41
Yeast1289vs7 947 8 (vac; nuc,cyt,pox,erl) (3.17, 96.83) 30.56
Yeast5 1484 8 (me1; remainder) (2.96, 97.04) 32.78
Ecoli0137vs26 281 7 (pp,imL; cp,im,imU,imS) (2.49, 97.51) 39.15
Yeast6 1484 8 (exc; remainder) (2.49, 97.51) 39.15
Abalone19 4174 8 (19; remainder) (0.77, 99.23) 128.87

each fuzzy partition. Because it is not clear what level of
granularity must be employed for the Chi FRBCS, we will
use the usual values employed for Chi et al.’s approach in the
specialized literature (both 3 and 5 labels per variable). In
the latter, we will refer these two possibilities as G3-Chi and
G5-Chi. As mentioned before, we also compare the results
of GA-GL with C4.5, a method of reference in the field of
classification with imbalanced data-sets [14], [15].

The configuration for the FRBCSs approaches, GA-GL
and Chi et al.’s, is presented below. This parameter selection
has been carried out according to the results achieved by
the Chi et al.’s method in our former studies on imbalanced
data-sets [5].
• Conjunction operator to compute the compatibility de-

gree of the example with the antecedent of the rule:
Product T-norm.

• Rule Weight: Penalized Certainty Factor [27].
• Conjunction operator between the compatibility degree

and the rule weight: Product T-norm.
• Fuzzy Reasoning Method: Winning Rule.
To develop the different experiments we consider a 5-

folder cross-validation model, i.e., 5 random partitions of
data with a 20%, and the combination of 4 of them (80%)
as training and the remaining one as test. Since a GA is a
probabilistic method, three runs with different seeds for the
pseudo-random sequence are made for each data partition.
For each data-set we consider the average results of the
five partitions per three executions. Furthermore, Wilcoxon’s
Signed-Ranks Test [28] is used for statistical comparison of
our empirical results.

The specific parameters setting for the GA of GA-GL is
listed below, being N the number of variables:

• Number of evaluations: 500 ·N
• Population Size: 100 individuals
• Crossover Probability Pc: 0.6
• Mutation Probability Pm: 0.1
• Parameters of the evaluation function (Section III-C):

– ω1: 0.7
– αω2 : 0.3

Table II shows the results in performance (using the
AUC metric) for GA-GL and the algorithms employed for
comparison, that is, G3-Chi, G5-Chi (3 and 5 labels per
feature respectively) and C4.5, being AUCTr the AUC over
the training data-set and AUCTst the AUC over the test data-
set.

As it can be observed, the performance obtained by GA-
GL is higher than the one for G3-Chi and G5-Chi, both in
AUCTr and AUCTst, showing the significative influence
of the granularity level in the behaviour of the classifier.
Furthermore, GA-GL present better results than C4.5 in
AUCTst. This situation is represented statistically by means
of a Wilcoxon test (Table III) which shows a higher ranking
in all cases for the GA-GL algorithm. The null hypothesis
is rejected in all cases with a low p-value, which confirms
the good behaviour achieved by the granularity learning in
imbalanced data-sets.

The main objective of this contribution was to find an
appropriate granularity level in each variable. Thus, we
show in Table IV the average of the number of labels per
variable obtained by GA-GL, where we observe significant
differences among the variables of each data-set. This situa-
tion is caused by the advantage of increasing or decreasing
the granularity for a good data representation in the fuzzy
partition.



TABLE II
DETAILED RESULTS TABLE FOR THE CHI FRBCS WITH 3 AND 5 LABELS PER VARIABLE, AND WITH GA-GL. INCLUDING THE RESULTS OF C4.5

Data-set G3-Chi G5-Chi GA-GL C4.5
AUCT r AUCT st AUCT r AUCT st AUCT r AUCT st AUCT r AUCT st

Yeast2vs4 89.68 ± 1.30 87.36 ± 5.16 90.51 ± 1.43 86.85 ± 6.68 93.79 ± 1.13 90.84 ± 3.94 98.14 ± 0.88 85.88 ± 8.78
Yeast05679vs4 82.65 ± 1.38 79.17 ± 5.66 87.97 ± 0.65 76.42 ± 6.17 86.11 ± 2.00 81.78 ± 4.62 95.26 ± 0.94 76.02 ± 9.36
Vowel0 98.57 ± 0.18 98.39 ± 0.60 99.64 ± 0.19 97.89 ± 1.83 99.59 ± 0.18 99.07 ± 0.82 99.67 ± 0.48 94.94 ± 4.95
Glass016vs2 62.71 ± 2.15 54.17 ± 6.82 76.16 ± 2.11 60.02 ± 8.41 85.96 ± 2.92 60.54 ± 14.12 97.16 ± 1.86 60.62 ± 12.66
Glass2 66.54 ± 2.18 55.30 ± 14.48 75.50 ± 1.80 52.06 ± 11.20 83.71 ± 2.27 57.42 ± 11.57 95.71 ± 1.51 54.24 ± 14.01
Ecoli4 94.06 ± 1.49 91.51 ± 7.21 98.14 ± 0.65 92.30 ± 8.13 98.14 ± 0.51 90.90 ± 6.18 97.69 ± 1.96 83.10 ± 9.90
Yeast1vs7 82.00 ± 2.34 80.63 ± 6.61 84.08 ± 2.14 65.24 ± 10.47 82.43 ± 3.25 75.79 ± 8.67 93.51 ± 2.20 70.03 ± 1.46
Shuttle0vs4 100.00 ± 0.00 99.12 ± 1.14 100.00 ± 0.00 98.72 ± 1.17 100.00 ± 0.00 99.42 ± 0.93 99.99 ± 0.02 99.97 ± 0.07
Glass4 95.27 ± 0.91 85.70 ± 12.92 98.88 ± 0.56 82.85 ± 10.20 98.71 ± 0.54 87.92 ± 10.59 98.44 ± 2.29 85.08 ± 9.35
Page-Blocks13vs4 93.68 ± 2.41 92.05 ± 4.73 98.71 ± 0.23 93.41 ± 8.53 99.59 ± 0.17 99.10 ± 0.76 99.75 ± 0.21 99.55 ± 0.47
Abalone9vs18 70.23 ± 2.25 64.70 ± 10.73 71.22 ± 3.09 67.44 ± 9.88 82.38 ± 2.82 73.68 ± 6.17 95.31 ± 4.44 62.15 ± 4.96
Glass016vs5 90.57 ± 4.12 79.71 ± 23.29 98.43 ± 0.41 84.86 ± 21.91 98.21 ± 0.62 85.43 ± 20.83 99.21 ± 0.47 81.29 ± 24.44
Shuttle2vs4 95.00 ± 4.71 90.78 ± 7.80 100.00 ± 0.00 88.38 ± 21.60 99.73 ± 0.38 94.25 ± 12.48 99.90 ± 0.23 99.17 ± 1.86
Yeast1458vs7 71.25 ± 3.52 64.65 ± 5.92 81.83 ± 1.70 59.32 ± 7.68 85.69 ± 2.23 65.47 ± 13.02 91.58 ± 2.78 53.67 ± 2.09
Glass5 94.33 ± 1.23 83.17 ± 11.12 98.78 ± 0.48 74.63 ± 20.52 98.03 ± 0.86 79.92 ± 19.20 99.76 ± 0.40 88.29 ± 13.31
Yeast2vs8 78.61 ± 2.61 77.28 ± 10.36 83.46 ± 1.68 80.66 ± 6.94 84.57 ± 1.22 79.32 ± 7.60 91.25 ± 1.84 80.66 ± 11.22
Yeast4 83.58 ± 0.93 83.15 ± 2.96 87.96 ± 1.54 83.25 ± 2.39 86.90 ± 1.06 80.66 ± 2.12 91.01 ± 2.64 70.04 ± 5.65
Yeast1289vs7 74.70 ± 1.79 77.12 ± 6.50 80.03 ± 2.33 70.27 ± 3.75 80.27 ± 2.52 70.98 ± 3.98 94.65 ± 1.13 68.32 ± 6.16
Yeast5 94.68 ± 1.28 93.58 ± 5.11 95.43 ± 0.54 93.72 ± 2.72 96.48 ± 0.20 94.73 ± 3.31 97.77 ± 1.45 92.33 ± 4.72
Ecoli0137vs26 93.96 ± 5.63 81.90 ± 20.49 96.85 ± 1.59 68.80 ± 22.87 97.69 ± 1.23 81.36 ± 18.58 96.78 ± 3.28 81.36 ± 21.68
Yeast6 88.48 ± 2.38 88.09 ± 9.82 89.60 ± 2.00 88.20 ± 8.55 91.09 ± 1.24 86.06 ± 10.54 92.42 ± 3.54 82.80 ± 12.77
Abalone19 71.44 ± 1.82 63.94 ± 9.32 77.19 ± 2.49 67.48 ± 10.77 80.28 ± 3.44 69.03 ± 10.65 85.44 ± 2.49 52.02 ± 4.41
Mean 85.09 ± 2.12 80.52 ± 8.58 89.56 ± 1.25 78.76 ± 9.65 91.33 ± 1.40 81.98 ± 8.67 95.93 ± 1.68 78.25 ± 8.38

TABLE IV
MEAN OF NUMBER OF LABELS PER VARIABLE LEARNED BY GA-GL

Variables
Data-set 1 2 3 4 5 6 7 8 9 10 11 12 13
Yeast2vs4 2.7 2.8 4.6 2.7 2.1 2.3 3.0 2.3 - - - - -
Yeast05679vs4 4.1 2.3 4.5 2.9 2.1 2.3 2.9 2.3 - - - - -
Vowel0 2.0 2.1 2.1 3.2 3.7 3.3 3.1 2.2 3.3 3.2 3.0 3.3 3.3
Glass016vs2 5.9 3.4 2.3 5.9 5.2 3.7 2.5 2.1 4.3 - - - -
Glass2 3.7 2.7 2.7 7.0 5.9 2.5 2.6 2.1 5.5 - - - -
Ecoli4 2.3 2.4 2.3 2.1 4.9 2.3 2.6 - - - - - -
Yeast1vs7 2.7 3.1 3.0 3.1 2.1 3.0 3.5 - - - - - -
Shuttle0vs4 3.3 2.3 2.5 2.2 2.7 2.5 2.8 3.1 2.8 - - - -
Glass4 2.6 3.5 2.7 4.4 2.3 2.7 2.5 2.3 2.8 - - - -
Page-Blocks13vs4 5.6 4.0 2.3 2.2 3.3 2.1 2.1 2.7 2.3 2.3 - - -
Abalone9-18 2.8 3.0 2.7 2.2 3.3 5.9 2.3 6.5 - - - - -
Glass016vs5 4.0 2.2 3.1 2.3 2.9 2.5 2.4 3.2 2.9 - - - -
Shuttle2vs4 4.5 2.2 3.5 2.2 2.6 2.3 2.4 2.4 2.1 - - - -
Yeast1289vs7 3.9 3.1 3.9 2.9 2.1 2.1 3.8 3.9 - - - - -
Glass5 3.6 3.3 3.2 2.0 3.5 2.4 2.0 2.7 3.2 - - - -
Yeast2vs8 3.5 2.5 3.5 3.5 2.2 2.1 3.0 2.4 - - - - -
Yeast4 3.1 3.1 3.3 3.2 2.1 2.1 2.5 2.8 - - - - -
Yeast1458vs7 5.2 5.8 5.9 4.9 2.0 2.0 3.1 3.7 - - - - -
Yeast5 3.5 2.7 3.6 2.3 2.3 2.1 3.1 2.7 - - - - -
Ecoli0137vs26 3.4 3.1 2.6 2.2 2.4 2.5 3.4 - - - - - -
Yeast6 3.0 2.0 3.4 2.2 2.3 2.3 2.5 4.0 - - - - -
Abalone19 2.3 2.3 2.5 2.2 2.7 5.7 3.0 6.0 - - - - -

TABLE III
WILCOXON TEST TO COMPARE GA-GL WITH CHI ET AL.’S APPROACH

AND C4.5 ACCORDING TO THEIR PERFORMANCE. R+ CORRESPONDS TO

GA-GL AND R− TO CHI OR C4.5

Comparison R+ R− p-value
GA-GL vs. G3-Chi 181.0 72.0 0.077
GA-GL vs. G5-Chi 217.0 36.0 0.003

GA-GL vs. C4.5 207.0 46.0 0.009

Finally, regarding the complexity of the models obtained
by GA-GL (considering it as the number of rules), Table
V shows the average number of rules for the FRBCSs
algorithms considered in this study. The results from this

table shows that GA-GL obtains good results with a bit of
increase in the number of rules comparing with the most
simple models of Chi et al.’s approach (G3-Chi) and with
a great decrease respect to G5-Chi. On the other hand,
these results show again the significance of the granularity
learning, because GA-GL obtains better results in AUCTr

than G5-Chi (see Table II) with approximately a half number
of rules.

TABLE V
RESULTS IN THE MEAN NUMBER OF RULES FOR GA-GL AND CHI ET

AL.’S METHOD WITH 3 AND 5 LABELS PER VARIABLE

GA-GL G3-Chi G5-Chi
Mean of number of rules 82.36 68.67 160.20



V. CONCLUSIONS

This contribution has analysed the influence of the gra-
nularity level in FRBCS for classification with imbalanced
data-sets with a high imbalance ratio. A GA is used for
granularity learning, which is combined with an efficient
fuzzy classification rule generation method to obtain the
complete Knowledge Base of the FRBCS.

The results of GA-GL show the great influence of the
granularity in the behaviour of FRBCS for imbalanced data-
sets, since GA-GL gets an significant improvement in the
classification results compared with Chi et al.’s approach only
by selecting an adequate number of labels per variable.

Moreover, the obtained results have shown the good per-
formance achieved by GA-GL in contrast with an algorithm
of reference in the area of imbalanced data-sets, the C4.5
decision tree.

Finally, we must remark one advantage of our proposal, the
GA can be combined with any rule generation method. We
have used a simple algorithm to emphasize the importance
of granularity learning but another more accurate one can be
used.
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[25] A. Orriols-Puig and E. Bernadó-Mansilla. Evolutionary rule-based
systems for imbalanced datasets. Soft Computing, 13(3):213–225,
2009.

[26] J. Huang and C. X. Ling. Using AUC and accuracy in evaluating
learning algorithms. IEEE Transactions on Knowledge and Data
Engineering, 17(3):299–310, 2005.

[27] H. Ishibuchi and T. Yamamoto. Rule Weight Specification in Fuzzy
Rule-Based Classification Systems. IEEE Transactions on Fuzzy
Systems, 13:428–435, 2005.

[28] D. Sheskin. Handbook of parametric and nonparametric statistical
procedures. Chapman & Hall/CRC, second edition, 2006.


