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This article presents a study on the use of parametrized operators in the Inference System of
linguistic fuzzy systems adapted by evolutionary algorithms, for achieving better cooperation
among fuzzy rules. This approach produces a kind of rule cooperation by means of the inference
system, increasing the accuracy of the fuzzy system without losing its interpretability. We study
the different alternatives for introducing parameters in the Inference System and analyze their
interpretation and how they affect the rest of the components of the fuzzy system. We take into
account three applications in order to analyze their accuracy in practice. © 2007 Wiley Period-
icals, Inc.

1. INTRODUCTION

Two contradictory requirements are usually found in Fuzzy Modeling ~FM!
design: interpretability and accuracy. Interpretability is the capability to express
the behavior of the real system in an understandable way. Accuracy is the capa-
bility to represent faithfully the real system. In practice, depending on the appli-
cation details, one of the two properties normally prevails over the other, with
higher interpretability with lower accuracy or lower interpretability with higher
accuracy. Designers try to find a trade-off between the two edges, producing an
increasing interest in the study of the aforementioned trade-off between interpret-
ability and accuracy in FM.1,2
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To develop more reliable linguistic fuzzy models, designers may choose
between some mechanism’s or design’s aspects: membership function shape tun-
ing, the integration of the Knowledge Base ~KB! design into the whole fuzzy sys-
tem derivation, rule base reduction, the extension of the model structure ~by using
linguistic modifiers, double-consequent rules, weighted rules, or hierarchical KBs!,
or tuning of the fuzzy model components.

We can distinguish between the KB elements and the remaining components.
Regarding the latter ones, two components can be considered, the Inference Sys-
tem and the Defuzzification Methods. Difference studies have been developed ana-
lyzing their influence in FM ~see Refs. 3 and 4, among others!. In particular, the
tuning of these components can be considered for getting more accurate linguistic
fuzzy models while maintaining interpretability.

The Defuzzification Interface is the most typically tuned component.5–10

Furthermore, there are some studies devoted to adaptive defuzzification methods
tuning with evolutionary algorithms.11–14 In Ref. 15, a study on the different
evolutionary adaptive defuzzification approaches in linguistic fuzzy modeling is
presented. On the other hand, the parametrization of the Inference System has
also produced interest, some contributions about which can be found in Refs. 13
and 16–21.

This contribution develops a study into the use of parametrized expressions
in the Inference System, sometimes called Adaptive Inference Systems, for get-
ting more cooperation among the fuzzy rules and therefore more accurate fuzzy
models without losing the interpretability. The different possibilities are shown
and we also propose to tune the parameters with evolutionary algorithms. We call
them Evolutionary Adaptive Inference Systems (EAIS).

We analyze the behavior of the EAIS using two rule base learning methods.
The well-known and simple rule learning method, the WM learning method,22 for
analyzing their behavior under a simple fuzzy rule base, and the evolutionary learn-
ing method of Thrift,23 for analyzing their behavior under a more accurate rule
base. Of course, the effect of introducing parameters into the inference system
may have some bearing on other components of the fuzzy systems. The tuning of
membership functions is one of the most important approaches for improving the
fuzzy system’s accuracy. In this article, we analyze the cooperation between the
use of parametric conjunction operators and the tuning of the membership func-
tions for getting a more accurate fuzzy model. The experiments show the positive
cooperation between these two tuning approaches. Additionally, we examine the
influence of the granularity in the fuzzy partitions and their use with the EAIS and
the tuning of membership functions.

To achieve that, the article is organized as follows. Section 2 introduces the
Adaptive Inference System, its components, and their meaning in conjunction with
defuzzification methods. Section 3 is devoted to the basic study of the EAIS, ana-
lyzing its behavior with the three applications. Section 4 studies the combination
of the EAIS with the tuning of the membership functions, and analyzes what hap-
pens when we increase the granularity of the fuzzy partitions. Finally, Section 5
presents some concluding remarks. An Appendix is also included presenting the
description of the applications.
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2. ADAPTIVE INFERENCE SYSTEM

In this section, the Adaptive Inference System will be analyzed. To do so, the
two Inference System components are presented, and after that, we show how to
introduce parameters inside the inference system components. Finally, the mean-
ing of the Adaptive Inference System in conjunction with the defuzzification meth-
ods will be studied, which is an important part of this work.

2.1. Inference Components

In this contribution, we are considering linguistic-type IF–THEN rules of the
following form:

Ri : If Xi1 is Ai1 and . . . and Xin is Ain , then Y is Bi

with i � 1 to M, and with Xi1 to Xin and Y being the input and output variables,
respectively, and with Ai1 to Ain and B being the involved antecedents and conse-
quent labels, respectively, of the rules.

The expression of the Compositional Rule of Inference in FM with punctual
fuzzification is the following:

mB' ~ y! � I ~C~mA1~x1!, . . . ,mAn~xn !!, mB~ y!!

where mB ' ~{! is the membership function of the inferred consequent, I ~{! is the
rule connective, C~{! is the conjunction operator, mAi ~xi ! are the values of the
matching degree of each input ~x1, . . . , xn ! of the system with the membership
functions of the rule antecedents, and mB~{! is the consequent of the rule.

Therefore, the Inference System performs the two following tasks:

~1! First, it computes C~mA1~x1!, . . . ,mAn~xn !! that is the matching degree of each rule,
hi . The conjunction operator C~{! is usually modeled with a t-norm.

~2! Second, it infers using the rule connective I ~{! the matching degree and the conse-
quent of the rule. Rule connectives can be classified into different families, the most
known being the implication functions24 and the t-norms.25 T-norms are the most used
in practical FM.

Hence, the Inference System employs two components: the conjunction C~{!
and the rule connective I ~{!. The next subsection discusses the parametrization of
these components.

2.2. Adaptive Components in the Inference System

The aforementioned two components, conjunction and rule connective, are
suitable to be parameterized:

The parameter for the adaptive conjunction will be b; therefore the adaptive component is
C~b,{! computed with hi ~b!.

The parameter for the adaptive rule connective will be a; therefore the adaptive compo-
nent is I ~a,{!.
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We can consider two models of Adaptive Inference System depending on the
number of parameters they use:

• a single parameter, a or b, to tune globally the behavior of the Adaptive Inference Sys-
tem, or

• individual parameters for every rule of the KB, ai or bi , having a local tuning mecha-
nism of the behavior of the Inference System for every rule.

The parameters can be tuned with evolutionary algorithms. As mentioned pre-
viously, the learning process of the parameters can be considered as a global or
local Inference System tuning process. This method of system tuning can be con-
sidered as an alternative or complementary one to other tuning methods26 for
improving accuracy in FM.

2.3. Meaning of the Adaptive Inference System in Conjunction
with Defuzzification Methods

Adaptive Inference System components may be parametrized as we have
described in Section 2.2, but the effects of the parametrization of its components
cannot be studied in isolation. The Adaptive Inference System works jointly with
the defuzzification method. Defuzzification methods always convert the inferred
fuzzy sets into a crisp value.

Defuzzification methods operate in the way we describe below. We denote by
means of Bi

' the fuzzy set obtained as output when performing inference on rule
Ri , and by means of y0 the output of the fuzzy model for an input x0. The charac-
teristic values GCi and MWi , these being the Gravity Center and the Maximum
Value of Bi

' , respectively, are used. Defuzzification methods can be classified into
two modes4:

• Mode A ~Aggregation First, Defuzzification After!: The defuzzification interface per-
forms the aggregation of the individual fuzzy sets inferred, Bi

' , to get the final output
fuzzy set B '.

• Mode B ~Defuzzification First, Aggregation After): It avoids the computation of the
final fuzzy set B ' by considering the contribution of each rule output individually, obtain-
ing the final output by taking a calculus ~an average, a weighted sum, or a selection of
one of them! of a concrete crisp characteristic value associated with each of them. This
is the most used technique in practical implementation because it is easier to implement,
it results in lower computational resource utilization, and it shows the best accuracy.3

The most used defuzzification methods acts in Mode B and employs the match-
ing degree inside of their expression. The defuzzification method that uses the
gravity center by means of a sum weighted by the matching degree has the follow-
ing expression:

y0 �

(
i

N

hi{GCi

(
i

N

hi
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where GC is computed with @*Y y{mB
' ~ y! dy#/@*Y mB

' ~ y! dy# ~so-called standard
WECOA!.

In this article, we have selected the standard WECOA defuzzification method
because of its significance and well-known behavior. Inferred fuzzy sets with higher
matching degrees have more influence than the ones with lower matching degrees.

To study the meaning of the Adaptive Inference System in conjunction with
the WECOA defuzzification method, we study the two parametrized components,
adaptive rule connectives and adaptive conjunction operators.

2.3.1. Adaptive Rule Connective

If we employ I ~a, {!, the parameter a allows the global rule connective tun-
ing. If we employ I ~~ai , i � 1. . . M !, {!, the rule connective will be adapted indi-
vidually. To discuss the meaning of this Adaptive Inference System, Table I
exemplifies the classical parametric T-norms.27

Table II shows the relation between the five classical t-norms and the values
of the parameter of the adaptive t-norms.

The inferred fuzzy set shape, with the three adaptive t-norms, is shown in
Figures 1, 2, and 3.

In Ref. 19, the low influence of parametric rule connectives was shown.
Observing Figures 1 to 3, the low influence of a can be understood. The inferred
fuzzy set keeps its symmetry, so for that reason the Gravity Center or the Maxi-
mum Value ~characteristic values of a fuzzy set! stand invariable. If the consequents

Table I. Adaptive t-norms.

Figure T-norm

1 Dubois TDubois~x, y,a!�
x{y

Max~x, y,a!
~0 � a� 1!

2 Dombi TDombi ~x, y,a!�
1

1 � a��1 � x

x
�a ��1 � y

y
�a

~a � 0!

3 Frank TFrank~x, y,a!� loga�1 �
~a x � 1!~a y � 1!

a� 1
� ~a � 0!, ~a� 1!

Table II. Relation between classical and parametrized t-norms depending on the a
parameter.

TMinimum THamacher TAlgebraic TEinstein TBounded TDrastic

TDubois 0 1
TDombi ` 1 r 0
TFrank r 0 r 1 `
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do not show symmetry, then the value can be slightly displaced. Therefore, we
will no longer consider employing parameterized rule connectives in this study.

2.3.2. Adaptive Conjunction Operator

The effect of the conjunctive parameter in the matching degree calculation is
equivalent to one of the well-known mechanisms for modifying the linguistic mean-
ing of the rule structure, the use of linguistic modifiers.28,29 The goal of linguistic
rule modifiers is also to improve the accuracy of the model, slightly relaxing the
rule structure by changing the meaning of the involved labels. The inference param-
eter plays a similar role by changing the shape of the membership function asso-
ciated with the linguistic label antecedents of the rule, as shown in Figure 4, where
h is the matching for the trapezoidal fuzzy set when the input value is e, and h ' and
h '' are the values computed for b� 0.2 and b� 0.1, respectively. We must point

Figure 1. Inferred fuzzy set with Dubois adaptive t-norm.

Figure 2. Inferred fuzzy set with Dombi adaptive t-norm.
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out that the effect of the adaptive t-norm playing the role of conjunction operator
does not modify the shape of the inferred fuzzy set.

The t-norms only produce membership concentration effects. Examples of
these kinds of linguistic modifiers are absolutely, very, much more, more, and plus.

The single parameter model globally adapts the conjunction operator between
the classical t-norms. However, the benefits of this model will not yield remark-
able improvements in accuracy. The reason is the low importance in choice of the
conjunction operator in the design of linguistic fuzzy systems3 with a behavior
similar to the use of different t-norms.

Tables III and IV show the effects for the different Dombi t-norm values.
Table III shows the results over two antecedents with matching degrees of 0.7 and
0.8. Table IV shows the results over matching degrees of 0.9 and 0.6. It must be
observed that b values for both rules modify the matching proportionally.

Figure 3. Inferred fuzzy set with Frank adaptive t-norm.

Figure 4. Graphical representation of the antecedent linguistic modification produced by dif-
ferent values of Dombi t-norm.
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Conversely, the model that employs individual parameters for each rule of
the KB has a different meaning: The rules can be weighted individually. At the
same time, the rule of Table III can have a b value of 10, whereas the rule of
Table IV can have a b value of 0.1.

The aforementioned feature makes the Adaptive Conjunction Operator with
individual parameters of each rule the most interesting case to study.

3. EVOLUTIONARY ADAPTIVE INFERENCE SYSTEMS

Our objective is to increase the fuzzy rules cooperation, getting a fuzzy-rule-
based system with more accuracy, by means of the parameters optimization pro-
cess. This optimization problem deals with the search for the values of a vector in
order to get a set of rules that cooperates by means of their associated conjunction
operators. Genetic Algorithms have been shown to be a very important tool in
order to adapt Fuzzy Systems.26

In this section, first of all, we describe the benchmark selected, that is, the
experiments employed and the measures that will be computed to show the improve-
ments obtained with the EAIS. Second, we introduce the evolutionary algorithm
used to adapt the parameters of the Adaptive Inference Systems, and finally we
present the experimental results obtained and their analysis.

3.1. Benchmarks and Basic Results

We built several fuzzy models combining a representative set of EAIS with
the WECOA defuzzification method to solve three different fuzzy model applica-
tions: the estimation of the low voltage network real length in villages ~called E1! ,
the estimation of the electrical medium voltage network maintenance cost in towns
~called E2!

30 and the well-known time series of sunspots.31 They are briefly
described in the Appendix. The data sets E1 and E2 and a wide description can be
found at http://decsai.ugr.es/;casillas/fmlib.html.

As we mentioned, taking into account the study developed in Subsection 2.3,
we decided to concentrate the present study on the conjunction adaptation with
individual parameter for each rule of the KB.

Table III. Dombi t-norm
results using different values
of b, for a rule with two
antecedents and matching
values of 0.7 and 0.8.

b hi ~b!

0.1 0.00296
0.3 0.02307
1 0.59575

10 0.69990

Table IV. Dombi t-norm
results using different values
of b, for a rule with two
antecedents and matching
values of 0.9 and 0.6.

b hi ~b!

0.1 0.00344
0.3 0.24451
1 0.56250

10 0.59999
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The analyzed Inference System was based on the three adaptive t-norms shown
in Section 2.3 as conjunctive operators. We have selected the classical Minimum
t-norm as rule connective for all models.

We consider a usual FM performance measure, the Mean Square Error
~MSE~{!!:

MSE~i ! �

1

2 (k�1

N

~ yk � S @i # ~xk !!
2

N

where S @i # denotes the fuzzy model whose Inference System uses the conjunction
operator Ci ~i � 1 for Dubois, i � 2 for Dombi, and i � 3 for Frank t-norm!, rule
connective Minimum t-norm, and WECOA defuzzification method. This measure
uses a set of system evaluation data formed by N pairs of numerical data Zk �
~xk , yk !, k � 1, . . . , N, with xk being the values of the input variables and with yk

being the corresponding values of the associated output variables.
We also computed the standard deviation of the MSE,

SD 2~S @i # ! �

(
k�1

30

~MSEk~S @i # !�MSE ~S @i # !!2

30

As we have mentioned, we have used two learning methods for getting the
rule base, in order to study the behavior of the EAIS with two different approaches:

• the classical and simple Wang and Mendel ~WM! method,22 and
• the evolutionary learning algorithm of Thrift23: This algorithm employs a representa-

tion of the rule base based on a relational matrix. A decision table is encoded inside the
chromosome using a positional code and establishing a mapping between the labels set
associated to the system output variable. The GA employs integer coding and an elitist
selection scheme. The crossover operator is the standard two-point crossover. The muta-
tion operator is specifically designed for the process. The fitness function is based on a
measure of error, computing how the output converges to the desired values by means
of the mean square error.

We selected seven labels for application E1, five labels for E2, and three labels
for sunspots. The aforementioned choices are commonly employed for the appli-
cations used and they perform a reasonable equilibrium between the rule base size
and the number of variables and examples per application.

Table V and Table VI show the MSE together with their SD obtained for the
three applications with the KBs obtained with the WM and Thrift methods, respec-
tively. These values are reference ones so that we may later compute the EAIS
improvements. They have been computed for every one of the three adaptive
t-norms with a constant parameter value shown in Table VII, together with their
equivalences: Dubois parameter initiated to 0 ~equivalent to Minimum!, Dombi
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initiated to 1 ~equivalent to Hamacher product!, and Frank initiated to 0.5 ~similar
to Hamacher product!.

The Thrift learning algorithm employed a population size of 61 and a cross-
over probability of 0.6. It was set with 1000 generations and it has been run for
100,000 evaluations, 6 runs per partition in E1 and E2 ~5-fcv! and 30 run for
Sunspots.

The greater MSE presented by application E2 with the KBs generated with
the evolutionary algorithm of Thrift is remarkable. It is usual because the applica-
tion has a big number of variables and labels and the number of possible rules is
high.

3.2. The Evolutionary Algorithm CHC

The evolutionary algorithm selected is the CHC.32 It is considered as an evo-
lutionary model with a good trade-off between diversity and convergence in high-
dimensional search spaces in different applications.

Table V. Reference initial MSE values for the FM of E1, E2, and sunspots with the
KBs obtained with WM method.

E1 E2 Sunspots

MSE SD MSE SD MSE

Training
MSENA~S~CDubois!! 211,776.69 8046.29 56,135.74 1498.35 144.69
MSENA~S~CDombi!! 210,179.94 8338.88 55,418.16 1005.09 136.30
MSENA~S~CFrank!! 210,277.99 9396.21 80,441.20 4097.47 121.34

Test
MSENA~S~CDubois!! 227,583.28 19,904.36 56,359.42 9647.82 418.06
MSENA~S~CDombi!! 224,079.77 18,096.60 55,531.73 3544.82 410.29
MSENA~S~CFrank!! 221,198.61 17,883.71 80,597.13 6708.20 404.57

Table VI. Reference initial MSE values for the FM of E1, E2, and sunspots with the KBs
obtained with Thrift method.

E1 E2 Sunspots

MSE SD MSE SD MSE SD

Training
MSENA~S~CDubois!! 167,674.17 4152.83 68,153.13 3,403.875 118.27 6.62
MSENA~S~CDombi!! 169,560.73 4564.82 63,673.24 518.17773 116.27 5.75
MSENA~S~CFrank!! 168,640.86 1010.12 80,190.06 20,820.210 95.27 7.21

Test
MSENA~S~CDubois!! 195,917.47 28,351.30 68,643.69 702.980 372.74 20.17
MSENA~S~CDombi!! 227,208.32 32,746.41 76,446.69 4,946.988 433.12 31.28
MSENA~S~CFrank!! 212,803.66 19,477.25 94,050.93 18,467.355 437.95 29.16
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3.2.1. CHC Algorithm

During each generation, the CHC algorithm32 uses a parent population of
size M to generate an intermediate population of M individuals, which are ran-
domly paired and used to generate M potential offspring. Then, a survival compe-
tition is held, where the best M chromosomes from the parent and offspring
populations are selected to form the next generation.

No mutation is applied during the recombination phase. Instead, when the
population converges or the search stops making progress ~i.e., the difference thresh-
old has dropped to zero and no new offspring are been generated that are better
than any member of the parent population!, the population is reinitialized. The
restarted population completely consists of random individuals except that one of
them must be the best individual found so far.33

Although CHC was conceived for binary-coded problems, there are real-
coded versions, like the one we employ in this work. In these cases, the BLX-a
crossover ~a � 0.5! is employed in order to recombine the parent’s genes. The
Hamming distance is computed by translating the real-coded genes into strings
and by taking into account whether each character is different or not. Only those
string pairs that differ from each other by some number of bits ~mating thresh-
old! are mated. The initial threshold is set to L/4 where L is the length of the
string. When no offspring is inserted into the new population, the threshold is
reduced by 1.

The used fitness function was the aforementioned Mean Square Error,
MSE.

3.2.2. Parameters for Experimentation

We achieved 30 trials for every fuzzy model tuning process, running
them with six different seeds for the random number generator and five differ-
ent data sets, fivefold cross validation approach for the two electrical prob-
lems, E1 and E2, and with 30 different seeds for the sunspots temporal time
series. The considered real MSE was computed as the arithmetic mean of the
30 results.

The CHC algorithm has been run for 30,000 evaluations. The population
size was 50 ~randomly initialized with the exception of a single chromosome with

Table VII. Initial values of the parametrized
t-norms for evolutionary process.

Parametrized
t-norms

Initial
values Classical equivalent t-norm

Dubois 0 Minimum
Dombi 1 Hamacher product
Frank 0.5 Similar to Hamacher product
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all the genes initialized to the values showed in Table XVI, below!. A BLX-a
crossover with a� 0.5 was used as mentioned earlier. The initial threshold was set
to L/4, with L being the chromosome length.

The tuning interval ~searching variable domain! for b was fixed to @0,1# for
Dubois t-norm, ~0,10# for Dombi t-norm and ~0,100# for Frank t-norm.

3.3. Experiments and Analysis Results

We also considered the Improvement Percentage ~IP ! index whose expres-
sion is

IP~i ! � 100 � �1 �
MSE~S~i !!

MSE~SNA~i !!
�

that is, the improvement shown by the MSE~{! of a fuzzy model S~{! built with
a conjunction operator Ci with regard to the system without tuned parameters
~or, more exactly, with Dubois, Dombi, and Frank t-norms initialized to the val-
ues shown in Table VII!, SNA~i !, where i is 1 for Dubois, 2 for Dombi, and 3 for
Frank.

Tables VIII and IX show the average of the MSE together with their SD
obtained for applications E1, E2, and sunspots temporal time series with the EAIS
for both types of KBs. Tables X and XI show the IP of the MSE obtained by the
EAIS with the training and test data sets for the three applications.

Table XII presents an example of bi values obtained at the end of the adapta-
tion process with the Dombi t-norm for the applications E1. It can be observed that
rules 1, 5, 8, 18, and 21 have a high b value; this means that they form a high
cooperation set of rules, whereas rules 10, 16, and 22 are specially constrained
with very low values.

Table VIII. MSE for the FM of E1, E2, and sunspots using EAIS with the KBs obtained with
the WM method.

E1 E2 Sunspots

MSE SD MSE SD MSE SD

Training
MSE~S~CDubois!! 190,526.06 11,806.79 34,371.65 613.18 98.03 32.24
MSE~S~CDombi!! 164,825.37 16,841.05 28,105.26 1020.34 101.87 25.26
MSE~S~CFrank!! 185,188.14 12,810.12 34,975.09 690.48 96.58 20.40

Test
MSE~S~CDubois!! 218,261.72 11,517.53 36,845.51 2084.11 372.36 10.93
MSE~S~CDombi!! 213,498.66 27,319.32 30,278.23 3233.26 378.02 7.87
MSE~S~CFrank!! 210,269.22 17,035.33 36,547.04 2514.89 387.60 4.19
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Analyzing the results obtained, we can point out that:

• First, it is noticeable that the use of EAIS improves the classical well-known Inference
Systems based on nonadaptive classical t-norms taken as references. It does not depend
on the KBs employed.

• The rule cooperation mechanism shows important accuracy improvements in the appli-
cation E2, and it presents a more irregular behavior in application E1. In sunspots appli-
cation we can find an overfitting problem for the Thrift KB.

• The EAIS are a good design option to improve the accuracy in Linguistic FM keeping
an important interpretability level, but require a preliminary study for analyzing their
behavior.

4. TUNING OF INFERENCE SYSTEMS AND MEMBERSHIP
FUNCTIONS: ANALYSIS OF THEIR COOPERATION

The tuning of membership functions is one of the most important approaches
for improving the fuzzy system’s accuracy. As we mentioned, the effect of intro-
ducing parameters into the inference system may have some bearing on other

Table IX. MSE for the FM of E1, E2, and sunspots using EAIS with the KBs obtained with
the Thrift method.

E1 E2 Sunspots

MSE SD MSE SD MSE SD

Training
MSE~S~CDubois!! 157,554.64 3485.29 27,927.80 758.65 89.99 0.25
MSE~S~CDombi!! 152,532.68 4896.65 19,986.34 1,549.19 97.39 0.44
MSE~S~CFrank!! 159,053.70 3455.67 28,061.20 7,218.04 92.71 0.07

Test
MSE~S~CDubois!! 190,950.35 29,884.91 33,110.45 1,641.40 368.47 10.24
MSE~S~CDombi!! 200,106.16 20,641.79 28,753.16 9,094.28 441.31 49.75
MSE~S~CFrank!! 197,692.78 35,106.89 37,486.02 12,269.80 438.40 5.82

Table X. IP of the MSE for the FM of E1, E2, and
sunspots using EAIS with the KBs obtained with
the WM method.

E1 E2 Sunspots

Training
IP~S~CDubois!! 10.03 38.73 32.24
IP~S~CDombi!! 21.58 49.26 25.26
IP~S~CFrank!! 11.93 56.41 20.40

Test
IP~S~CDubois!! 4.10 24.57 10.93
IP~S~CDombi!! 4.72 45.38 7.87
IP~S~CFrank!! 4.94 54.42 4.19
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components of the fuzzy systems. In this section, we analyze the cooperation
between the use of parametric conjunction operators and the tuning of the mem-
bership functions for getting more accurate fuzzy models.

We present the results with a double combination:

• Sequential tuning: to tune the membership functions and then to use EAIS in a sequen-
tial mode.

• Cooperative tuning: to tune the membership functions and the conjunction parameters
together by means of a genetic representation containing all the parameters.

In the following two subsections we present first the results of the tuning of
membership functions, and then the results with the double combination ~sequen-
tial and cooperative tuning!.

Finally, we analyze what happens when we increase the granularity of the
fuzzy partitions. This interest is based on the idea of getting better results when we
increase the number of labels per variable in general and in the consequent in
particular. The last subsection is devoted to this study.

4.1. Tuning of Membership Functions

Tables XIII and XIV show the MSE and SD obtained for applications E1, E2,
and sunspots time series with the descriptive genetic tuning process of the mem-
bership functions.34 Tables XV and XVI show the IP of the MSE relative to

Table XI. IP of the MSE for the FM of E1, E2,
and sunspots using EAIS with the KBs obtained
with the Thrift method.

E1 E2 Sunspots

Training
IP~S~CDubois!! 6.04 59.02 23.91
IP~S~CDombi!! 10.04 68.61 16.24
IP~S~CFrank!! 5.68 65.01 2.68

Test
IP~S~CDubois!! 2.54 51.76 1.15
IP~S~CDombi!! 11.93 62.39 �1.89
IP~S~CFrank!! 7.10 60.14 �0.10

Table XII. bi values taken at the end of the evolutionary process for the Dombi t-norm.

b1 . . . b6 10.000000 0.125972 1.543214 0.253670 10.000000 0.550866
b7 . . . b12 0.270757 10.000000 0.790804 0.018632 0.223670 0.197948
b13 . . . b18 8.307211 0.241470 4.839832 0.012803 3.790283 10.000000
b19 . . . b24 0.252203 7.462416 9.999999 0.012594 0.371065 1.039599
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Tables V and VI obtained by the tuning process with the training and test data sets
for both applications.

The tuning process of the membership functions has been carried out em-
ploying the three parametrized t-norms with their parameter values shown in
Table VII.

If we compare the results presented by the EAIS with those presented by
the tuning of membership functions, we can conclude that the improvement
in the accuracy shown by the latter one is greater for both applications. Of course,
the lose of interpretability is greater for the membership functions tuning than
for EAIS. In the next subsection we analyze the possible cooperation between
both approaches.

4.2. Adaptive Inference Systems and Tuning of Membership Functions

In this section we present the results of the double combination: sequential
and cooperative tuning:

Table XIII. MSE for the FM of E1, E2, and sunspots obtained tuning the membership
functions with the KBs obtained with the WM method.

E1 E2 Sunspots

MSE SD MSE SD MSE SD

Training
MSE~S~CDubois!! 132,643.43 8499.62 14,320.62 994.21 67.49 1.16
MSE~S~CDombi!! 133,073.24 7475.87 14,004.49 921.95 70.91 1.39
MSE~S~CFrank!! 132,423.36 7161.21 15,304.25 335.58 61.91 0.79

Test
MSE~S~CDubois!! 211,534.78 35,503.44 17,460.91 2677.19 306.04 55.99
MSE~S~CDombi!! 230,220.45 62,525.71 17,933.84 3553.59 351.58 49.02
MSE~S~CFrank!! 231,232.76 59,411.83 17,921.22 1473.26 298.55 2.44

Table XIV. MSE for the FM of E1, E2, and sunspots obtained tuning the membership
functions with the KBs obtained with the Thrift method.

E1 E2 Sunspots

MSE SD MSE SD MSE SD

Training
MSE~S~CDubois!! 129,188.82 3787.05 16,717.65 899.74 69.16 3.94
MSE~S~CDombi!! 129,844.59 4064.47 17,997.58 1821.57 66.38 2.60
MSE~S~CFrank!! 131,016.08 3853.46 20,542.54 4478.10 60.29 0.63

Test
MSE~S~CDubois!! 252,325.48 70,558.43 23,820.59 3068.86 293.39 293.39
MSE~S~CDombi!! 216,808.39 31,500.91 25,810.43 1505.34 274.25 274.25
MSE~S~CFrank!! 256,887.06 98,835.80 30,348.42 9121.56 293.24 293.24
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• First we use the EAIS to improve the MSE obtained by the membership function tuning
in a sequential mode. The results are showed in Tables XVII to XX.

• Second, we present the results of the cooperative tuning. To do so, we employ a bigger
chromosome in the CHC algorithm, with two parameter parts: membership function
and EAIS parameters, respectively.

• The population size was 50, randomly initialized with the exception of a single chromo-
some with all the genes initialized to the original membership function values in the
first part, and with the values shown in Table VIII for the second part. It was run for
35,000 evaluations.

• Tables XXI and XXII show the MSE and SD obtained for the applications and
Tables XXIII and XXIV show the corresponding IPs.

The use of EAIS yields a slight improvement in the accuracy of the earlier
tuned KBs. The EAIS increases the rule cooperation of an accuracy improved KB.

Employing the EAIS together with the membership functions tuning, the co-
operative tuning, it is possible to improve the accuracy presented by the tuning

Table XV. IP of the MSE of Table XIII for E1, E2,
and sunspots obtained tuning the membership
functions with the KBs obtained with the WM
method.

E1 E2 Sunspots

Training
IP~S~CDubois!! 37.37 74.49 53.36
IP~S~CDombi!! 36.69 74.73 47.98
IP~S~CFrank!! 37.02 80.97 48.98

Test
IP~S~CDubois!! 7.05 69.02 26.79
IP~S~CDombi!! �2.74 67.71 14.31
IP~S~CFrank!! �4.54 77.76 26.21

Table XVI. IP of the MSE of Table XIV for E1,
E2, and sunspots obtained tuning the membership
functions with the KBs obtained with the Thrift
method.

E1 E2 Sunspots

Training
IP~S~CDubois!! 22.95 75.47 41.52
IP~S~CDombi!! 23.42 71.73 42.91
IP~S~CFrank!! 22.31 74.38 36.72

Test
IP~S~CDubois!! �28.79 65.30 21.29
IP~S~CDombi!! 4.58 66.24 36.68
IP~S~CFrank!! �20.72 67.73 33.04
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Table XVII. MSE presented by the EAIS employing the previously tuned membership
functions KB with the KBs obtained with the WM method.

E1 E2 Sunspots

MSE SD MSE SD MSE SD

Training
MSE~S~CDubois!! 130,622.64 8751.74 10,759.67 663.30 63.76 0.11
MSE~S~CDombi!! 128,056.36 7168.05 9,022.45 451.44 64.69 0.11
MSE~S~CFrank!! 128,254.02 7832.27 9,435.29 445.51 59.38 0.01

Test
MSE~S~CDubois!! 224,588.05 49,825.32 14,228.34 2307.87 259.22 0.81
MSE~S~CDombi!! 232,642.87 56,992.76 13,748.90 3833.72 298.70 7.19
MSE~S~CFrank!! 221,045.49 42,347.41 12,216.03 2009.04 305.69 0.01

Table XVIII. MSE presented by the EAIS employing the previously tuned membership
functions KB with the KBs obtained with the Thrift method.

E1 E2 Sunspots

MSE SD MSE SD MSE SD

Training
MSE~S~CDubois!! 127,018.98 3,123.36 7770.98 138.02 57.80 0.23
MSE~S~CDombi!! 134,199.07 16,700.86 7507.92 426.58 55.48 1.13
MSE~S~CFrank!! 128,489.48 4,530.78 8509.98 1669.17 53.87 0.26

Test
MSE~S~CDubois!! 252,411.04 71,061.56 12,267.53 2967.92 304.92 2.50
MSE~S~CDombi!! 233,469.22 39,703.17 11,290.64 113.53 239.59 14.27
MSE~S~CFrank!! 253,108.35 100,067.61 12,380.31 977.12 327.15 19.80

Table XIX. IP of the MSE shown by Table XVII
concerning Table V with the KBs obtained with the
WM method.

E1 E2 Sunspots

Training
IP~S~CDubois!! 38.32 80.83 55.93
IP~S~CDombi!! 39.07 83.72 52.54
IP~S~CFrank!! 39.01 88.27 51.06

Test
IP~S~CDubois!! 1.32 74.75 38.00
IP~S~CDombi!! �3.82 75.24 27.20
IP~S~CFrank!! 0.07 84.84 24.44

INCREASING FUZZY RULES COOPERATION 1051

International Journal of Intelligent Systems DOI 10.1002/int



Table XX. IP of the MSE shown by Table XVIII
concerning Table VI with the KBs obtained with the
Thrift method.

E1 E2 Sunspots

Training
IP~S~CDubois!! 24.25 88.60 51.13
IP~S~CDombi!! 20.85 88.21 52.28
IP~S~CFrank!! 23.81 89.39 43.46

Test
IP~S~CDubois!! �28.84 82.13 18.19
IP~S~CDombi!! �2.76 85.23 44.68
IP~S~CFrank!! �18.94 86.84 25.30

Table XXI. MSE presented tuning the membership functions together with the EAIS
parameters with the KBs obtained with the WM method.

E1 E2 Sunspots

MSE SD MSE SD MSE SD

Training
MSE~S~CDubois!! 128,221.17 7871.52 8751.82 575.49 55.66 2.08
MSE~S~CDombi!! 121,482.12 8099.42 7818.85 647.30 59.54 1.89
MSE~S~CFrank!! 127,069.59 8118.14 9526.95 587.66 50.79 0.89

Test
MSE~S~CDubois!! 195,568.21 26,216.73 11,912.64 2031.94 276.97 32.44
MSE~S~CDombi!! 208,155.76 37,347.05 11,257.84 2646.91 370.33 57.60
MSE~S~CFrank!! 215,760.09 87,979.12 12,286.52 1781.26 296.72 15.58

Table XXII. MSE presented tuning the membership functions together with the EAIS
parameters with the KBs obtained with the Thrift method.

E1 E2 Sunspots

MSE SD MSE SD MSE SD

Training
MSE~S~CDubois!! 125,608.51 3883.47 4897.92 353.39 51.78 138.02
MSE~S~CDombi!! 121,275.28 2892.96 5756.68 691.45 54.44 426.58
MSE~S~CFrank!! 125,902.53 5432.17 7772.74 1939.89 50.54 1669.17

Test
MSE~S~CDubois!! 204,230.16 23,655.02 9,416.76 3809.34 279.30 2967.92
MSE~S~CDombi!! 206,733.75 18,239.51 8,874.23 954.05 303.51 113.53
MSE~S~CFrank!! 210,823.18 24,547.44 11,124.18 2544.66 317.08 977.12
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process of the membership functions, getting higher error reduction than consid-
ering both processes independently.

4.3. Increasing the Granularity

This section is dedicated to analyzing the effect of increasing the granularity
of the variables, that is, the number of labels employed in the partitions. Some-
times, this method can be an easy way to improve the accuracy of the FMs, partic-
ularly when the bigger granularity is achieved in the consequent. It is an alternative
possibility for improving the fuzzy system accuracy. We can compare both approx-
imations tuning versus granularity increasing.

First, we will study the influence of other choices in the MSE presented by
the original Rule Bases obtained with the WM method. The results are shown in
the following tables:

• Tables XXV and XXVI belong to application E1 whereas Tables XXVII to XXIX belong
to application E2. They show the MSE presented by the Knowledge Bases for every

Table XXIII. IP of the MSE shown by Table XXI
concerning Table V with the KBs obtained with the
WM method.

E1 E2 Sunspots

Training
IP~S~CDubois!! 39.45 84.41 61.53
IP~S~CDombi!! 42.20 85.89 56.32
IP~S~CFrank!! 39.57 88.16 58.14

Test
IP~S~CDubois!! 14.07 78.86 33.75
IP~S~CDombi!! 7.11 79.73 9.74
IP~S~CFrank!! 2.46 84.76 26.66

Table XXIV. IP of the MSE shown by
Table XXIII concerning Table VI with the KBs
obtained with the Thrift method.

E1 E2 Sunspots

Training
IP~S~CDubois!! 25.09 92.81 56.22
IP~S~CDombi!! 28.48 90.96 53.18
IP~S~CFrank!! 25.34 90.31 46.95

Test
IP~S~CDubois!! �4.24 86.28 25.07
IP~S~CDombi!! 9.01 88.39 29.92
IP~S~CFrank!! 0.93 88.17 27.60
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partition as well as the number of rules obtained when we use some combinations of
labels for the antecedents/consequent ~5/5, 5/7, 5/9, 7/7, 7/9, and 9/9! of the variables.

• Tables XXX to XXXII show the MSE presented by the Knowledge Bases for the
sunspots data set. The combinations of labels computed were 3/3, 3/5, 3/7, 5/5, 5/7,
and 7/7.

Taking into account that the original partition employed for application E1

was seven labels for the antecedent and seven labels for the consequent, we can
observe in Tables XXV and XXVI that we do not get better results when we increase
the granularity than with the initial granularity ~7/7!.

Application E2 was partitioned with 5/5, that is, five labels for the anteced-
ents and five labels for the consequents. We have usually gotten better results than
for the initial ones when we increase the granularity. In all cases these new results
are far from those that we obtain via the tuning. Therefore the tuning may be con-
sidered a better mechanism for improving the accuracy.

Finally, the sunspot time series originally employed with three labels for the
antecedents and the consequent ~results in Tables XXX to XXXII!. The results

Table XXV. MSE and number of rules presented by the five different partitions
used employing the WM method with 7/7 and 7/9 labels for E1.

7 labels ant./7 labels cons. 7 labels ant./9 labels cons.

MSE MSE

#R Training Test Training Test

Partition 1 22 218,644.02 196,974.69 248,458.91 236,081.59
Partition 2 20 211,788.63 252,227.86 295,064.19 337,428.78
Partition 3 23 201,959.30 235,773.61 205,054.81 277,017.84
Partition 4 21 203,868.78 212,921.75 230,652.75 301,492.59
Partition 5 24 222,622.75 240,018.50 239,633.16 330,582.31
Mean MSE 211,776.69 227,583.28 243,772.76 296,520.63

Table XXVI. MSE and number of rules presented
by the five different partitions used employing the
WM method with 9/9 labels for E1.

9 labels ant./9 labels cons.

MSE

#R Training Test

Partition 1 30 204,625.59 234,941.27
Partition 2 28 282,412.03 339,344.97
Partition 3 30 200,226.84 293,158.28
Partition 4 28 293,592.38 312,416.34
Partition 5 29 197,613.66 283,645.19
Mean MSE 235,694.10 292,701.21
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Table XXVII. MSE and number of rules presented by the five different partitions
used employing the WM method with 5/5 and 5/7 labels for E2.

5 labels ant./5 labels cons. 5 labels ant./7 labels cons.

MSE MSE

#R Training Test #R Training Test

Partition 1 65 54,148.87 62,719.16 65 44,575.02 54,985.05
Partition 2 65 57,562.54 49,048.29 65 59,793.17 55,354.45
Partition 3 65 54,853.61 59,896.96 65 46,324.49 47,978.95
Partition 4 65 58,031.76 55,149.77 65 46,506.70 47,249.28
Partition 5 65 56,081.95 54,982.91 65 47,577.53 42,982.64
Mean MSE 56,135.75 56,359.42 48,955.38 49,710.07

Table XXVIII. MSE and number of rules presented by the five different partitions
used employing the WM method with 5/9 and 7/7 labels for E2.

5 labels ant./9 labels cons. 7 labels ant./7 labels cons.

MSE MSE

#R Training Test #R Training Test

Partition 1 65 64,177.76 81,890.68 102 54,514.89 70,262.36
Partition 2 65 67,726.49 67,679.17 104 53,003.75 51,968.31
Partition 3 65 68,599.83 62,963.25 103 49,334.38 61,391.48
Partition 4 65 65,391.13 69,897.65 104 54,405.44 51,091.46
Partition 5 65 70,052.98 58,417.45 104 54,205.27 42,762.89
Mean MSE 67,189.64 68,169.64 53,092.75 55,495.30

Table XXIX. MSE and number of rules presented by the five different partitions
used employing the WM method with 7/9 and 9/9 labels for E2.

7 labels ant./9 labels cons. 9 labels ant./9 labels cons.

MSE MSE

#R Training Test #R Training Test

Partition 1 102 32,968.54 45,989.63 126 30,428.66 34,888.71
Partition 2 104 34,283.67 29,444.22 130 31,621.75 32,045.95
Partition 3 103 44,066.95 54,232.24 130 33,616.13 29,731.99
Partition 4 104 31,851.72 38,270.32 129 31,883.31 42,614.27
Partition 5 104 35,671.00 26,431.35 130 32,279.15 33,531.31
Mean MSE 35,768.38 38,873.55 31,965.80 34,562.45
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have been improved by the combination 3/5, but they have not improved by the
other combination with a high number of labels per antecedent and consequent. Of
course, we get better results in the training but not in the test, where we get very
high error.

The application of tuning of membership functions together with EAIS offers
in general better results than the approximation based on increasing the granularity.

Finally, we have decided to apply the tuning to the 3/5 partition Knowledge
Base of sunspots with the EAIS and tuning of membership functions:

• Table XXIII shows the initial values for the KB obtained with the WM method using the
three adaptive t-norms with the parameters of Table VII.

• Table XXXIV presents the values obtained using the EAIS, and Table XXXV presents
the IP reached using EAIS. There are only improvements over the training data set, but
the Dombi t-norm rule connective reveals an important overfitting.

The next step was to tune the membership functions. Table XXXVI shows the
MSE of the tuned database, and Table XXXVII presents the IPs of Table XXXVI.
Database tuning gets important improvements, but overfitting appears using Dubois
and Dombi t-norms.

We used EAIS with the tuned KBs. Table XXXVIII includes the MSE results
of the EAIS process, whereas Table XXXIX shows the IP of Table XXXVIII. We
again find overfitting in two cases.

Finally, we made use of a model with both adaptive elements together: EAIS
and database tuning. It learns parameters of the rule connectives and database val-
ues jointly, in the same evolutionary process. Table XL shows the MSE for the
adaptation of both conjunction connective and membership functions. Table XLI

Table XXX. MSE and number of rules employing the
WM method with 3/3 and 3/5 labels for sunspots.

3 labels ant./3 labels cons. 3 labels ant./5 labels cons.

MSE MSE

#R Training Test #R Training Test

21 144.69 418.06 21 190.53 254.69

Table XXXI. MSE and number of rules employing the
WM method with 3/7 and 5/5 labels for sunspots.

3 labels ant./7 labels cons. 5 labels ant./5 labels cons.

MSE MSE

#R Training Test #R Training Test

21 199.97 349.03 60 147.95 600.39
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presents the corresponding IPs. The training improvements are important, but it is
easy to reach overfitting again.

As a final conclusion of this subsection, we must say that, in general, with the
tuning approaches we get better results than increasing the granularity. When we
increase the granularity we cannot be sure of improving the accuracy ~see exam-
ples E1 and sunspots!.

Table XXXII. MSE and number of rules employing the
WM method with 5/7 and 7/7 labels for sunspots.

5 labels ant./7 labels cons. 7 labels ant./7 labels cons.

MSE MSE

#R Training Test #R Training Test

60 145.06 591.69 93 113.59 664.96

Table XXXIII. MSE values for
sunspots with the KB obtained with
the WM method using three labels in
the antecedents and five labels in the
consequents.

Training
MSENA~S~CDubois!! 190.53
MSENA~S~CDombi!! 185.00
MSENA~S~CFrank!! 167.68

Test
MSENA~S~CDubois!! 254.69
MSENA~S~CDombi!! 246.91
MSENA~S~CFrank!! 223.92

Table XXXIV. MSE for sunspots using
EAIS with the KB obtained with the WM
method using three labels in the antecedents
and five labels in the consequents.

MSE SD

Training
MSENA~S~CDubois!! 138.38 0.06
MSENA~S~CDombi!! 134.82 0.22
MSENA~S~CFrank!! 129.69 0.02

Test
MSENA~S~CDubois!! 236.09 2.02
MSENA~S~CDombi!! 459.89 2.94
MSENA~S~CFrank!! 238.58 0.35

Table XXXV. IP of Table XXXIV.

Training
MSENA~S~CDubois!! 27.37
MSENA~S~CDombi!! 27.12
MSENA~S~CFrank!! 22.66

Test
MSENA~S~CDubois!! 7.30
MSENA~S~CDombi!! �86.26
MSENA~S~CFrank!! �6.54
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Table XXXVI. MSE for sunspots obtained
tuning the membership functions with the KB
obtained with the WM method using three
labels in the antecedents and five labels in
the consequents.

MSE SD

Training
MSENA~S~CDubois!! 73.22 0.38
MSENA~S~CDombi!! 73.18 1.97
MSENA~S~CFrank!! 67.98 0.13

Test
MSENA~S~CDubois!! 304.31 63.66
MSENA~S~CDombi!! 274.56 44.77
MSENA~S~CFrank!! 223.77 12.56

Table XXXVII. IP of Table XXXVI.

Training
MSENA~S~CDubois!! 61.57
MSENA~S~CDombi!! 60.44
MSENA~S~CFrank!! 59.46

Test
MSENA~S~CDubois!! �19.48
MSENA~S~CDombi!! �11.20
MSENA~S~CFrank!! 0.07

Table XXXVIII. MSE of EAIS method
employing the previously tuned membership
functions KB.

MSE SD

Training
MSENA~S~CDubois!! 68.68 0.27
MSENA~S~CDombi!! 61.81 1.01
MSENA~S~CFrank!! 62.54 0.23

Test
MSENA~S~CDubois!! 368.12 6.98
MSENA~S~CDombi!! 227.10 2.25
MSENA~S~CDombi!! 253.93 0.63

Table XXXIX. IP of Table XXXVIII.

Training
MSENA~S~CDubois!! 63.95
MSENA~S~CDombi!! 66.59
MSENA~S~CFrank!! 62.70

Test
MSENA~S~CDubois!! �44.54
MSENA~S~CDombi!! 8.02
MSENA~S~CFrank!! �13.40

Table XL. MSE presented tuning the
membership functions together with the
EAIS parameters.

MSE SD

Training
MSENA~S~CDubois!! 57.94 0.48
MSENA~S~CDombi!! 64.47 3.82
MSENA~S~CFrank!! 60.91 2.72

Test
MSENA~S~CDubois!! 225.24 94.74
MSENA~S~CDombi!! 331.16 80.06
MSENA~S~CFrank!! 258.26 106.26

Table XLI. IP of Table XL.

Training
MSENA~S~CDubois!! 69.59
MSENA~S~CDombi!! 65.15
MSENA~S~CFrank!! 63.68

Test
MSENA~S~CDubois!! 11.56
MSENA~S~CDombi!! �34.12
MSENA~S~CFrank!! �15.33
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In particular, we have focused attention on the sunspots problem for three
labels in the antecedent and five labels in the consequent, with good results. In this
case, when we use the evolutionary tuning, we get better results in training but
only slight improvements in test for some conjunction operators. We get high SD
values in the test; this show a high dispersion of the results per run.

It would be of interest to analyze this behavior of the evolutionary algorithms
and to design a more robust evolutionary algorithm for the tuning of membership
functions and EAIS. On the other hand, according to these results we cannot be
sure of getting the best results via tuning and EAIS if we have used a high granu-
larity due to possible overfitting.

5. CONCLUDING REMARKS

In the framework of improving the accuracy of linguistic fuzzy systems, the
tuning of system components is a helpful alternative. EAIS are a valuable option.
In this work we have studied their models, types, and relationship with other sys-
tem components, presenting empirical results of several EAIS.

The improvement shown by the combination of the EAIS tuning process
together with the membership function tuning is important. It gets improvements
when being used with KBs easily obtained or with those learned with more
advanced methods.
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APPENDIX: APPLICATION BENCHMARKS

Two electrical distribution problems described in Ref. 30 and a classical prob-
lem of a time series of sunspots have been selected to analyze the performance of
the EAIS methods in FM. The first application, E1, is the estimation of the low
voltage network real length in rural villages, the second application, E2, is the
estimation of the electrical medium voltage network maintenance cost in a town,
and the third application, sunspots, is a time series prediction used in the literature
to measure the performance of prediction and modeling systems.

E1 Application

The data set has two inputs and a single output from 495 villages. The domains
of the input variables are @1, 320# and @60, 1673# , respectively. The output variable
takes values in the interval @80, 7675# . The input and output variable domains
have been partitioned with seven labels $ES, VS, S, M, L, VL, EL% as shown in
Figure A.1, with the following meaning:

ES is extremely small
VS is very small
S is small
M is medium
L is large
VL is very large
EL is extremely large.

Two kinds of rule bases have been obtained: on the one hand, the rule bases
are composed of 20 to 24 linguistic rules depending on the partition, obtained with
the Wang and Mendel method.22 On the other, the rule bases are composed of 42 to
47 rules achieved with the Thrift evolutionary learning method.23 Both have been
obtained from data training sets of 80% of the original available data, that is, 396
villages taken randomly. We have considered fivefold cross validation; therefore
we get five rule bases associated with the five training sets.

The evaluation of the different fuzzy models composed of the EAIS methods
have been carried out with the remaining 20% of the initial data set, that is, with
data from 99 villages.

Figure A.1. Fuzzy partition considered for the input and output variables of E1.

INCREASING FUZZY RULES COOPERATION 1061

International Journal of Intelligent Systems DOI 10.1002/int



E2 Application

The second electrical distribution problem, E2, has a data set of 1059 cities
with four input variables and a single output. The input variable domains are @0.5,
11# , @0.15, 8.55# , @1.64, 142.5# , and @1, 165# , respectively, whereas the output
variable domain is @0, 8546.030273# . The fuzzy partition employed for inputs and
output has five labels $MP, P, M, G, MG%, where

VS is very small
S is small
M is middle
L is large
VL is very large.

We have two kinds of rule bases: those composed of 65 linguistic rules
achieved with the Wang and Mendel method22 and those obtained with the Thrift23

method, with about around 520 rules. Both have also been obtained from training
data sets of 80% of the original available data, that is, 847 cities taken randomly.
Evaluation of the fuzzy models has been carried out with the remaining 20% of the
initial data set, that is, with data from 212 cities. In the same way, we have consid-
ered a five-fold cross validation.

The Sunspots Time Series

Sunspots, often larger in diameter than the earth, are dark blotches on the
sun. They were first observed around 1610, shortly after the invention of the tele-
scope.31 Yearly averages have been recorded since 1700. The sunspot numbers are
defined as k~10g � f !, where g is the number of sunspot groups, f is the number of
individual sunspots, and k is used to reduce different telescopes to the same scale.35

The observations are shown as black squares in Figure A.2. The average time
between maxima is 11 years. Notice, however, that the time between maxima ranges
from 7 to 15 years.

The underlying mechanism for sunspot appearances is not exactly known. No
first-principles theory exists, although it is known that sunspots are related to other
solar activities. For example, the magnetic field of the sun changes with an aver-
age period of 22 years. Sunspots usually appear in pairs, corresponding to mag-
netic dipoles. Sunspot pairs reverse their polarity from one cycle to the next,
reflecting the underlying magnetic cycle. The sunspot series has served as a bench-
mark in the statistics literature.

The goal of time series prediction can be stated succinctly as follows: given
a sequence y~1!, y~2!, . . . , y~N ! up to time N, find the continuation y~N � 1!,
y~N � 2! . . . . The series may arise from sampling of a continuous time system
and be either stochastic or deterministic in origin.

In time-series prediction, there are two forms to measure the output errors:

• Single-step prediction: where external inputs to the method are true observed data.
• Iterative prediction: where external inputs to the method are predicted outputs from

previous iterations.

1062 ALCALÁ-FDEZ ET AL.

International Journal of Intelligent Systems DOI 10.1002/int



Single-step prediction has been usually used in the literature. In this way, we
will use single-step prediction to analyze the methods. To estimate the perfor-
mance of the methods we check the MSE. This kind of fitting error describes how
well the points are approximated by the surface over the input space.

Many works try to analyze the sunspot data using linear and nonlinear meth-
ods. The sunspot of years 1700 through 1920 were chosen to be the training set,
and the sunspots of years 1921 through 1994 were chosen for single-step predic-
tion, where the error is computed.

In this work we have a temporal window with four delays. These delays are
the 1, 2, 4, and 8 delay from the predicted data. In Figure A.3, we can see the
windows considered.

Therefore, we will only use four points, but we will cover eight delays ~as
was proposed in Ref. 36!. Because this problem will be solved with fuzzy
modeling-based techniques, each delay should be considered as an input variable

Figure A.2. The sunspot data.

Figure A.3. Temporal window.
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for these kinds of methods. Following this approach, all the methods consider
four input variables.

The fuzzy partition employed for inputs and output has three labels. Two
kinds of rule bases have been employed: the one obtained with the Wang and Men-
del method22 composed of 21 rules, and the one composed of 62 rules achieved
with Thrift learning method.23 Both have been obtained from a training data set of
74 examples. Evaluation of the fuzzy models has been carried out with data set of
213 examples.
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