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Association rule learning is a data mining task that tries to discover interesting re-
lations between variables in large databases. A review of association rule learning
is presented that focuses on the use of evolutionary algorithms not only applied to
Boolean variables but also to categorical and quantitative ones. The use of fuzzy
rules in the evolutionary algorithms for association rule learning is also described.
Finally, the main applications of association rule evolutionary learning covered
by the specialized bibliography are reviewed. C© 2011 John Wiley & Sons, Inc. WIREs Data
Mining Knowl Discov 2011 00 1–19 DOI: 10.1002/widm.18

INTRODUCTION

A ssociation rules (ARs) are a widely used for-
malism in data mining.1,2 The idea is to use if-

then rules to discover interesting relations between
variables in large databases. In their origin, ARs
were strongly associated with market basket analy-
sis, because they were learnt from transactional data
(e.g., point-of-sale data), and the information codi-
fied by the rules, e.g., if buy(bread) and buy(milk)
then buy(butter) (in short, bread ∧ milk ⇒ butter),
can later be used by the marketing department as
the basis for decisions involving promotions, product
placement, etc.3 Nowadays, their use has been ex-
tended to many different fields, including electronic
commerce,4 web usage mining,5 intrusion detection,6

bioinformatics,7 etc.
Given a set of items, objects, or binary vari-

ables I = {I1, I2, . . . , In}, an AR is formallya defined
by Agrawal et al.1 as an implication X ⇒ Y where
X, Y ⊆ I and X ∩ Y = ∅. Both the antecedent (X) and
the consequent (Y) are interpreted as a conjunction of
the variables they contain, e.g., X = I1 ∧ I2 ∧ Ik. AR
learning is usually stated as the problem of learning
such types of rules from a dataset D = {t1, t2, . . . , td}
of transactions [Table 1, part (a)].
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The problem is that, from the previous defi-
nition, the number of possible ARs, given a num-
ber of products or items d, is too large, #rules(d) =
3d − 2d+1 + 1, to be precise, for example:

#i tems #rules
5 180
10 57002
100 5.1537752 × 1047

It is, therefore, compulsory to filter them in some
way before trying to analyze their usefulness. Thus,
Piatetsky-Shapiro2 introduced the concept of strong
rules based on the use of measures of interestingness
and Agrawal et al.1 introduced the AIS algorithm to
discover significant ARs from data. To do this, the
following two measures are used:

• Support. The support of an itemset X,
supp(X), is defined as the number of trans-
actions (instances) containing it, that is, the
prior probability P(X) of X estimated from
D. The support of a rule X ⇒ Y is computed
as supp(X ⇒ Y) = supp(X ∧ Y).

• Confidence. The confidence of a rule X ⇒ Y
is computed as supp(X∧Y)

supp(X) , which can be inter-
preted as the conditional probability P(Y|X).

Then, significant rules are those surpassing a mini-
mum threshold for both support and confidence (mins

and minc, respectively). Other measures such as lift,
conviction, or coverage have also been used to iden-
tify significant ARs (e.g., see Brin et al.8).
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TABLE 1 Different Representations of the Data Set: (a) transactional, (b) transactional (inverted by

item), and (c) tabular

Tid items A B C D E Tid A B C D E . . . F G

1 A, D 1 2 3 1 2 1 1 0 0 1 0 f1 0.72
2 A, B, E 2 3 5 3 5 2 1 1 0 0 1 f2 −2.7
3 B, C, D 4 4 3 0 1 1 1 0 f1 3.54
4 A, B 4 1 1 0 0 0 f3 4.92
5 C, E 5 0 0 1 0 1 f2 1.12

(a) (b) (c)

AIS only learns ARs in the form X ⇒ Ik, but
later, Agrawal and Srikant9 introduced the APRIORI

algorithm, which searches for general ARs (X ⇒ Y).
The main and most computationally expensive step
in AR rule learning is the generation of frequent item-
sets, that is, itemsets having support greater than
mins . The APRIORI algorithm is the most cited (and
probably the most used) in the field of AR learning,
as it introduced the apriori principle, also known as
the anti-monotone property of support: ‘if a pattern
of length k is not frequent in the dataset, then none
of its super-patterns of length k + 1 can be frequent’.
The use of this principle allows the APRIORI algorithm
to prune the space of itemsets in such a way that can-
didate frequent patterns of length k + 1 are obtained
‘only’ by using previously found frequent patterns of
length k.

Even with the reduction in the space of candi-
date itemsets achieved by APRIORI, this step is still
the bottleneck in the process of discovering ARs. No-
tice that APRIORI needs to scan the dataset k times,
k being the length of the largest frequent itemset
found. Thus, some other approaches have been pro-
posed, such as ECLAT or FP-GROWTH. ECLAT,10 pro-
posed by Zaki, uses a vertical data (inverted) layout
[Table 1, part (b)] and a depth-first strategy (in con-
trast with APRIORI that uses a breadth-first one).
ECLAT is very efficient for large itemsets but less effi-
cient for small ones. Following a different idea, Han
et al.11 presented FP-GROWTH, which tries to over-
come the k scans needed by APRIORI by mining the
frequent patterns without candidate generation. FP-
GROWTH uses only two passes over the dataset in or-
der to build a frequent-pattern tree, which is later
used to discover the frequent itemsets. Many other
improvements (memory, parallelism, etc.) have been
made for the problem of AR learning, but they are
beyond the scope of this paper (see, e.g., Zhang and
He12 or Tan et al.13).

In this study, we review recent literature about
AR learning that emphasizes the use of non-classical

algorithms. By setting the problem as of a combina-
torial optimization we focus on the use of evolution-
ary algorithms and also on the case of non-Boolean
variables, that is, categorical and quantitative ones.
Thus, in most cases, we consider the dataset in a tab-
ular form instead of a transactional one [see Table 1,
part (c)].

The rest of the paper is organized as follows:
first, we give a brief introduction to the problem of
learning rules-based systems by using evolutionary al-
gorithms (Section Learning Rule-Based Systems by
Evolutionary Algorithms). Then, Sections Learning
Boolean/Categorical Association Rules and Learn-
ing Quantitative/Numerical Association Rules are de-
voted to reviewing the genetic algorithm (GA)-based
approaches available in the literature for learning
Boolean/categorical ARs and quantitative ARs, re-
spectively. Section Learning Fuzzy Association Rules
describes a different way of dealing with numerical
attributes that is based on fuzzy set theory. In Section
Learning by Following a Multiobjective Approach,
we describe the importance of using a multi-objective
approach when learning ARs. Finally, the last three
sections cover some approaches based on metaheuris-
tics that are different from GAs (Section Swarm-Based
Approaches for Learning ARs), real applications
(Section Applications) and our conclusions (Section
Conclusions).

LEARNING RULE-BASED SYSTEMS BY
EVOLUTIONARY ALGORITHMS

Metaheuristics14 can be seen as general algorithms
that can be applied to solve different combinatorial
(or numerical) optimization problems by carrying out
few modifications in order to adapt them to a spe-
cific problem. Depending on the way the search is
carried out, we can distinguish between local and
global metaheuristics. Evolutionary algorithms (EAs)
are perhaps the most-used family in the case of global
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optimization.15 EAs are population-based algorithms,
in many cases bio-inspired, that solve the problem
by simulating an evolutive process that tries to im-
prove a population (of solutions) by evolving them
through generations. The general scheme in EAs is as
follows:

(1) Initialize population (random generation of
potential solutions)

(2) Evaluate individuals in population

(3) Repeat until a stopping criterion is met
(a) Select individuals from current pop-

ulation
(b) Recombine them in order to obtain

new individuals (offsprings)
(c) Evaluate new individuals
(d) Replace some or all the individu-

als of the current population by off-
springs

(4) Return the best individual seen so far

Depending on the way Step 3(b) is designed,
we get different EAs. Without any doubt, GAs16

are the most famous EAs. In GAs, Step 3(b) is de-
signed to use genetic operators such as crossover and
mutation, which simulate the biological process of
DNA recombination. A different philosophy is fol-
lowed in the case of estimation of distribution al-
gorithms (EDAs),17 a recent family of EAs in which
Step 3(b) is designed to learn (and sample) a proba-
bility distribution that codifies the selected individuals
(Step 3(a)).

Although metaheuristics in general, and EAs in
particular, were not originally designed for learning,
their success when solving other (NP-hard) combi-
natorial/numerical optimization problems has led to
their extensive use in solving data mining problems
in the last few years. In fact, the use of these types
of algorithms in data-mining-based problems is a hot
research topic nowadays.18, 19

Learning rule-based system, mainly for super-
vised problems such as classification and regression,
has perhaps been the data mining task for which EAs
have most often been applied. This is also the topic
of interest in this study, and so, we provide a concise
introduction here. Detailed studies can be found in
Fernández et al.20 and Freitas.19

Approaching the problem of learning rule-based
systems by using EAs (or metaheuristics in general)
requires the specification or design of different com-
ponents. Here, we pay special attention to individual
representation, fitness evaluation, and operators.

(a)
A1 A2 · · · n Class
1 0 · · · 2 i

(A1 = a1
1) ∧ · · · ∧ (An = a2

n) ⇒ (Class = ci)

(b) A1 A2 a3
2 � � � Al ≤ 7.23 ci

(A1 = 1) ∧ (A2 = a3
2) ∧ · · · ∧ (Al ≤ 7·23) ⇒ (Class = ci)

(c) j I1 · · · Ij Ij+1 · · · Ij+k

I1 ∧ · · · ∧ Ij ⇒ Ij+1 ∧ · · · ∧ Ij+k

(d) j A1 a2
1 · · · Aj > −1·5 Aj+1 ≤ 2·3 · · · Aj+k 2

(A1 = a2
1) ∧ (Aj > −1·5) ⇒ (Aj+1 ≤ 2·3) ∧ · · · ∧ (Aj+k = a2

j+k)

A

FIGURE 1 | Some examples of individual representation
(chromosome = rule) and their corresponding decodified rules.

Individual Representation
As stated above, an individual is a potential solu-
tion to the problem we are solving. From this point
of view, in our problem, a solution is a set of un-
ordered ARs, and consequently, an individual can
represent a set of rules. This approach is known in
GA learning systems as the chromosome = Base of
Rules (BoR) or Pittsburgh approach21 and represents
a direct extension of GAs to supervised learning prob-
lems. There is, however, a different way to deal with
this problem that considers that all the population is
in fact the solution, and so, each individual or chro-
mosome represents a single rule. This approach to the
problem, known as (chromosome = rule) or learn-
ing classifier systems, has given rise to different ap-
proaches: Michigan,22 iterative rule-learning,23 and
genetic cooperative-competitive learning.24

Following the typical constraints of defining the
antecedent (and the consequent) as a conjunction
of single clauses, represented here by attribute-value
pairs, Figure 1(a) shows a standard individual repre-
sentation for a classification rule. In this case, each
individual is represented by a vector of length n + 1
where the first n positions contain the value taken by
the i − th attribute in the antecedent, and the last one
contains the value for the class variable (consequent).
In the chromosome = BoR approach, each individual
would be a concatenation of this type of vector. How-
ever, if n is large, the previous representation is not
useful; in this case, the representation in Figure 1(b)
can be used. Now, the vector can have variable length,
and if we read the chromosome from left to right, we
can find a number codifying the referred variable fol-
lowed by:

• Nothing more if such a variable is binary be-
cause its mere presence denotes the true state
(or 1).

• A number representing the state taken by the
variable in the case that the referred variable
is discrete/nominal.
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• A number codifying the condition (≤, <, . . .)
and another real number with the value to be
used as threshold.

Finally, the last variable will contain the number
codifying the class label for this rule. In the figure, for
reasons of clarity, instead of showing only numbers,
we also show the attribute, condition, and state.

Parts (c) and (d) in Figure 1 show the adapta-
tion of this representation for supervised learning to
unsupervised learning, as is the case of ARs. Thus,
part (c) shows the case of Boolean ARs, where the
the first value in the vector represents the cut-point
between the antecedent and the consequent. Part (d)
shows a general case with different types of variables
(nominal, quantitative, etc.).

Fitness Evaluation
In the case of supervised learning, the fitness is mea-
sured by computing some precision value over the
training (or a different validation) dataset, for exam-
ple, accuracy for classification and mean square er-
ror for regression. When moving to ARs, instead of
these measures, we can use, for example, the averaged
support and confidence of the discovered rules with
respect to the training dataset. However, other mea-
sures should also be taken into account when evalu-
ating our solutions, such as:

• the compactness of the discovered rule set:
number of rules and their complexity (length),
and

• how general our rule set is, that is, the percent-
age of instances in our training set covered by
the discovered rules.

Thus, the fitness function could have the follow-
ing appearance:

fitness(sol) = w1 × accuracy(sol) + w2

× simplicity(sol) + w3 × coverage(sol),

with w1, w2, and w3 being real numbers that represent
the weight given to each component, and where sol is
the rule set (solution) being evaluated.

However, different evaluation mechanisms are
possible, as we will detail in Section Learning by Fol-
lowing a Multiobjective Approach.

Operators and the Genetic Model
Once the representation and fitness function are de-
fined, conventional/typical evolutionary schemes and
operators can be used. However, because of the com-
plexity of the problem under study, specific genetic

operators are usually considered. In the next sections,
we will comment on some of these operators and
schemes when reviewing main/recent approaches for
association rule learning with EAs. For details, the
interested reader is referred to the literature cited.

LEARNING BOOLEAN/CATEGORICAL
ASSOCIATION RULES

This section and the next one are devoted to reviewing
the main contributions of evolutionary algorithms to
the problem of mining ARs from data. Here, we focus
on classical ARs, that is, considering only Boolean
attributes, and also their extension to categorical or
nominal attributes. We leave the case of quantitative
or numerical attributes for the next section.

In evolutionary AR learning algorithms, we can
distinguish two clearly differentiated approaches: (1)
the evolutionary algorithm is used to evolve item-
sets and then rules are extracted at a post-processing
stage, or (2) the evolutionary algorithm directly tries
to evolve ARs, and therefore, they usually identify
highly qualified ARs. In the second case, in all the lit-
erature reviewed in this paper relating to this section,
a chromosome = rule-like approach is followed, that
is, each individual in the population codifies a single
rule. GAs are used to guide the search process.

The main advantages of using GAs are as fol-
lows:

• In general, the use of a minimum support
(and/or confidence) threshold for itemsets and
rules can be avoided if a multi-objective ap-
proach is used, because in this case, a more
complex way of assessing the fitness of an in-
dividual can be considered, as can be seen in
Section Learning by Following a Multiobjec-
tive Approach.

• A global optimization/search is carried out
that allows the exploration of the cooperation
between the rules included in a population.

• GAs are very flexible algorithms that can
deal with many different AR learning prob-
lems, for example, dynamic databases, data
streams, distributed learning approaches,
multi-objective approaches, negative ARs,
etc.

However, the use of GAs also has some disad-
vantages that are listed below:

• Mechanisms for diversity preservation should
be incorporated because otherwise the algo-
rithm will converge to a few high quality ARs.
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• A combination of different quality measures
should be used to evaluate the fitness, because
if only support and/or confidence are consid-
ered, then the algorithms will likely fall into
local optima.

Once we have described the general setting, let
us review the different approaches found in the lit-
erature. We focus the study on the structure of the
GA used, mainly representation and genetic opera-
tors. We also pay attention both to the GA model
used and to the way the initial population is created
when the standard approach is not followed.

Representation
Approaches based on evolving itemsets such as
DMARG27 and DDMARG28 use binary representation,
in which each allele in the chromosome accounts for
a given item. It is apparent how to extend this repre-
sentation to more than two values per attribute, just
representing a concrete value instead of only 0 or 1 in
each allele.

If we move on to the case of evolving rules, two
different representations can be found in the litera-
ture. First, in the ARMGA algorithm,29 a length k is set
for the rules, then, a chromosome of length k + 1 is
used. Positions 1 to k take as value the index of items,
while position/gene 0 contains the cut point between
the antecedent and the consequent of the rule. See Fig-
ure 1(b) for an example. Notice that this Boolean rep-
resentation can be extended to the categorical (non-
binary) case by using the scheme commented in Sec-
tion Learning Rule-Based Systems by Evolutionary
Algorithms and illustrated in Figure 1(d).

A different choice is considered by Dehuri
et al.25 and Wakabi-Waiswa and Baryamureeba,26 in
which all the items/attributes are considered in the
chromosome. Thus, if we have n attributes, the chro-
mosome will have 2n alleles, the first two for the first
attribute, third and fourth for the second attribute,
and so on. Then, each pair of alleles must be decoded
as: (00), the referred attribute is included in the rule
in the antecedent; (11) the referred attribute is in-
cluded in the consequent of the rule; (10) and (01) if
the referred attribute is not included in the rule. See
Figure 2 for an example. One of the advantages of
this representation is that we can have rules of differ-

(01) (11) (00) (00) (00) (11) (01)
I1 I2 I3 I4 I5 I6 I7

I3 ∧ I4 ∧ I5 ⇒ I2 ∧ I6

(01) (11) (00) (00) (00) (11) (01)
I1 I2 I3 I4 I5 I6 I7

I3 ∧ I4 ∧ I5 ⇒ I2 ∧ I6

FIGURE 2 | Individual representation (chromosome = rule) used
in.25, 26

ent lengths, while the main disadvantage is the length
of the chromosome. In order to deal with categorical
(non-binary) attributes, the same idea can be used, but
using, for example, the first allele to indicate the value
taken by the attribute (0 means not included) and the
second allele to indicate antecedent (0) or consequent
(1).

Genetic Operators
Because of the use of standard binary and n-ary codi-
fications, standard crossover and the mutation opera-
tors are used, for example, two-points crossover and
swapping for mutation.

Initial Population
In general, it is completely generated at random, but
in some cases, as in the papers by Shenoy et al.,27, 28 a
special initial population is used. In these algorithms,
all the itemsets of size 1 passing some condition (e.g.,
mins) are included in the initial population.

Fitness
A traditional approach based on measures of confi-
dence and support is normally used. However, combi-
nations of other measures such as comprehensibility,
diversity, J-measure, perplexity, and coverage are also
commonly used. For example, in Dehuri et al.,25 con-
fidence plus comprehensibility plus interestingness is
defined as the function to be optimized (maximized in
this case). In Wakabi-Waiswa and Baryamureeba,26

the three previous measures are also considered to-
gether with J-measure and perplexity, but instead of a
simple addition, a linear combination is used. Finally,
in ARMGA,29 the function f (A ⇒ B) = supp(AB) −
supp(A) × supp(B)/supp(A) × (1 − supp(B) is de-
fined as the fitness function for individuals.

Models
As most approaches use a compound fitness function,
for example, a linear combination or aggregation of
measures, traditional GAs can be used to perform the
search. However, the multiobjective approach (e.g.,
MOGA,30 see, Section Learning by Following a Multi-
objective Approach together with a specific scheme to
distribute the algorithm) has also been used to evolve
the ARs Pareto-front in a distributed cluster of work-
stations. More information about AR learning fol-
lowing a multi-objective approach can be found in
Section Learning by Following a Multiobjective Ap-
proach. Another important aspect is that, to a greater
or lesser extent, all these approaches use some mech-
anism to preserve diversity, a common (and inherent)
way of working in multi-objective models. Finally,
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(a) A1 l1 u1 A2 l2 u2 · · · An lu un
Itemset A1 ∈ [l1,u1] ∧A2 ∈ [l2,u2] ∧ · · · ∧An ∈ [ln,un]

(b)
A1 A2 A3 · · · An

C1 ∈ {0,1,∗} l1 u1 C2 l2 u2 C3 l3 u3 · · · Cn ln un
Rule

FIGURE 3 | Individual representation (chromosome = rule or itemset).

elitism and tournament are widely used for replace-
ment and selection.

LEARNING QUANTITATIVE/
NUMERICAL ASSOCIATION RULES

Early attempts to deal with numerical variables in
ARs were based on discretization.31 Thus, the domain
of the numerical variable is partitioned into k intervals
(e.g., using equal width or equal frequency), and as
a consequence, a categorical variable with k values
is obtained. Of course, the main advantage of this
approach is that once we obtain nominal variables,
then algorithms described in the previous section can
be applied. Nevertheless, discretization for numerical
variables in ARs has two important drawbacks:

• The size of the intervals: Larger intervals will
receive greater support, so if support is our
guide, we should consider a single interval
because it will receive all the support, but of
course the resulting item (and rules) is mean-
ingless. Some solutions to this problem are
to limit the intervals’ width and to use some
penalty in order to negatively rate wider in-
tervals.

• Sharp boundary. Item values close to inter-
vals’ boundaries are overemphasized.

An alternative approach to handle numerical
variables is to model the variable by using a statisti-
cal distribution, as Aumann and Lindell did in,32 and
then to use its parameters (mean, variance, etc.) in
the rule definition. However, this approach does not
solve the discretization problem because, in general,
intervals are used in the antecedent and parameters
in the consequent. Another example of this approach
is the work by Webb,33 in which interestingness and
impact measures are used in the rule consequent.

In this section, we focus on evolutionary ap-
proaches to deal with numerical variables in ARs,
known as quantitative ARs. We highlight that one
of the advantages of using GAs is their flexible rep-

resentation that allows the mixing of different kinds
of attributes: numerical and nominal. As we will see,
perhaps the more important advantage is that now
the variable is not preprocessed, but, on the contrary,
the interval for each numerical variable used in a rule
is defined by taking that rule into account.

This section shares many aspects with the previ-
ous one, such as the fact of looking for frequent item-
sets or directly from ARs. We also try to maintain a
similar structure, describing the main components of
an evolutionary algorithm for the different proposals
found in the literature.

Representation
There are several alternatives for representing contin-
uous attributes inside a population. One of the first at-
tempts is the algorithm GAR34 (see Figure 3(a)), which
uses a representation of an itemset. To do this, each
attribute is codified through a set of three consec-
utive genes, the first one being the index of the vari-
able, and then an interval is represented by storing the
lower and upper bound of the interval. Furthermore, a
variable-length representation for each itemset is used
in this case. Kwasnicka and Switalski have proposed
an extension named EGAR35 that uses continuous and
nominal variables simultaneously.

Another of the most frequently mentioned algo-
rithms in the literature is QUANTMINER.36 In this algo-
rithm, the individuals represent rules directly. Quan-
titative variables are also defined by the limits (upper
and lower bounds) of an interval for each variable,
and the algorithm basically evolves to search for the
best set of intervals for the numerical attributes.

The same authors of GAR presented the GENAR

algorithm,37 which directly represents ARs rather
than itemsets. Each individual represents an associ-
ation rule, as QuantMiner does, but using a pre-fixed
size of rules. Algorithm CSAR, which uses a direct
representation of rules, is presented in.38 The partic-
ularity of this algorithm, based on LCS, XCS, and
UCS systems,39 is that it is focused on the use of data
streams rather than static transactional data. It uses
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ARs with only one variable in the consequent. CSAR

can also deal with both nominal and real-valued at-
tributes apart from a pre-specified parameter with the
maximal range of intervals for continuous variables.

MODENAR,40 proposed by Alatas et al., uses a
representation of rules with three components for
each attribute, indicating whether the first attribute
is selected or not and if so, whether it is in the con-
sequent or antecedent. The other two components
are the lower and upper limits of ranges, respectively
(see Figure 3 (b)). The same representation is used
in Ref 41, but a new component is added to indicate
whether the corresponding interval represents the val-
ues inside the range (e.g., “A in [a1,a2]” is added to
the rule) or values outside of the range (e.g., “A in
[a1,a2]” is added to the rule).

Genetic Operators
In general, classical genetic operators are the most
used. However, there are special cases depending
on the representation used by the algorithm. For
example, in GAR,34 variable-length individuals are
used, and so, specific genetic operators are defined.
In crossover, once two parents are selected, two off-
springs of the same length, and each of their parents,
are generated, and the values for each gene are ran-
domly selected from a parent, which is a special case
of uniform crossover. The mutation is simply to swap
the value of some of the intervals present in the in-
dividual by randomly shifting the interval (right or
left), or to increase or decrease their size. Finally, a
process to adjust the chosen individual is carried out.
This consists in decreasing the size of its intervals
until the number of covered records is smaller than
the records covered by the original itemset. On the
other hand, QUANTMINER36 uses a uniform crossover
choosing the intervals defined by the parent selected
or alternatively mixes via addition or subtraction of
limit bounds of intervals. A similar crossover is de-
fined in CSAR38 together with three types of mutation
operators: introduction/removal of antecedent vari-
ables, swapping values of variables, and changing the
consequent variable.

In Alatas and Akin,41 an informed mutation
based on the algorithm UNIFORM POPULATION42 is
used and the probability of mutation is increased as
the chromosomes become similar to each other. The
crossover operation is also based on the UNIFORM POP-
ULATION algorithm and the arithmetic mean of the up-
per and lower limits from the chromosomes selected.
GENAR uses one-point crossover as the general strat-
egy, in addition to the adaptation of the operators
also used in GAR.

In the case of MODENAR,40 mutation plays the
main role in the evolutionary process, being in fact
a DIFFERENTIAL EVOLUTION algorithm. The basis for
the operators used is combinations (arithmetic, lin-
ear, etc.) of individuals randomly selected from the
population, and it is also possible to include random
noise in these combinations. Finally, a repairing oper-
ator is used in cases in which individuals fall outside
the range of the attributes they represent.

Initial Population
Normally, the initialization of the population is done
randomly, but there are several algorithms with par-
ticular initialization. One of them is QUANTMINER,36

an algorithm that has a more specific initialization of
the population because all numeric attributes are as-
signed the maximum range, specified by minimum
and maximum values present in the transactional
data, then individuals are created (1) decreasing the
width of the ranges, and (2) once these ranges are set,
then the bounds of the intervals are randomly gener-
ated. The values for nominal attributes are predeter-
mined in the rules in the initial population, and they
are the same during the evolution. Theses values are
calculated via the computation of frequent itemsets
by using the APRIORI algorithm.

The CSAR algorithm38 uses a very specific strat-
egy to generate ARs randomly. In this case, data are
assumed to be obtained from a continuous flow or
data stream, and therefore, instances are processed
one by one. Thus, the algorithm checks whether there
are enough rules in the population covering the last
example/data. If it is not the case, a random gener-
ation of rules covering this example is run until a
threshold (maximal number of rules) is reached. A
different approach is used in MODENAR to generate
the initial population that is based on a systematic
use of the mutation operator.

Fitness
In general, an aggregated function is used as fit-
ness. This function includes confidence and support
measures plus some other extra criteria, such as, in-
tervals size, etc. GAR and GENAR algorithms also
include penalty terms: f (i) = covered − (marked ∗
ω) − (amplitude ∗ φ) + (nAtr ∗ μ), where Covered
indicates the number of records that belong to the
itemset/rule that represents the individual. It is very
close to support measure. Marked indicates that a
record has been covered previously by an itemset/rule.
With this measure, the authors try to force the al-
gorithm to discover different itemsets/rules in later
searches. Amplitude penalizes the width of intervals
that make up the itemset/rule.
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QUANTMINER uses a modified version of
the Gain measure, Gain(A ⇒ B) = supp(AB) −
minconf ∗ supp(A), where minconf is the user-
specified minimum confidence. A particular form of
fitness is used in CSAR,38 in which a combination
(support × confidence)v is applied, v being a user-set
parameter that permits to control the pressure toward
highly fit classifiers. Besides, another set of parameters
is taken into account, such as: Experience—number
of times an antecedent fits an example; Consequent
Sum—number of times that the entire rule fits an ex-
ample; Numerosity—number of copies of the rule in
the population; or Age—time of the rule in the popu-
lation.

Models
GAR, GENAR, and EGAR use a classical evolutionary
model with elitism and an aggregate fitness function
instead of a multi-objective approach in the evolution.
The algorithm CSAR uses a particular model because
of the type of data being managed; only when cer-
tain conditions are met, an elitism-based steady state
GA is run to obtain a high quality set of rules. In
order to ensure the quality of the rule set, the GA
also used a niching scheme. MODENAR uses a dif-
ferent approach because it implements a differential
evolution algorithm rather than a GA. Moreover, a
multi-objective framework is used to find the Pareto-
front. For more information about this last approach
see Section Learning by Following a Multiobjective
Approach.

LEARNING FUZZY ASSOCIATION
RULES

Quantitative ARs present different problems caused
by the sharp boundary between intervals that are not
intuitive with respect to human perception. The prob-
lem can be handled smoothly by introducing fuzziness
into the model with fuzzy ARs. As claimed by Dubois
et al.,43 the use of fuzzy sets to describe associations
between data extends the types of relationships that
may be represented, facilitates the interpretation of
rules in linguistic terms, and avoids unnatural bound-
aries in the partitioning of the attribute domainsÃR©.
It is especially useful in domains where the boundaries
of a piece of information used may not be clearly de-
fined.

The hybridization between fuzzy logic and evo-
lutionary algorithms, known as evolutionary fuzzy
systems (EFSs),44, 45 provides novel and useful tools
for pattern analysis and for extracting fuzzy ARs. In
this section, we focus on EFSs for the extraction of

fuzzy ARs. It must be highlighted that in this problem,
the membership functions used may have a critical in-
fluence on the final mining results. Thus, in general,
EFSs have been employed for ARs in the literature in
the following two ways:

• for the learning or tuning of the membership
functions of the fuzzy variables used to mine
the fuzzy ARs, or

• for the learning (in addition to the above) of
the minimum single or multiple fuzzy support.

In the following, we describe the EFSs found in
the literature for ARs according to their evolutionary
components.

Representation
• Learning or tuning the membership functions.

For this data mining process, two different
ways to represent the information in a chro-
mosome have been proposed:

1. One chromosome codifies the infor-
mation for all the variables or items.

With this idea, Wang and Bridges46

use a representation based on a ma-
trix of real numbers. The matrix di-
mensionality is 3 × 2n for linguistic
partitions with three linguistic labels
per variable (i.e., 6 real parameters
per variable) using standard Z, π, and
S membership functions for them.

Kaya and Alhajj47 propose real-coded
chromosomes with three parameters
for each variable defining five trian-
gular fuzzy sets for the correspond-
ing linguistic labels. These authors
use a different coding scheme in Ref
55, with five real parameters for each
three-label linguistic partition. In this
proposal, the fuzzy partition obtained
is more descriptive than the one ex-
tracted in Ref 54, and the fuzzy
ARs generated are weighted fuzzy
ARs based on support and confidence
specified as linguistic terms.

A real coding scheme based on Parodi
and Bonelli’s representation49 is ap-
plied in Refs 19 and 45 by Hong et al.
In these EFSs, in order to effectively
encode the membership functions for
all the variables, pairs of real param-
eters are used to represent isosceles-
triangle fuzzy set definitions.
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Alcalá-Fdez et al.52 proposed a codifi-
cation scheme based on the two-tuple
linguistic representation model with
n × m real parameters for a set of m
linguistic labels for each one of the n
linguistic variables.

2. One chromosome codifies the infor-
mation related to the fuzzy partition
for one item or variable.

There is only one EFS with this
divide-and-conquer strategy for learn-
ing fuzzy partitions, developed by
Hong et al.53 It uses three real pa-
rameters to represent a membership
function, and so 3 ∗ |Ij | real num-
bers in a chromosome (Ij being the
number of linguistic labels for item
Ij , which is previously fixed). The
proposed EFS maintains conceptually
multiple populations (in a parallel or
sequential way), each for one item’s
membership functions. The final so-
lution is composed of the best indi-
vidual (membership function defini-
tion) in each population. With this
representation scheme, the chromo-
some length is short when compared
with other approaches in the previous
item, and so, the convergence of the
solutions can easily be obtained.

• Learning the fuzzy partitions and the single
or multiple fuzzy minimum support. For this
data mining problem, when it is solved by
means of an EFS, it is usual to divide the rep-
resentation into two parts: one for the sup-
port/or supports and the other for the mem-
bership functions, again in one of the follow-
ing two ways:

1. One chromosome codifies the infor-
mation for all the variables or items.

Hu [47] proposed a binary chromo-
some representation with two compo-
nents: one substring for each quan-
titative attribute by the encoding
method proposed by Ishibuchi and
Murata,55 which considers triangu-
lar and trapezoidal membership func-
tions; and the other for the mini-
mum support not easily specified by
the users. This representation scheme
makes it possible to determine not
only the shapes and parameters for
the fuzzy sets but also the number of

linguistic labels for each variable and
the single minimum fuzzy support.

In real applications, different items
may have different criteria to judge
their importance and quantitative
data may exist. It can be considered
thus a fuzzy data mining approach for
multiple minimum support fuzzy min-
ing problems. Within this category,
Chen et al. [18] proposed an EFS with
a real coding scheme in which the
substring corresponding to the mem-
bership functions is codified using the
same scheme as in Ref 45, that is, two
real numbers per linguistic label.

2. One chromosome codifies the infor-
mation related to the fuzzy partition
for one item or variable.

Chen et al. [18] proposed an EFS
for multiple minimum support fuzzy
mining problems with a real coding
scheme in two parts: the first part en-
codes minimum support of a certain
item by a real number and the sec-
ond one handles the set of member-
ship functions with three real param-
eters for each linguistic label (with the
same coding scheme used in Ref 44).
It must be highlighted that the infor-
mation coded in a chromosome is re-
lated to a specific item and the length
for each one is the same (so, the num-
ber of linguistic labels for each item
is the same for all items and pre-fixed
before the genetic learning).

Genetic Operators
Most of the proposals use standard genetic opera-
tors for real coding48, 46 and binary coding.54 For
real coding, other operators such as arithmetical
crossover, max-min arithmetical, and Parent Centric
BLX (PCBLX) crossover are applied in Refs 54, 19,
20, 44, 45, and 7, respectively.

Initial Population
In all the EFSs developed for the extraction of fuzzy
ARs, the population is randomly generated but in Ref
20, the initial sets of chromosomes are obtained ac-
cording to the initialization information provided by
a k-means clustering approach.

Fitness
The EFS proposed by Wang and Bridges46 starts from
a previously obtained set of fuzzy ARs and tunes the
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membership functions. To do so, the fitness function
used is based on the maximization for a set of nor-
mal rules and the minimization for the similarity of
normal and abnormal rule sets.

Kaya and Alhajj’s EFSs47, 48 are based on the
maximization of the number of all the large itemsets
extracted by the membership functions represented
in the chromosome. In Ref 55, this fitness function is
analyzed with respect to the maximization of the av-
erage of confidence intervals, and the results for the
experiments have shown that the method that em-
ploys the first fitness function outperforms the one
with the average confidence intervals in terms of the
required runtime and even the number of interesting
rules.

In Ref 45, the fitness of each chromosome is
evaluated by the number of frequent 1-itemsets and
by the suitability of the membership functions (de-
fined as a combination of the overlap and coverage
ratio for the items). The evaluation cost of this fitness
function is reduced in Ref 19 by dividing the chromo-
somes in a population of k clusters (using the k-means
algorithm). All the chromosomes in a cluster then use
the number of large 1-itemsets derived from the rep-
resentative chromosome in the cluster and their own
suitability of membership functions to calculate the
fitness values. This alternative fitness function speeds
up the evaluation process—due to the time-saving
in finding 1-itemsets—and achieves nearly the same
quality solutions as that in Ref 45.

The fitness definition in Ref 45 is adapted in Ref
44 to the chromosome representation (which codifies
the fuzzy partition for only one item): the fitness value
for each set of membership functions is determined
according to two factors: suitability of membership
functions and fuzzy supports of large 1-itemsets.

Other fitness definitions based on the use of
fuzzy ARs for classification task are proposed. In Ref
47, a weighted combination of classification rate and
number of fuzzy rules is used to promote a balance
between accuracy and simplicity.

To jointly qualify minimum supports and mem-
bership functions in Refs 18 and 20, a fitness function
is proposed that combines the requirement satisfac-
tion defined as the closeness of the derived strength of
fuzzy regions of large 1-itemsets and the suitability of
the membership functions.

Models
Most of the EFS proposals for fuzzy
ARs57, 56, 51, 54, 47, 48, 46 are generational GAs with
elitism. In Refs 20 and 44, EFSs are proposed
that use multiple populations in a conceptual way

without cooperation between them in the evolu-
tionary process (so they are not coevolutionary
proposals). These EFSs can be implemented in an
iterative—sequential—or parallel way.

LEARNING BY FOLLOWING A
MULTIOBJECTIVE APPROACH

AR mining can be seen as a multi-objective optimiza-
tion problem rather than as a single objective one
in which the different measures used to evaluate the
rules (such as support, confidence) can be considered
as different objectives of the association rule mining
problem. In a formal way, a multi-objective optimiza-
tion problem can be defined in the following way:

min/max y = f (−→x )

= f1(−→x ), f2(−→x ), . . . , fn(−→x ) (1)

where −→x = (x1, x2, . . . , xn) is the decision vector and−→y = (y1, y2, . . . , yn) is the objective vector (a tu-
ple with n objectives). The objective of any multi-
objective optimization algorithm is to find decision
vectors for which the corresponding objective vectors
cannot be improved in one dimension without being
degraded in the other one.

The main difference between a single-objective
and a multi-objective optimization task is that the
solution in a single-objective task is a single optimum
solution, whereas for a multi-objective optimization
problem, a number of optimal solutions are obtained
due to the trade-offs between conflicting objectives.

In the last two decades, an increasing interest
has been shown in the use of GAs for multi-objective
optimization. There are multiple proposals for multi-
objective GAs,58, 59 such as MOGA,30 NSGA II,60 or
SPEA2,61 for instance. In this area, most of the pro-
posals to solve the AR mining problem using multi-
objective evolutionary algorithms use GAs.

In this section, the multi-objective proposals for
the extraction of ARs are described. Therefore, the
representation of the individuals, the way the fitness
function is used and defined, the genetic operators,
and the models proposed are presented.

Individual Representation
As mentioned above, there are two basic approaches
to represent the rules in a genetic learning process,
namely the chromosome = BoR and chromosome =
rule ones. The latter is the most common approach
for multi-objective association rule mining.

Ghosh et al.62 propose a modified chromosome
= rule approach in which each attribute is tagged with
two bits. If these two bits are 00, then the attribute
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next to these two bits appears in the antecedent part;
if their values are 11, the attribute appears in the
consequent part; the other two combinations, 01 and
10, indicate the absence of the attributes in both the
antecedent and the consequent part of the rule. An
example can be seen in Figure 2. This individual rep-
resentation is also used by Dehuri et al.25

As explained in Section Learning Quantita-
tive/Numerical Association Rules, the representation
in MODENAR40 uses three components for each at-
tribute (the first to indicate the selection or not of
the attribute, and the rest to define the interval, see
Figure 3 (b)). In the works of Kaya et al.,63, 64 the au-
thors propose the use of real coded chromosomes with
three parameters for each five-label linguistic variable
or with five parameters for each three-label linguistic
variable.

Fitness Evaluation
Three different approaches can be found to tackle
the objectives in fitness function in multi-objective
problems65:

• Transforming the original multi-objective
problem into a single-objective problem by
using a weighted function. It involves the use
of a GA whose fitness function is the weighted
average of different objectives.

• The lexicographical approach, in which the
objectives are ranked in order of priority.

• The Pareto approach, which consists of as
many non-dominated solutions as possible
and returning the set of Pareto front to the
user.

Most of the studies using multi-objective GAs
for AR mining have been performed using the
Pareto approach. Among them, Wakabi-Waiswa and
Baryamureeba26 proposed the use of support, con-
fidence, and J-Measure as objectives in a SPEA-261

based association rule extraction algorithm, but com-
puting the fitness of the rules as a weighted average
using user-defined weights for these objectives; thus,
this approach is very similar to the single-objective
approach. Ghosh and Nath62 proposed an evolution-
ary multi-objective algorithm to search for Pareto-
optimal ARs formulating the problem as a three-
objective optimization problem with three objectives:
confidence, comprehensibility, and interestingness. In
Ref 56, a five-objective formulation of the problem
was suggested and a multi-objective evolutionary al-
gorithm was employed for the identification of an op-
timal set of ARs on a gene expression data set. The al-
gorithm MODENAR40 uses four objectives: support,

confidence, comprehensibility, and amplitude of the
intervals that make up the itemset and rule.

The works of Ishibuchi et al.67, 68 propose the
use of multi-objective GAs to extract fuzzy ARs us-
ing confidence and support as objectives functions.
In the works of Kaya et al., several proposals for
the use of this type of algorithms for the extraction
of fuzzy ARs have been developed: in Ref 53, the
authors propose the use of number of rules and ex-
ecution time as objective functions; in Ref 52, they
propose support, confidence, and comprehensibility.
Also, working with fuzzy ARs, Santhi-Thilagam and
Ananthanarayana69 propose a solution approach for
mining optimized fuzzy association considering fuzzy
support, fuzzy confidence, and rule length as objec-
tives of the multi-objective algorithm proposed. In the
study by Dehuri et al. [25] in which the authors ex-
ploit the parallelism of both data and control using
a homogeneous dedicated network of workstations,
confidence, comprehensibility, and interestingness are
used as objective functions.

In the coevolutionary proposal of Hu and Yang-
Li,70 two new measures are used as objective func-
tions, namely correlation and comprehensibility, to
enhance the correlation degree and comprehensibility
of ARs.

Genetic Operators
The use of standard multi-objective evolutionary al-
gorithms for the AR mining also supposes the use of
classical and standard crossover and mutation opera-
tors.

Models
Most of the proposals for multi-objective algorithms,
aimed at solving the association rule mining problem,
are multi-objective GAs, such as the works of Ghosh
and Nath,62 Khabzaoui et al.,66 or Wakabi et al.26

The use of a Pareto-based multi-objective dif-
ferential evolution algorithm, MODENAR, has been
proposed by Alatas et al. [6] as a search strategy for
mining accurate and comprehensible numeric ARs. It
mines ARs directly without generating frequent item-
sets.

One of the areas where multi-objective evo-
lutionary algorithms have been applied to solve
the AR mining problem is the extraction of fuzzy
ARs.67, 68, 63, 64 In Ref 6, an automated method is
proposed to decide on the number of fuzzy sets and
for the autonomous mining of both fuzzy sets and
fuzzy ARs. Also, working with fuzzy ARs, Santhi-
Thilagam and Ananthanarayana69 propose a solution
approach for mining optimized fuzzy ARs defining
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membership functions for all the continuous at-
tributes in a database by using clustering techniques.

A promising area is explored in the study by
Dehuri et al. [25] in which the authors propose to
exploit the parallelism of both data and control by
distributing the data being mined and the population
of individuals across the processors of a homogeneous
dedicated network of workstations using the inherent
parallel processing nature of GAs.

New approaches have recently been developed
using coevolutionary algorithms to solve the multi-
objective optimization problem of AR mining. Hu
and Yang-Li70 propose a new coevolutionary algo-
rithm to enhance the correlation degree and compre-
hensibility of ARs.

SWARM-BASED APPROACHES FOR
LEARNING ARs

Besides GAs, other population-based approaches for
learning ARs can be found. This is the case of ant
colony optimization (ACO)71 and particle swarm op-
timization (PSO).72 Both methods fall into the cate-
gory of the Swarm Intelligence73 approach, in which
a population of simple agents interact locally among
themselves and with the environment, in order to ob-
tain an intelligent global behavior, which cannot be
obtained by only individual agents.

The application of ACO to AR learning75 is
based on allowing each ant (agent) to identify fre-
quent itemsets. Thus, ants walk through the complete
graph defined over all the possible items and use the
frequency of buying items i and j together as heuristic
information for that edge in the graph. The algorithm
proposed by Kuo et al.75 combines these ideas with
the typical rules in ACO algorithms in order to iden-
tify frequent itemsets, then it obtains the ARs from
them. However, another important point in Ref 58
is that the proposed algorithm is not run over the
whole data set but over subsets of it that have previ-
ously been identified by (ACO-based) clustering, and
in this way, the CPU time is drastically reduced.

An alternative swarm approach is proposed by
Kuo et al.,74 which consists of the application of PSO
to the AR learning problem. The idea is based on us-
ing the swarm to determine the threshold values of
support and confidence. In this approach, each par-
ticle codifies an association rule by following a sim-
ilar representation to the one shown in Figure 1(c).
At each iteration, every particle (rule) receives a fit-
ness based on its support, confidence, and complexity
(length). After each iteration, each particle updates its
velocity and position by using the two best particles.

Once the population converges to the same position
(or a pre-defined number of iterations is exceeded),
the best particle (rule) is identified, and its support
and confidence are used as a threshold to mine the set
of ARs.

Alatas and Akin76 also propose the use of PSO
to mine ARs. This approach is different from the pre-
vious one because the goal is to mine directly numeric
ARs. Treatment of numerical values is done by using
rough patterns. Thus, each particle has length 3 · n,
n being the number of available variables or items.
For each item, two positions of the particle are used
to codify the lower and upper limit of the rough pat-
tern (interval), while the third one is used to codify its
position in the corresponding AR (antecedent, conse-
quent, or none). The evolutionary process is guided
by a fitness function that decides the amplitude of the
intervals in order to obtain interesting rules. In Alatas
and Akin,77 the authors extend their study by replac-
ing rough patterns with chaos numbers, which in-
stead of using lower and upper limits, consists of mid-
point and radius of the values as opposed to precise
values.

APPLICATIONS

Although the applications of association rule learning
are extensive, here, we restrict ourselves to those cases
in which evolutionary algorithms have been used.
Thus, the following applications can be found:

• Business:
– Investors’ stock purchase behavior.

Kuo et al.74 propose to apply their AR
learning method based on PSO (see
Section Swarm-Based Approaches for
Learning ARs) to carry out a study of
investors’ stock purchase behavior for
a security firm in Taiwan.

– Marketing: Consumer behavior mod-
eling. Casillas et al.78 propose the use
of ACO to discover a set of fuzzy ARs
to model consumer behavior with the
goal of explaining customer trust in
Internet shopping. Because the num-
ber of variables is limited (6) and
the target ones are known (2), the
authors propose to use an advanced
methodology (COR,79) to learn the
fuzzy rules. A specific ACO algorithm
is used as a search engine inside COR.
The result is compared with the one
obtained by using structural equation
modeling. Orriols-Puig et al.80 also
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propose to apply fuzzy ARs to this
problem. However, they use a specific
algorithm (CSAR) based on GAs to
directly evolve a population of ARs.
That is, a purely descriptive approach
is followed instead of adapting a pre-
dictive one as in Ref 17.

• Medicine:
– Management. Discovery of hidden re-

lationships between diseases from (a
small sample of) the data set provided
by the National Health Insurance Re-
search Database (Taiwan). Kuo et
al.75 carried out this study by using
their proposal for ARs learning based
on ACO.

– Analysis of cancer data sets. Kwas-
nicka and Switalski35 analyzed two
medical data sets (Sutek–breast can-
cer and Szyjka–cancer of the cervix/
uterus) by using ARs. The algorithm
used (EGAR) is based on the use of
a GA combined with Michigan repre-
sentation. EGAR is able to deal with
both qualitative and quantitative at-
tributes. According to the authors, in-
teresting results were obtained, spe-
cially when forcing some variables
(e.g., period of survival and time of
cancer recurrence) to be included in
the rules.

– Study of risk factors of atheroscle-
rosis. Salleb-Aouissi et al.81 carried
out a study over the Stulong data set,
which contains information of a 20
years’ lasting study of the risk fac-
tors of the atherosclerosis in a popu-
lation of 1419 middle- aged men. The
study is based on applying QUANT-
MINER algorithm36 for the discover-
ing of quantitative ARs, and the main
goal is to obtain descriptions for some
concrete variables, for example, lim-
iting the left hand side of the AR to be
Death? = true (false).

• Bioinformatics:
– Analysis of gene expression data.

Khabzaoui et al.66 apply knowledge
discovery in the form of ARs to the
analysis of gene expression data in or-
der to identify patterns of genes and
regulatory network. A multi-criteria
GA is used to discover qualitative ARs

from microarray data, where gene ex-
pression levels have been previously
discretized (e.g., overexpressed, un-
derexpresed). Because of the multi-
criteria approach used, which com-
bines many scores in the fitness func-
tion, a large number of rules are re-
turned. The authors have developed a
visualizing tool to help the selection
of rules in a multi-criteria context.

– Generation of ARs from spatial gene
expression data. Anandhavalli et al.82

propose a GA to perform global
searching for generating interesting
ARs from spatial gene expression
data. The novelty in this approach is
the fact that it is not necessary for
the users to specify thresholds. Instead
of generating an unknown number of
ARs, only the most interesting rules
are generated according to interest-
ingness measure as defined by the fit-
ness function.

– Mine gene network from large-scale
gene expression data. Du et al.83 pro-
pose to combine qualitative ARs with
GAs to mine gene network from large-
scale gene expression data. Because
not all the rules mined by classical
AR discovering algorithm (e.g., APRI-
ORI) are biologically meaningful, the
authors propose to optimize the ob-
tained rules, thus decreasing the num-
ber of redundant ones by using a
tailored GA. The results show that
the proposed method is able to dis-
cover some important interactions be-
tween genes from global gene expres-
sion data sets.

– Gene expression associative classifica-
tion. He and Hui84 investigate ant-
based algorithms to discover class-
based ARs for gene expression asso-
ciative classification. In this process,
the consequent of the rule is set to
be a label of the class variable, and
the ant colony aims to identify the
left hand side of the rule. The algo-
rithm follows a classical ant colony
procedure, and the graph contains all
the genes as nodes (1-itemsets) whose
support is greater than mins. During
the tour, the ant tries to add new
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TABLE 2 Summary of Described Applications

Qualitative ARs Quantitative ARs Fuzzy ARs

Business Kuo et al.74 PSO Orriols-Puig et al.80 GA
Casillas et al.78 ACO

Medicine Kuo et al.75 PSO Kwasnicka et al.35 GA
Salleb et al.81 GA

BioInformatics Khabzaoui et al.66 GA
Anandhavalli et al.82 GA
Du et al.83 GA
He et al.84 ACO

Education Romero et al.85 GA
Romero et al.86 GA

Manufacture Li et al.87 GA Wang et al.88 GA
Others Guillet et al.89 GA Dhanalakshmi et al.90 GA

Venugopal et al.28 GA Orriols-Puig et al.38 GA

genes to the current itemset, one at
each time; however, if the confidence
of the enlarged rule falls under minc,
the node (gene) under study is dis-
carded. The proposed algorithm ANT-
ARM has been tested on the acute
lymphoblastic leukemia (ALL)/acute
myeloid leukemia (AML) data set,
generating about 30 high accuracy
classification rules.

• Education:
– E-learning. Romero et al.85 apply GAs

and ARs to the problem of min-
ing student information from a Web-
based Educational Adaptive Hyper-
media System. The objective is to
obtain interesting ARs so that the
teacher can improve the performance
of the system. The GA fitness function
is defined in order to discover strong
qualitative ARs. The same approach
is used by Romero et al.,86 with the
aim to perform data mining in three-
levels of difficulty course implemented
in the AHA! system, in order to find
good candidates for meaningful rela-
tions between reading times, difficulty
levels, and test results.

• Manufacture:
– Extraction of qualitative ARs from

a manufacturing information system.
Li and Yang87 use a GA to mine a
set of qualitative ARs from a man-
ufacturing information system (MIS)

data set. Continuous variables are dis-
cretized previously, and a comparison
with APRIORI algorithm shows that
the proposed model is more efficient
when dealing with large itemsets.

– Efficient management of networked
manufacturing resources. Wang et
al.88 propose the use of fuzzy ARs
learned by using a GA to deal with the
problem of choosing and managing
networked manufacturing resources
efficiently. Considering the charac-
teristics of networked manufacturing
resources, double-level encoding and
label-bit switching operator were de-
signed to make the improved GA
available to networked manufactur-
ing resources. As a result, some use-
ful fuzzy ARs are discovered that pro-
vide decision support for manufactur-
ing resources management.

• Others:
– Visualization. GAs have been used

not only to discover the set of interest-
ing ARs from the data but also to ob-
tain a friendly representation of them.
This is the case of the proposal by
Guillet et al.,89 where a GA for draw-
ing AR rule graphs is presented that
incorporates the restriction of deal-
ing with a dynamic layout. Thus, new
solutions close to the previous ones
are included very quickly when slight
modifications are inserted.
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– Computer security. Dhanalakshmi
and Ramesh-Babu90 propose the use
of a GA to mine fuzzy ARs in order
to find associations among different
sets of security features. The reason
for using fuzzy ARs lies in the fact
that in this problem, there are many
quantitative features in which there is
no clear separation between normal
operations and anomalies.

– Data streams. For those cases in
which the database is dynamic, for
example, a data stream of transac-
tions, algorithms must be able to
adapt the current AR set without
having to re-explore the full data
set. Evolutionary algorithms have re-
cently been proposed to tackle this
problem.38, 28 For example, Orriols-
Puig et al.38 presented the algorithm
CSAR, a Michigan-like GA based
on online learning that incrementally
evolves the learnt knowledge, and
is able to adapt quickly the discov-
ered AR set to the appearance or
disappearing of associations among
the variables with the arrival of new
data.

A summary of the aforementioned applications
is shown in Table 2, classified by type of AR used
and application field. For each application, the meta-
heuristic technique used is shown. From this table, it
is easy to conclude that boolean/qualitative ARs and

GAs have been the most applied options. However,
this may change in the future, specially because real
applications usually deal with numerical variables,
and there are currently many approaches to cope di-
rectly with them, avoiding the need of an a priori
discretization.

CONCLUSIONS

A survey of research into AR learning using evolution-
ary algorithms has been given in this paper, and we
have tried to cover both classical and recent literature
related to the topic.

The main properties and elements of this task
have been presented, specially those related with ap-
proaches using evolutionary algorithms. Approaches
using different types of variables (Boolean, categori-
cal, or numerical) have been studied. The use of fuzzy
rules and multi-objective approaches for AR mining
has also been covered, and some approaches based on
metaheuristics that are different from GAs have been
reviewed. In addition, applications of AR approaches
to real-world problems have been presented.

NOTE
aNotation: we use uppercase letters to denote vari-
ables and boldface uppercase letters to denote sets of
variables. We use lowercase letters to denote values
of variables ({i1, i2, i3}, {t, f }, etc.) and boldface low-
ercase letters to denote configurations of values for a
set of variables. For binary variables (e.g. A = {t, f })
we will sometimes use A for A = t, while the absence
of A will mean A = f .
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