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Abstract

We review two existing interpretations of fuzzy random variables.
In the first one, the fuzzy random variable is viewed as a linguistic
random variable. In the second case, it represents some incomplete
knowledge about an otherwise standard random variable. For each
interpretation, the information provided by the frv is described by a
specific model, namely a standard probability model and a second-
order imprecise model, respectively. In this paper, we deal with an
alternative interpretation. Guided by simple examples we will observe
the usefulness of each interpretation when applied to particular situa-
tions. Then we will demonstrate that the new interpretation leads, in
a natural way, to pair of order co capacities. Furthermore, we show
that they are formally related to the former models. These results can
be applied in future works to make inferences from fuzzy sample data.
The use of upper-lower models instead of second-order models will en-
able us in the future to reach crisp decisions in some specific statistical
problems, without adding any arbitrary information, and taking into
account the imprecision in data.
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1 Introduction

A fuzzy random variable, X, is a mapping that assigns a fuzzy subset of
the final space, X (w) € F(Q2), to any element of the initial space, w €
Q1 (provided of probability space structure). This association expresses
some imprecise information about the relation between the outcomes in
both universes. Thus, the concept of fuzzy random variable extends the
classical definition of random variable. In fact, a random variable assigns
an element in {25 to each outcome wy € {21. So it expresses a deterministic
relation between ©; and Q9. (Once an element from ; has been selected,
the element in 2 is univocally determined.)

From a formal point of view, the concept of fuzzy random variable (frv
for short) is not unique, and each definition in the literature differs from
the others in the structure of the final space and the way the measurability
condition is transferred to this context. On the other hand, fuzzy random
variables have been given different interpretations in the literature (see [8] for
a detailed discussion), independently from the specific formal definition. Let
us now briefly recall two different interpretations existing in the literature.

In [40], Puri and Ralescu consider that the observations of some ran-
dom experiments do not consist of numerical outputs, but are represented
by vague linguistic terms. When, in particular, the fuzzy random variable
has a finite number of images, probability values can be assigned to differ-
ent “fuzzy labels”. For example, the following model could be generated:
the result is “high” with probability 0.5, “medium” with probability 0.25
and “low” with probability 0.25, where “high”, “medium” and “low” are
linguistic labels associated to fuzzy subsets of the final space.

Kruse and Meyer [24] offer an alternative interpretation of fuzzy random
variables, as the representation if ill-known random variables. The fuzzy
random variable induces an “acceptability function” defined over the class
of all (classical) random variables. In this setting, an acceptability function
over the class of all possible probability distributions is defined (see [8])
in a natural way. It represents the available information about the true
probability distribution of the random experiment under study. From a
theoretical point of view, this model is a second-order possibility distribution
([11, 13]): the information about the true probability is represented by a
possibility measure defined over the class of all probability measures.

In this paper, we deal with an additional interpretation of fuzzy random
variables, different from Puri-Ralescu and Kruse-Meyer approaches. The
essential difference wrt Kruse-Meyer’s approach focusses on the omission
of the assumption about the existence of an underlying (classical) random



variable. Under the new interpretation, the final outcome in €2y is not as-
sumed to be determined by the initial outcome w; € €1, and so, the frv
does not represent an acceptability function over the class of random vari-
ables anymore. Anyway, the new interpretation is in accordance with the
possibilistic interpretation of fuzzy sets, as well as the Kruse and Meyer’s
approach. More specifically, suppose that we have partial information about
the probability distribution that models a sequence of two random exper-
iments on 2 and ()3, respectively. Suppose, on the one hand, that the
probability distribution that models the first one, P, is completely deter-
mined. On the other hand, the second experiment is only known via a family
of conditional possibility measures. This family models our knowledge about
the relationship between the outcome of the first sub-experiment and the
possible outcomes of the second one. (If the result of the first experiment is
w, then the possibility degree of z occurring in the second one is X (w)(z).)
The combination of both sources of information leads us to describe, in a
natural way, the available information about the probability distribution on
Qo (the probability distribution that rules the second sub-experiment) by
means of an upper probability (a standard imprecise probability model, not
an order-2 model, like the one described before.) This interpretation has
been already introduced in [1, 3, 4, 5]. In [1], the specific situation where
the frv is built from a crisp random variable and a fuzzy set in a finite en-
vironment have been studied. In [5], the notion of expectation is studied
under this new perspective. But the differences among the three approaches
becomes more clear for the concept of variance. In [3], the usefulness of
each of the three definitions of variance when applied to particular situa-
tions is raised, under the light of simple examples. In the present paper,
we study the formal relationships between the three models associated to
each of the three interpretations (the probability measure associated to the
frv, the second-order possibility distribution, and the upper-lower model).
We also show that the upper and lower probabilities are, in fact, oo-order
capacities. Furthermore, we define a specific multi-valued mapping inducing
such capacities, providing it with a meaningful interpretation. Finally we
show that the upper and lower probabilities associated to this new approach
admit an alternative interpretation under the Kruse-Meyer approach. It is
based on a method developed by Walley [48], where an upper-lower proba-
bility model is derived from any second-order possibility measure, by using
natural extension techniques.

The paper is organized as follows. In Section 2, we provide the necessary
technical background. In Section 3, we recall Puri-Ralescu and Kruse-Meyer
approaches. We show that these interpretations lead to a classical probabil-



ity model and a second-order imprecise probability model, respectively. In
Section 4, we introduce the third interpretation of fuzzy random variables
as families of conditional possibility measures (the one described in the last
paragraph). We describe in Section 5 the upper-lower model associated to
it. We check in Section 6 that the upper and lower probabilities given in
Section 5 are, in fact, co—order capacities, and we define a multi-valued
mapping associated to them. We will also give an intuitive interpretation
to this multi-valued mapping and show how it encompasses the same in-
formation as the initial fuzzy random variable. In Section 7, we will show
the relationships between the upper and lower model given in Section 5,
the classical and the second-order imprecise model recalled in Section 3. In
particular we will show that the upper-lower model given in Section 5 coin-
cides with the reduction (applying Walley’s technique) of the second-order
possibility model. We will derive some interesting consequences. We end
the paper with some concluding remarks.

2 Preliminary concepts and notation

In this section, some definitions needed in the rest of the paper are recalled.

A fuzzy set w is identified with a membership function from a universe
U to the unit interval. The value m(u) is the membership degree of element
u in the fuzzy set. In this paper, a fuzzy set is interpreted as a possibil-
ity distribution. Then 7(u) is interpreted as the possibility degree that u
coincides with some imprecisely known element ug € U. Throughout the
paper, we will use the notation m to denote a possibility distribution and
—the membership function of- its associated fuzzy set. For any « € [0, 1] we
will denote by 7, the (weak) a—cut of 7:

Toa={uelU : m(u) >a}
For any « € [0,1), & will denote the strong a—cut of 7 :
Toa={uelU : m(u) >a}

We will use the notation II to denote the possibility measure associated to
. (I(C) = sup({w(u) : uw e C}),vC C U.) We will say that II is normal
when II(U) = 1. We will denote by F(U) the class of all fuzzy subsets of U.
A graded set [21] of U is a multi-valued mapping ¢ : [0,1] — @(U)
satisfying
Va8 € 0,1],[a < 6= pla) 2 w(d)).



For an arbitrary graded set ¢, there exists a unique fuzzy set, 7, : U — [0, 1]
satisfying:
[To]a C ¢(a) C [1yla, Va € (0,1).

Furthermore, it can be calculated from ¢ as:
mo(u) = sup{a : u € p(a)},Vu e U.

Consider a probability space (21,41, P;) and an arbitrary measurable
space (A,o4). Given an A; — o measurable mapping, f: Q; — A, we will
denote by P; o f~! the probability measure it induces on oy, i.e.:

Pyo f7Y(B):=Pi(f1(B)), VB € o,
where f~1: o(A) — p(Q1) is the mapping defined as
fAB)={weQ: f(w)e B}, VBCA.

Let us now consider the measurable spaces, (21,01) and (22, 02), and the
multi-valued mapping I' : Q1 — ©(2) with non-empty images. Let B € o9
be an arbitrary measurable set. The upper inverse of B is the set

I'"(B)={we : T(w)NB #0}.
The lower inverse of B is the set
I'v(B)={we : T'(w) C B} =[I""(B)".

I' is said to be strongly measurable [36] when I'*(B) € 01, V B € g2. We will
say that the multi-valued mapping ' : Q1 — p(€Qs9) is a random set when
it is strongly measurable. We will denote by S(I') the class of measurable
selections of I':

S(T) ={X: Q1 — Qa, 01 — 02 measurable : X(w) € I'(w), Vw € Q1 }.
Given a probability measure P, on (€;,01), we will respectively denote
by Pf : 09 — [0,1] and Py : 02 — [0,1] the Dempster upper and lower
probabilities associated to I,

Pi(B) = Pi(T*(B)) = Pl{w € Q1 : T(W)NB#£0}), VB € oo,

P*F(B) = Pl(F*(B)) = Pl({w S Ql : F(w) - B}), VB € os.



We can easily check that, for each measurable selection X € S(I'), the
following inclusion relations hold:

I'.(B) C X YB) CI'*(B), VB € 0.

Thus, the upper probability dominates every probability measure induced
by a measurable selection of T, i.e., for every B € o9:

Py(B) = Py o X~'(B) = Pi(X™!(B)) < Pi(T*(B)) = PA(B),¥ X € S(I),
and the lower probability is dominated by it, i.e., for every B € o9:
Px(B) =P o X }B)=P(X YB)) > P/(I'.(B)) = P,r(B),VX € S(I).
Thus, the class of probability measures associated to the selections of I':
P(T) = {Px : X € S(I)}
is included in the class of probability measures dominated by Py,
{P:09 —[0,1] prob. : P(B) < PA(B), VB € 02} =

{P:09 — [0,1] prob. : P,r(B) < P(B) < P(B), VB € 03}

Further relationships between both classes are investigated in [26, 27, 30,
31, 32]. From now on, for every B € o9, we will denote by P(T")(B) the
subset of [0, 1] determined as follows:

PI)(B)={Q(B) : Qe P(I')} ={Px(B) : X € S(I)}.

On the other hand, the upper probability of I' represents the same infor-
mation as the probability measure induced by I' (considered as a “classical”
measurable function). In fact, consider, for each B € o9, the family of sets:

Cp={Cecoy:CNB+0}.

Also consider the o—algebra, o¢, generated by the class C = {Cp : B € 039}
on the universe of “elements” ©({22). We can easily check that I" is strongly
measurable if and only if it is 07 — o¢ measurable (regarded as a classical
function and not as a multi-valued one). Furthermore, the probability mea-
sure induced by I' on o¢ (the probability measure Py o I'™!) determines P;.
In fact, the following equalities hold:

Py ol YCp) = P(I'"'(CB)) = P.(I'*(B)) = Pi(B), VB € 0.



And the converse is also true: the upper probability univocally determines
PoT~! since the class {C} : B € o2} is a m-system (it is closed for
intersections) so there cannot exist a different probability on o¢ agreeing
with P; oI'~! on C, according to a well known result in Probability Theory
(see [2], Theorem 3.3, for instance.) Let now X : Q; — F(Q2) be an
arbitrary fuzzy—valued mapping. For each a € [0,1], we will denote by
X, the a-cut of X, i.e., the multi-valued mapping X, : O — ©(Q9) that
assigns, to each w € Qy, the (weak) a—cut of X (w). We will say that X is a
fuzzy random variable when every a—cut, X'a, is strongly measurable. This
condition is equivalent to a “classical” measurability assumption. In fact,
consider, for each B € o2 and each a € [0, 1], the family of sets:

Fp={Fe€F(Q): F,NB#0D}.
Now denote by or the o—algebra generated by the class:
{Fg,: B€oy,ac|0,1]} C p(F(Q)).

We can easily check that a fuzzy-valued mapping is a frv if and only if it is
o1 — oF measurable.

Given an arbitrary non-negative mapping f : Q; — RT, we will denote
by (C) [ fdu the Choquet integral of f with respect to the set-function
p:op —[0,1]:

(C)/fdu=/ooou(f>w)dx-

When g is an alternating capacity of order 2, the following equality holds:

(C)/fdMZSUP{/fdP:PSM},

where P < p means that P is dominated by u i.e. P(A) < u(A), VA € o;.

A possibilistic probability (or a “fuzzy probability”) [11], P : o —
F([0,1]), is a map taking each event! B € o9 to a normal possibility dis-
tribution, P(B) on [0,1]. Its value P(B)(p) in a point p € [0,1] can be
interpreted as the modeller’s “upper betting rate” that the true probability
of the event B is equal to p. (The supremum of the prices one is willing to
pay for gaining 1 unit in probability currency, if the actual probability of B
coincides with p).

IThe concept of possibilistic probability is a particularization of that of “possibilistic
prevision”. A possibilistic prevision is defined on a general set of “gambles” instead of a
set of events.



Let P,, denote the class of all probability measures that can be defined
on oy. A possibilistic probability P is called representable [11] if there is a
(second-order)? normal possibility distribution  : Py, — [0, 1] that repre-
sents P, i.e., such that for all p € [0,1] and A € oy,

P(A)(p) = sup{m(Q) : Q € Ps,, Q(A) =p}.

3 Different interpretations for fuzzy random vari-
ables in the literature

Fuzzy sets have been given different interpretations [16], therefore a fuzzy
random variable admits various meanings. In the remaining part of this sec-
tion, we are going to review two interpretations of fuzzy random variables
outlined in the introduction of this paper. For each interpretation, we will
describe the information provided by the fuzzy random variable by means of
a different model. It will be shown that these interpretations lead to a clas-
sical probability model, and a second-order possibility model, respectively.

3.1 Linguistic random variables

As we pointed out in the introduction, Puri and Ralescu ([40]) claim that
the observations of some random experiments do not consist of numerical
outputs, but are represented by vague linguistic terms. According to this
idea, the fuzzy random variable, X : Q; — F (Q2) is a measurable function,
in the classical sense, between certain o-algebra of events in the original
space, 1, and a o-algebra® defined over a class of fuzzy subsets in €, @.
In this context, the probability distribution induced by the fuzzy random
variable can be used to summarize the probabilistic information that the
variable provides us. We will denote by P; o X1 the probability measure
induced by X on @, i.e.:

PoX Y F)=P({weQ : X(w) e F}), VFeao.

Within this framework, we can use the tools of general Probability Theory
to extend classical concepts and results, by reproducing classical techniques.
The following example illustrates this approach. It has been taken from [40].

2The term “second-order” reflects that this possibility distribution is defined over a
set of probability measures. In the general setting, the initial space is the class of linear
previsions (including o-additive probability as particular cases).

3The o—algebra o+ considered in the last section represents a particular case of this
situation.



Example 3.1. Consider a person who is questioned about the weather in a
particular city some winter day chosen at random. Some possible answers
would be “cold”, “more or less cold”, “very cold”, “extremely cold”, and so
on. A natural question arising with reference to this example are: What is
the probability that the answer is “very / extremely cold” (In other words,
which is the proportion of winter days where he would answer “very cold”
or “extremely cold”)? We can answer this question by means of the induced
probability distribution.

Unfortunately, this kind of mathematical model is not useful to repre-
sent the imprecise observations of the outcomes of a random experiment
[22, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47], since it provides numerical (crisp)
probabilities for fuzzy events, that do not reflect ill (imprecise) knowledge
about the probabilities of crisp events. In the next subsection, we will
overview an alternative model proposed by Kruse and Meyer in [24].

3.2 Ill-known classical random variables

Kruse and Meyer [24] choose a possibilistic interpretation of fuzzy sets. Each
fuzzy set is viewed as modeling incomplete knowledge about an otherwise
precise value. These authors claim that the fuzzy random variable represents
imprecise or vague knowledge about a classical random variable, Xg : 2 —
s, to which they refer to as the “original random variable.” Therefore, the
membership degree of a point x to the fuzzy set X (w) will represent the
possibility degree of the assertion

“The true image of element w, Xy(w), coincides with z.”

Furthermore, they define the “acceptability degree” of a random variable
X : Q1 — Q9 as the value:

acc (X) = inf X(w)(X(w))
weN
The function “acc” can be regarded as the possibility distribution associated
to a possibility measure, I, defined over the set of all random variables.
The acceptability degree acc(X) represents the possibility degree of X be-
ing the true random variable that models the studied experiment. If the
fuzzy random variable were a multi-valued mapping (if its images were crisp
subsets of 2y) the acceptability function would assign the value 1 to certain
class of measurable mappings (the class of measurable selections of the ran-
dom set), and the value 0 to the remaining ones. When, more in particular,



the images of the frv are singletons, the acceptability function would ex-
press completely knowledge about the actual random variable that models
the experiment.

Under this framework, we can build (see [7, 8]) a possibility measure
over the set of all the probability distributions in €2z, Il ;. The possibility
distribution, ¢, that characterizes such possibility measure is defined as
follows:

WX(Q) = Sup{acc(X) : Pio X1 = Q} —
HX({X : Q0 — Q9 measurable : Pyo X ' = Q}).

7 ¢ (Q) represents the degree of possibility that the original random variable
is one of those that induce the probability distribution ) on o2. The pos-
sibility measure Ill ¢ is a “second-order possibility” formally equivalent to
those considered in [13]. It is so called, because it is a possibility distribution
defined over a set of probability measures. It is a representation ([13]) of the
possibilistic probability PX 102 — F([0,1]), defined as follows:

P (A)(p) = sup{m¢(Q) : Q € Poy, Q(A) =p}, Vpe[0,1], A€ oo

The relationships between Ilx and ]55( are explained in detail in [8]. This
possibilistic probability is called [8] the fuzzy possibility assignation associ-
ated to X. The value ]55( (A)(p) represents the degree of possibility that the
true probability of the event A is p.

Example 3.2. A person is asked about the weather in a particular city
m a winter day chosen at random. He has a thermometer to measure the
temperature, but it has some imprecision. So, in a particular day, he is able
to make assertions like the following one:

I am sure that the actual temperature is between 5 and 11 °C.
Furthermore, with probability greater than or equal to 0.9, it is
between 7 and 9 °C (I know that at least the 90% times my
observations have a +/- 1 °C of precision.)

According to [6], it can be represented by means of the fuzzy set
1 ifzelr,9]
m(x) =501 ifze57)U(9,11]
0 otherwise.

Assume he can give this kind of information every day in winter. A natural
question is: What is the probability that the (true) temperature is higher
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than 8 °C? (In other words, which is the proportion of winter days where
the temperature is over 8 °C?) We can answer this question by means of a
second-order possibility measure, which will represent our knowledge about
this probability value by means of a fuzzy set. In [8] we give detailed expla-
nations about how to describe this imprecise knowledge.

4 An additional interpretation: conditional possi-
bility measure

Also in accordance with the possibilistic interpretation of fuzzy sets, in this
work we are going to proceed in a slightly different way, to describe the in-
formation provided by X. As we suggested in the introduction of this paper,
suppose that we have partial information about the probability distribution
that models a sequence of two random experiments whose sample spaces are
Q7 and €9, respectively. On the one hand, we assume that the probability
distribution that models the first one, P; : 01 — [0, 1], is completely deter-
mined (in the preceding expression, o1 denotes a o-algebra of events over
21.) On the other hand, the connection with the second sub-experiment is
only known via a family of conditional possibility measures {II(- | w)},eq,,
each of them inducing the fuzzy set X (w). More specifically:

e The marginal probability P : o1 — [0, 1] is completely known.

e There exists a transition probability that models the relationship be-
tween the outcomes of both sub-experiment, P? : o9 x Q1 — [0, 1],
i.e.:

— P?(-,w) is a probability measure, Vw € Q.
— P3(B,-)is o1 — Bio,1) measurable.
— Our imprecise knowledge about P? is determined by the following

inequalities:

P%(B,w) < II(B|w) = sup X (w)(b), Vw € Q1, VB € oy.
beB

The family of possibility measures {II(:|w)}weq, models our knowledge
about the relationship between the outcome of the first sub-experiment and
the possible outcomes of the second one. (If the result of the first experiment
is w, then the possibility degree of 2 happening in the second one is X (w)(z).)
In other words, we know the probability measure that drives the primary

11



random process but the measurement process of outcomes is tainted with
uncertainty. The combination of both sources of information, will allow
us to describe the available information about the probability distribution
on oy (the probability distribution that rules the second sub-experiment)
by means of an upper probability (a standard imprecise probability model,
not an order 2 model, like the one described in Section 3.2.) In fact, the
probability measure that rules the joint experiment, is given by the formula:

P(C) = A PE(Cu,w) dPy(w), VC € 01 ® 03,

where C, = {z € Qy : (w,x) € C}.

Hence, the probability measure associated to the second sub-experiment is
given by:

Py(B)=P(Q xB)= | P}B,w)dPi(w), VB € os.
Q1

Thus, according to our knowledge about P12 , all we know about the proba-
bility P»(By) is that it belongs to the class:

{/Q P%(By,w)dPy(w) : P?(B,w) <I(Blw), Yw €y, VB € 02} (1)

In the following section, we will provide a general method to compute
the upper and lower bounds of this set. We will also illustrate situations that
match this interpretation of fuzzy random variables and we will calculate
upper and lower probabilities in a particular example. This way, we will be
able to state assertions like the following: “the probability of the outcome
between 3 and 7 lies between 0.3 and 0.6.”

Remark 4.1. This interpretation of fuzzy random variables has something
to do with the Kruse & Meyer approach, because both approaches are based
on the possibilistic interpretation of fuzzy sets. But, let us emphasize the
differences between them.

According to the Kruse & Meyer approach (Section 3.2), the mapping
Xo : Q1 — Qg represents a deterministic conditional probability:

P{Xo(w)})|w)=1,Vw € Q.

Furthermore, our imprecise knowledge about such deterministic probability
measure is described by means of a (second-order) possibility measure. (The

12



possibility degree that the deterministic probability P(-,w) is focussed on r is
X (w)(r).) In this second-order model, “belief degrees about the occurrence of
events” are distinguished from “belief degrees about the values of the proba-
bility of events”, and both types of uncertainty stay in two different levels.

On the contrary, in the present model, the underlying conditional prob-
ability P%(-,w) is not assumed to be deterministic and it is only known as
restricted (dominated) by the possibility measure I1(-|w). (The same idea is
suggested in [33] for the particular case of random sets.)

We refer the reader to [3], where a realistic example illustrating this new
interpretation is given. It involves weight measurements with a noisy scale.
The scale is assumed to be under control the 90% times. Those times, we
can guarantee a precision of 10g. The remaining times, we can only assure a
precision of 50g. Our knowledge about the actual weight of an object taken
at random can be represented by means of a frv which is interpreted under
Kruse & Meyer approach (ill-known random variable). The actual weight is
a fixed (ill-know) for a fixed object. On the other side, if we pick the same
object again, our (observed) measurement can change. We can describe our
knowledge about possible future measurements by means of a frv interpreted
as a conditional possibility measure.

5 Upper-lower probability model

In this section we will show that the last interpretation of a frv leads, in a
natural way, to a first-order imprecise model. Thus, our knowledge about
the probability of a crisp event will be given by a pair of upper and lower
probabilities.

According to the model described in the last subsection, our informa-
tion about the probability of occurrence of the event By in the second sub-
experiment is described by the set of values of Equation 1. Thus, the most
informative upper and lower bounds are, respectively:

P(By) = sup | P?(By,w)dPi(w)and P(By) = inf / P}(By,w) dPy(w)
PZeH J PEeH Jo,
(2)

where

H = {P} transition probability : PZ(B,w) < (Bw), Vw € Qi, VB € 02}.
(3)

We shall call respectively P(By) and P(By) the upper and lower probabilities
of By. As a particular case of Theorem 1 in [5], the following result holds:
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Theorem 5.1. Consider a probability space (Q1,01, P1), the Borel o-field
onR™, Brn, and a fuzzy random variable X : Q; — F(R"). Let {II(-|w) }ueq,
denote the family of possibility measures associated to X, i.e.

TI(B|w) = sup X (w)(b), VB € Brn, w € Q.
beB

Consider the class:
H = {P? transition probability : P}(B,w) < II(B|w), Vw € Q;, VB € fgn}.

Then,

P(B) = sup Pf(B,w)dpl(w):/ II(B|w) dP; (w).
PEeH I 921

It means that [, II(B,w)dP;(w) is the smallest upper bound we can
give to the probability of B, taking into account the information provided
by P, and X. Although the theorem is focussed on the upper bound, we
can establish a similar result with respect to the lower bound. That is, if we
consider the family of conjugate necessity measures, {N(-|w)},eq, we can
easily check that

P(B) = inf PY(B,w)dPy(w) = | N(B|w)dP(w).
P12€'H 01 0

Next we will give some remarks concerning the result given in the last
theorem.

Remark 5.1. When, in particular, X takes a finite number of different
fuzzy images, w1, ..., ., with respective probabilities p1,...,pr, the upper
and lower probabilities of an event B are given by:

P(B) = sz' II;(B), and P(B) = Zpi Ni(B), (4)
i=1 i=1

where II; and N; are the dual possibility and the necessity measures associ-
ated to the fuzzy set m;,i = 1,...,r. Hence, at least in this particular case,
P and P can be written as functions of the (classical) probability distribu-
tion of X on F(Q). If, furthermore, Qo is finite, we can give an alterna-
tive expressions for P(B) and P(B). In fact, for each i € {1,...,r}, let
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m; : p(Q2) — [0,1] be the Mobius transform of I1; (the basic mass assign-
ment associated to it) and let Fy = {A;1, ..., Aix, } be the family of focal sets.
We will introduce the following notation:

mi; = ml(Aw), and Vij = PiMyj, Vj = 1,...,]{32', 1= 1,...,7‘.
Let us now define the basic mass assignment: m : p(€a) — [0,1] as follows:
m(AU) = Vij, ]: 1,...,]{1‘, 1= 1,...,7“.

(It is well defined, since y ;_, 2?:1 vij = 1.) We can easily check that P
and P are, respectively the plausibility and belief measures associated to m.

In Sections 6 and 7, we will check that these results can be extended for
infinite universes: On the one hand, we will observe that P and P can be
written as functions of the (classical) probability measure induced by X. On
the other hand, we will check that they coincide with the upper and lower
probabilities associated to a multi-valued mapping. Furthermore, we will
extend the result given in Theorem 5.1 to more general cases.

In the following example, we illustrate the ideas given in Sections 4 and 5.
The situation described is in accordance with our new interpretation of fuzzy
random variables. We will illustrate that the upper and lower probabilities
given in Equation 4 represent the most accurate upper and lower bounds for
the probabilities of occurrence of events.

Example 5.1. A person tosses a dice, and then he writes a number in a
piece of paper, which is related to the result of the dice, i € {1,...,6}. You
have imprecise information about the number he writes:

o You are completely sure that it is one of the numbers i —1, i or i+ 1.
o [t coincides with i with probability higher or equal than 0.5.

(Suppose for instance that he drops a coin after the dice is tossed. If the re-
sult is heads, he writes the same number of the dice, i. Otherwise, he chooses
one of the numbers {i — 1,4, + 1} by a completely unknown procedure.) In
other words, all you know about the conditional probability P; = P(-]i) is
that

P({i —1,i,i+1}) =1 and P;({s}) > 0.5.

According to [6], the probability measures P; satisfying the above restric-
tions are the probability measures dominated by the possibility measure 11; :
©({0,...,7}) — [0,1] determined by m;(i — 1) = m(i + 1) = 0.5, m;(i) = 1.
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(mi(x) represent the possibility that he writes the number x if he observes
the result i in the dice.)

Summarizing, our information (before the dice is tossed) about the num-
ber he is _going to write in the paper is determined by the fuzzy random
variable X : {1,...,6} — p({0,...,7}) given by: X(i) =m, Vi=1,...,6.

How can we describe our (imprecise) information about the probability of
occurrence of an arbitrary event A C {0,...,7}? This probability is P(A) =
ZZ 1 éP(A), but we only have partial information about each P;. All we
know is that each one of them is dominated by the possibility measure 11;.
So, we know that

IL;(A

| =

6 1 6
> Ni4) <>,

=1 =1

Furthermore, for each A we can find two families of probability measures,

{P}%_, and {Qi}5_, such that:
Ni(B) < P(B) <TI(B), VB C{0,...,7}, Vi=1,...,6,

Ni(B) < Qi(B) <IL(B), VB C{0,...,7}, Yi=1,...,6,
Pi(A) = Ny(A), and Q;(A) = IL;(A), Vi=1,...,6.

Thus, 35, tN;(A) and SO tI;(A) are the most accurate bounds for
P(A) according to our imprecise information.

We will calculate, for instance, the bounds for the probability of the
event A = {1,2}. We first compute the quantities 11;(A) and N;(A) =
1 —1I;(A),Yi=1,...,6. We can easily check that:

1 if i=1,2 o
L(A) =4 05 if i=3 m,(4) = 4 0 it =12
1 if 1=8,4,5,6
0 if i=4,5,6 e
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6 6
Hence, P(A Z N;(A Z

=1 =1

6
and P Z
=1

Thus, the probability that the number he is going to write belongs to A =
{1,2} lies between 1/6 and 5/12.

—1/6

[«
@\'—‘

IL;(A) = 5/12.

[N

Remark 5.2. According to the “classical” probability model, we can say
that the frv X takes each fuzzy value m, ..., mg with probability 1/6. Thus
P and P can be written as functions of the probability distribution induced
by X on F(Qy), since

6

P(A) = Z ! sup m;(a) and

i—1 6 acA

P(A)=1-P(A%), YACHO,...,T}.

Newvertheless, this “classical” probability distribution does not explicitly rep-
resent our (imprecise) information about the probability of each (crisp) event.

Remark 5.3. Assume that, when the result of the coin is tails, then three
possible numbers i — 1, i and i + 1 are equiprobable. In that case, P; should
satisfy the equalities P;({i —1}) = P;({i—1}) = 1/6 and P;({i}) = 2/3, and
hence the probability P should be known with total precision. It should be
given by:

P({0}) =1/36 P({1}) =5/36 P({2})=1/6 P({3})=1/6

pP({4})=1/6  P({5})=1/6 P({6})=5/36 P({T7}) =1/36.

But this assumption is unsupported by the actual information, and it
should reflect additional artificial information. The procedure followed to
choose one of the numbers i — 1, i or i + 1 is completely unknown. The
person could decide to write, for instance, the number i — 1 every time.
In that case, the respective probabilities of the possible outcomes would be
different from above:

P({0}) =1/12 P({1})=1/6 P({2})=1/6 P({3})=1/6
P({4}) =1/6 P({5})=1/6 P{6})=1/12 P({T}) =0.
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6 Multi-valued mapping associated to a frv

As we pointed out in Remark 5.1, when the universe of the second sub-
experiment is finite, the upper and lower probabilities considered in Equa-
tion 2 (beginning of Section 5) are, respectively a plausibility and a belief
measure. Furthermore, we recall in Theorem 5.1 that they can be calculated
as the average (with respect to the probability measure P; defined on ;)
of the family of possibility measures {II(:|w)}weq,, when the final space is
R™. Our concerns in this section are threefold:

1. We will extend Theorem 5.1 and check that the equalities

sup /Q1 PY(B,w)dP;(w) :/ II(Blw) dPy(w), VB € o9

PZeH M
and
inf P}(B,w)dPi(w) = | N(B|w)dPi(w), VB € os.
PfeH (o1 o

also hold for more general topological structures, which will be listed
in Corollary 6.4. Thus, the bounds

P() = sup/ P%(-,w)dP;(w) and P(:) = inf P}(-,w) dPy(w)
PZeH J PeH Jo,

will be proved to be co-order capacities under fairly general conditions.

2. We will also check the equalities

/91 T1(Blw) dP) (w) = /01 P (B)da and

*

1
N(B|w) dP,(w) = / P, ¢ (B)da.
(951 0

(The right hand side expressions will be used in Section 7).

3. In order to extend Theorem 5.1, we will explicitly define a multi-
valued mapping, I', whose (Dempster-)upper and lower probabilities
do coincide with the above integrals, and we will make use of some
recent results about the equality between the supremum of the set of
probabilities associated to the measurable selections of a random set
and its upper probability. Another concern in the section is providing
I" with a meaningful interpretation within this new interpretation of
fuzzy random variables.
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Let the probability space (€21, 01, P1) represent an arbitrary random ex-
periment. Consider a measurable space (€292, 02) and a fuzzy random variable
X : Q; — F(Qy) that represents our available information about the con-
nection between the outcome in €27 and the class of possible outcomes in
Q. According to the interpretation of fuzzy random variables described
in Section 4, for a fixed wy € Q, X(wy) represents a possibility measure,
II(-|wp) : o2 — [0, 1]. Hence, for each w € €1, we assume that there exists a
transition probability P? : o9 x €21 — [0, 1] such that

N(Blw) < P#(B,w) <T(Blw), VB € 03, w € Qy, where

II(B|w) = sup X (w)(b), and N(B|w) := 1 —II(B%|w), YB € 09,w € Q.
beB
We can alternatively express the above information by means of a multi-
valued mapping I'y,,. Consider the usual Borel o—algebra fjg 1) on the unit
interval [0, 1], and the uniform distribution defined on it, A : 8o 1) — [0, 1]
and let 'y, : [0, 1] — p(£22) be the multi-valued mapping defined as follows:

Lo (@) = Xo(wo), Vo €[0,1].

According to [12], T'y, is Bjo 1) — 9(§22) strongly measurable, and its upper
probability coincides with II(Blwy), i.e.,

A({a €[0,1] : Tuy(c) N B #£ 0}) = I(B|wo).

We must recall that, for a fixed wy € €, the information provided by
I1(-|wp) can be expressed by means of a nested family of confidence intervals.
(We do not refer to the usual notion of (random) confidence interval in
statistics. A 1 — « confidence interval is defined here as a (fixed) interval
whose probability is known to be lower bounded by 1—«.) In fact, according
to [6], the family of probability measures PZ(-,wp) : 02 — [0,1] satisfying
the restriction P?(B,wg) < II(Blwo), VB € o2 coincides with the set of
probability measures?:

PY(Xo(wo)|wo) >1—a, Ya € (0,1). (5)
In our context, Equation 5 is interpreted as follows:

The probability that the outcome of the second experiment be-
longs to X, (wp), knowing that the outcome of the first one has
been wy, is greater than or equal to 1 — «, for each a.

4Provided that Xa(wo) € o2, YVa,wp.
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For any fixed a*, the set of a’s such that T, (a) is included in X, (wp)
contains (possibly strictly) the interval [a,1]. So, the images of Iy, are
contained in X (wp) with probability greater than or equal to 1—a*. Thus,
the above information about the outcome of the second experiment can be
expressed by means of an additional experiment ruled on the unit interval:
we take at random an « € [0, 1] (according to the uniform distribution) and
we observe an object belonging to the set T, (o) = X (wp).

We have expressed above our information about the outcome of the sec-
ond experiment, when the outcome of the first one is wy. But such outcome
is indeed taken at random, according to the probability measure P;. So
it seems natural to express our information by means of the multi-valued
mapping I': Q1 x [0, 1] — p(€Q2) defined as

N(w,a) = Xo(w) ={z € : X(w)(z)>a}, Y(w,a) € Q x [0,1].

This multi-valued mapping univocally determines X, since the family of
a—cuts of a fuzzy sets univocally determines it. It is an alternative way to
express the same information. Let now P;®A\ denote the product probability,
L.e., the unique probability measure on 1 ® f,1] satisfying the equalities:

(PL®\)(Ax B) = Pi(A) - A(B), VA€ o1, B€ B

In the rest of this section, we will show that the upper probability induced
by T' coincides with the upper probability P defined in Equation 2, under
fairly general conditions. This means that the following equality holds for
any B € 0y :

P A{(w,a) € 4 x[0,1] : T(w,a) N B}) = sup / PY(B,w)dP;(w).
PZeH /O

So, our information about the probability that rules the second experiment
can be expressed alternatively by means of I' : we take at random an element
w € ;1 (according to the probability measure P;) and, independently, some
a € [0,1] (according to the uniform distribution). The subset I'(w, o) C Q9
will represent our information about the outcome of the second experiment.

We point out in Lemma 6.1 that I' is strongly measurable, so it induces
an upper probability on os.

Lemma 6.1. Let (Q,01) and (Q2,02) be two measurable spaces. Let X :
N — F(Q2) a fuzzy random variable. Let ([0,1], Bjo1]) represent the unit
interval with the usual Borel o—algebra. Consider the product o—algebra
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01 ®@ Bp,1) and the multi-valued mapping T : Q1 x [0,1] — ©(Q2) defined as
follows:

(W, ) = X,(w), ¥ (w,a) € Qx[0,1].
Then I' is 01 ® Bjo,1] — 02 strongly measurable.

Next we give two alternative ways for the calculation of the upper prob-
ability induced by I'.

Lemma 6.2. Let (Q,01) and (Q2,02) be two measurable spaces. Let X :
M — F(Q2) be a fuzzy random variable. Let ([0, 1], Bjo,1)) represent the unit
interval with the usual Borel o— algebra. Let us now consider the product
o—algebra o1 @ Bjo1) and the multi-valued mapping T' : Q1 x [0,1] — p(2)
considered in Lemma 6.1. Then

1
Pi(B) = /ﬂ II(Blw) dP (w) = /0 P% (B)da.

According to the last lemma, the Dempster upper probability P/ (B) can
be alternatively calculated as the expectations of the random variables w —
[I(B|w) or a — P)*Za (B), with respect to the probability measures P; and A,
respectively. So, we average the upper probabilities of the random sets I',,
with respect to P (first case) and the a-level-wise upper probabilities of the
random sets X, (second case). We interpret such calculations as follows:
in the first case, we average the possibility of occurrence B, conditional to
each possible outcome of the first sub-experiment. In the second case, we
average the probability of not discarding B, conditional to the appearance
of the (randomly selected) point « € [0, 1].

In Theorem 6.3, we will point out that the class of probability mea-
sures associated to the measurable selections of I' is included in the family

of integrals {le P}(,w)dP(w) : P? € ’H}, which is in fact the family of
probabilities that represents our knowledge about the outcomes of the ran-
dom experiment on 2.

Theorem 6.3. Let (4,01, P1) be a probability space and let (Qo,09) be a
measurable space. Let X : Q1 — F(Q) be a fuzzy random variable. Let
([0,1], Bjo,1]) represent the unit interval with the usual Borel o— algebra.
Consider now the product o—algebra o1 @ Bjg 1), and the product probability
Pr@ A LetT :Qp x[0,1] — o(Q2) be the multi-valued mapping considered
i Lemma 6.1. Then

P(T)(B) C { PA(B.w)dPy(w) : P e H},

Q1
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where H is the class of transition probabilities defined in Equation 3.

From the above result, we derive that the upper and lower bounds

Pm)—sw{ [ PHB.) IR ) P e nf

and P(B) :inf{/gl P}(B,w)dPy(w) : P} € H}

satisfy the following inequalities:

supP(I')(B) < s.up{/Q PY(B,w)dP,(w) : P} e H} </Q II(B|w) dP;(w)

1

and

N(B|w)dP(w) < inf{/Q P%(B,w)dP(w) : P? ¢ 'H} <inf P(T')(B).

Q1 1

Thus, in those cases where sup P(I") coincides with P, those inequalities
become into equalities. It has been pointed out in [34] that such supremum
is, in general, a maximum, but it does necessarily coincide with Pp. Suffi-
cient conditions for the equality between Pf and max P (I") are given in [30]
and [34] and [35]. Based on that, we can derive the following corollary from
Lemma 6.2, and Theorems 6.3:

Corollary 6.4. Let (21,01) a measurable space. Let (22, 72) be a topological
space and let oo be the Borel o— algebra associated to it. Let X : Q1 —
F(Q2) be a fuzzy random variable. If any of the following conditions hold:

e 75 is induced by a metric separable space and Xa(w) is open for all
w e and all o € [0,1].

e 7y is induced by a o—compact metric space and Xa(w) is closed for all
we N and all a € [0,1].

o (02,7) is a Polish space and X,(w) is closed for all w € Qp and all
a € [0,1].

o (Do, m) is induced by a metric separable space and Xq(w) is compact
for allw € Oy and all a € [0, 1].

22



o [z] €0y, YV € Qy and {A* : A € 09} is numerable, where A* denotes
the set:

A" ={(w,a) € x [0,1] : Xo(w)NA#D}, VAE 0o
and [x] denotes the intersection [x] = N{A € o3 | x € A}.

o 2] € 09, V& € Qy and the class {Xo(w) : (w,a) € Q x [0,1]} is
countable.

Then, for an arbitrary event B € o9, the upper probability P(B) =
SUP p2cyq le PE(B,w)dPy(w) is, in fact, a maximum, and the lower proba-
bility P(B) = mfplgeH le P}(B,w) dP\(w) is a minimum. Furthermore, the
following equalities hold:

1
max [ P?(B,w) dPl(w):/ II(B|w) dPl(w):/ P; (B)da
P12€H 0 N 0 o

min Pl( w)dP(w) = / [1 —II(Bw)] dP;(w / P 5
PieH Jo ol

Remark 6.1. Corollary 6.4 generalizes the result recalled in Theorem 5.1
to cases where the final space is not necessarily R™.

Remark 6.2. Assume that o1 and 1o fulfill some of the above hypotheses,
and consider the particular case where X represents a multi-valued mapping.
In other words, assume that, for each w € 1, the fuzzy set X(w), consid-
ered as a membership function, only takes the values 0 and 1, so it can be
identified with a crisp subset of 9, X(w) C Qy. In this case, the upper and
lower probabilities defined in Equation 2 coincide with Dempster’s upper and
lower probabilities associated to X, when we consider it as a multi-valued

mapping.

7 Relationships with other models in the litera-
ture

In this section we will show the connections between the upper-lower model
described above (Sections 5 and 6) and the other precedent models for fuzzy
random variables from the literature. In particular we will observe that
our upper-lower model can be written as a function of the classical model
(Section 3.1) and also of the second-order imprecise model (Section 3.2).
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7.1 Relationships between the upper-lower probability model
and the classical model

As we checked in Section 2, a fuzzy random variable can be viewed as a
standard measurable function. Let us first consider, for each B € oy and
each a € [0, 1], the family of sets:

B ={F¢e€F(Q): F,NB# 0}
Let us now denote by ox the o—algebra generated by the class:
{75, : B€os,ae(0,1]} € p(F(2)).

As we pointed out in Section 2, we can easily check that a fuzzy-valued
mapping is a frv if and only if it is 01 — o measurable. So, we can consider
the probability measure it induces over oz, P; oX L. Now, we will check that
our upper and lower probabilities (Equation 2) can be written as functions
of P, o X1 under fairly general conditions.

Theorem 7.1. Let (21, 01) a measurable space. Let (Qa,T2) be a topological
space and let oo be the Borel o —algebra associated to it. Let X Q1 — F(Q9)
be a fuzzy random variable with closed a-cuts. Let Pj o X1 represent the
probability measure it induces on or. Let P and P the upper and lower
probabilities given by:

P(B) = inf / P}(B,w)dP(w), P(B)= sup | P}(B,w)dP(w)
PEeH Joy Prer S

Under any of the conditions considered in Corollary 6.4, P and P can be
written as functions of Py o X~ 1. Specifically,

1 ~
P(B):/O PloX (T : Ty B £ 0} da)

and

1 ~
P(B) :/0 Pio X 'Y({I : I'y C B}da).

Remark 7.1. Consider the particular case where X is a random set and
let B € oo be an arbitrary event. Under fairly general conditions, the upper
probability defined in Equation 2, P(B) = SUP p2cyy le P}(B,w) dPi(w) co-
incides with Dempster’s upper probability, P)’f( (B), according to Remark 6.2.

24



As we have recalled in the preliminaries section, Dempster’s upper probabil-
ity univocally determines the probability induced by the random set. Thus,
we conclude that the upper probability P determines the probability measure
induced by X on o, PLo X', Summarizing, when the images of the fuzzy
random variables are, in partzcular crisp sets, the upper probability, P, and
the induced probability measure, P; o X1 univocally determine each other.
Furthermore, when the second space, Q29 is finite, PoX! coincides with the
basic probability assignment, while P coincides with the plausibility measure.

7.2 Relationships between the upper-lower probability model
and the second-order possibility model

According to Walley [48], any second order possibility model can be reduced
into a first-order imprecise model, by means of natural extension techniques.
To adapt these ideas to our particular situation, let us replace linear pre-
visions by probability measures, and the sets of bounded real functions by
o—algebras of subsets of the referential. Walley considers the product space
Ps, % 22 and he assumes that the following items are available:

e A (second-order) possibility measure, I, on the first space Py,,. (It
indicates degrees of possibility over probabilities.)

e The transition probability P} : o9 x Py, — [0, 1] given by the formula:
IPY(B,P) := P(B), VB € 09,P € P,,. (It indicates the following
information: if the probability P rules the experiment on €25, then the
probability of the occurrence of B is P(B).

In this setting, he constructs, by means of natural extension techniques,
an upper-lower joint model. Thus, the available information about the
marginal distribution on the second space is described, in a natural way,
by a pair of lower and upper probabilities:

Pw(B) = sup /P%(B,P) dIP(P) = sup /P(B) dIP(P) and

P<II P<II
Py, (B) = f P! BP P = f P P
Py(B) = jut [ PYB.P) aP(P) =t [ P(B)d

Furthermore, Walley proves that these upper and lower probabilities can be
alternatively calculated as follows:

1 1
Pu(B) = [ Pu(Byda, Pw(B)= [ Po(B)do. (6)
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where, for each index, a € [0, 1], P, and P, are defined as follows:
Py (B) =sup{Q(B) : Q € P,II({Q}) > a} and
P,(B)=mnf{Q(B) : Q € P,II({Q}) = a}.

Next, we will consider the second-order possibility measure derived from
Kruse & Meyer approach (“ill-known classical random variable”), Il ¢, . We
will prove that, if we apply Walley’s reduction to this specific second-order
possibility (making use of the transition probability P% mentioned at the
beginning of this section), the resulting upper-lower pair coincides with the
upper-lower model associated to the third interpretation of a frv, i.e., the
model described in Sections 5 and 6.

Theorem 7.2. Let (Q1,01) be a measurable space. Let (Q2,72) be a topolog-
ical space and let oo be the Borel o—algebra associated to it. Let X 0 —
F(Q2) be a fuzzy random variable. Let PX(BO) represent the fuzzy possibility
assignation of the event By. Let P(By) and P(By) be the upper and lower
probabilities defined in Equation 2. Under the hypotheses in Corollary 6.4,
the following equalities hold:

P(By) = Pw(Bo) and P(Bo) = Py (Bo) (7)

Remark 7.2. According to the last theorem, we can follow two alternative
ways to build the same upper-lower model.

1. In the first case (upper-lower model suggested in Equation 2) we con-
sider:

o A probability measure defined over the first space 1.

o A conditional possibility measure, I1(-|-) determined by the fro.
It represents the imprecise perception of a transition probability
P12. This transition probability models the random relationship
between the outcome of the first experiment, w € 11 and the
outcome in the second space, Qo. For each w € ), our imprecise
knowledge about PZ(-,w) is determined by the possibility measure
II(-|w) associated to the fuzzy set X (w).

2. In the second case (Walley’s reduction of the second-order model) we
consider the product space Py, X {22 and:

o A (second-order) possibility measure on Pgy,, that characterizes
the knowledge about the probability measure induced by the ill-
known random variable.
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e A transition probability measure P} : 09 X Py, — [0,1]. For
each pair (B,IP) € o9 X Py, IP(B,P) expresses the following
information: if P were the true probability measure induced by
the ill-known random variable, the probability of occurrence of B

would be P(B).

Since any possibility measure can be represented by a class of probability
measures, we can represent both situations by means of upper-lower models.
Accoding to the last theorem, both procedures lead to the same pair of upper
and lower probabilities.

The upper and lower probabilities given in Equation 2 are also related to
the concept of mean value of a fuzzy set. Let us recall this concept. Dubois
and Prade [15] define the “mean value” of a fuzzy set, 7, as the interval:

M(r) = {E(P) : P <TI},

where E(P) represents the expected value associated to the probability mea-
sure P, and II is the possibility measure associated to the possibility distribu-
tion 7. That interval represents the set of possible values for the expectation
of the outcome of a certain random experiment, when we only know that the
probability measure that models it is dominated by II. Next we will prove
that the upper probability defined in Equation 2 coincides with the upper
bound of the mean value of the fuzzy probability envelope of By. Based on
this lemma and Corollary 6.4, we can prove the following result.

Theorem 7.3. Let (Q21,01) a measurable space. Let (Qa2,72) be a topological
space and let oo be the Borel o —algebra associated to it. Let X Q1 — F(Q)
be a fuzzy random wvariable with closed a-cuts. Let ]35((30) represent the
fuzzy possibility assignation of the event By. Let P(By) and P(By) be the
upper and lower probabilities defined in Fquation 2. Under the hypotheses
in Corollary 6.4, the following equalities hold:

P(By) = sup M (P¢(By)) and P(Bo) = inf M (P (Bo)) (8)
Remark 7.3. The idea behind Walley’s reduction is closely related to the
concept of mean value of a fuzzy set, when this fuzzy set represents the fuzzy
probability determined by a second-order possibility measure. On the one

hand, the upper and lower probabilities associated to Walley’s reduction are
determined as follows:
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Py (B) = sup /P2 (B,P) dIP(P) = sup /P )dIP(P) and
P<ITg P<IT4

Py (B) = Plgn];[j( /IPQ(B,P) dIP(P) = ]PlgnﬂfIX/P(B) dIP(P)
Let us now consider, for an arbitrary B € o9, the random variable Xp :
Py, — [0,1] defined as follows:
Xp(P) = IP3(B,P) = P(B), VP € Py,.

This random wvariable represents the “probability of occurrence of B”. Un-
der the second-order model, such probability value is viewed as a random
quantity. Walley’s reduction combines both kind’s of probabilities into the
same model. Thus, if the “true” meta-probability is IP, then the probability
of occurrence of B is computed as

/JP2 (B, P) dIP(P /XB )dIP(P) = Ep(Xp).

Thus, Walley’s upper and lower probabilities can be written as follows:

Py = mf /XB )dIP(P).

Thus, Walley upper and lower probabilities represent the tightest upper and
lower bounds for the probability of occurrence of B under the Kruse and
Meyer interpretation, when both kinds of probabilities (second-order and
standard probabilities) are combined into the same model.

The set-function Il is, in particular, an order 2 alternating capacity, and
hence, the above suprema can be written as Choquet integrals:

Puw(B) = (C) / Xp(P)dII(P) and

Pw(B) = () / Xp(P) dNecg (P),

where Nec is the dual of the second-order possibility 1.
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The above formulae do coincide with the supremum and the infimum of
the mean value of the fuzzy set Pg(B). To clarify this point, let us consider
the possibility measure, Iy = T ; o XBTI, defined as follows:

I(C) = Mg (X5 (C) =M ({P € Py, : Xp(P) € C}) =
Iz ({P€P,, : P(B)eC}).
We can easily check that it coincides with the possibility associated to the
fuzzy set Pg(B). In fact,

IIy({PeP,, : P(B)eC}) = sup wg(P) =
{P€Ps, : P(B)eC}

sup sup 7z (P) = sup Pg(B)(z) = I5(C).
z€C {P€Ps, : P(B)=x} zeC

Furthermore, the above Choquet integrals can be written as follows:

Puw(B) = (C) / Xp(P)dII(P) = (C) / dllp(x) and

Py (B) = (C)/XB(P) dNec; (P) = (C’)/deecB(a:).

By definition, these integrals coincide with the supremum and the infimum
of the mean value of the fuzzy set Px(B).

Thus, we follow parallel procedures in both approaches. On the one hand,
according to Walley reduction, each second-order probability, IP is identified
with the standard probability Pp, defined as

PP(B):/XBCZP, VB € os.

Then we consider the pair of upper and lower probabilities on o9 associated

to the class
{Pp : IP<IIg}.

On the other hand, to take the mean value of a fuzzy probability, we first fix
an event B € o9, and consider the fuzzy probability assignation IBX(B). It
s a fuzzy set, so it is associated to a possibility measure on the unit inter-
val, I1g. We identify each probability measure Pp < Ilp with the quantity
E(Pg) Then we consider the upper and lower bounds of the class of such

expectations,
{E(Pg) : Pgp <Ilp}.

In both cases, we convert second-order probabilities into standard probability
Measures.
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8 Concluding remarks

Most studies in the literature about fuzzy random variables have a formal
foundation in (classical) Probability Theory. The fuzzy random variable can
be viewed as a classical A — B measurable mapping, where B is a particular
o-algebra defined over a class of fuzzy subsets of the final space. Within
this framework, we can consider the probability distribution induced by the
fuzzy random variable on B. Nevertheless, since randomness and vagueness
coexist in the same framework, it seems reasonable to integrate fuzzy random
variables into imprecise probabilities theory. In [8] we present a second-order
possibility model that represents the imprecise information provided by a
fuzzy random variable about the underlying probability distribution. We
show there that the classical probability measure induced by the frv on B
does not univocally determine this second-order possibility.

According to Kyburg [25] and Walley [48] any second-order probability
can be re-interpreted as a first-order one. Those authors claim that second-
order and standard probabilities can be combined into a joint model, despite
they express different kinds of beliefs. (Let us recall that first-order mod-
els represent degrees of belief about occurrence of events, while second-order
ones concern statements of first-order probabilities.) Thus, the second-order
possibility model introduced in [8] can be converted into a first-order model.
According to [48] this model can be then used as prior information for deci-
sion making and statistical reasoning. First-order models produce intervals,
instead of fuzzy sets, so they are easier to manage from a computational
point of view. Furthermore, in this paper we have proven that the upper
and lower probabilities obtained from second-order possibility model, when
Walley’s reduction is applied are in fact oo-order capacities. Moreover, they
are the natural representation of an additional interpretation of fuzzy ran-
dom variables.

But, as a counterpart, this computational simplification has a price. In
fact, our upper and lower probabilities can be written as functions of the
probability measure induced by the frv, when it is regarded as a classical
measurable mapping. This means that they do not univocally determine
the second-order possibility measure associated to the frv. So, we can find
two different fuzzy random variables inducing different second possibilities,
but with the same upper-lower model. As we show in [8], these differences
on their second-order possibility measures are relevant when we want to
represent the information that the frv provides about certain parameters
such as the variance or the entropy of the underlying random variable (the
original random variable under the Kruse and Meyer’s interpretation). So,
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when should we use the lower-upper model and when should we work with
the second-order possibility measure? The upper-lower model can be used
under two different kinds of situations:

(a) On the one hand, it is the natural representation when the frv is in-
terpreted as a family of conditional probability measures. This inter-
pretation is based on the possibilistic interpretation of fuzzy sets but
it differs from the Kruse and Meyer approach: under their approach,
the outcome of the second sub-experiment is univocally determined by
the result of the first sub-experiment. Thus, X (w)(z) represents the
degree of possibility that the outcome associated to w coincides with
x. On the contrary, under the new interpretation, the result of the
second sub-experiment is not determined by w. The quantity X (w)(z)
represents the degree of possibility of & occurring if the result of the
first experiment is w.

(b) Even when the Kruse & Meyer approach is considered, the upper and
lower model is useful. Assume that we can combine both kinds of
beliefs (about events and about probabilities of events) and, further-
more, we want to give a range of values for a certain parameter that
can be written as a linear function of the probability measure (e.g. the
probability of an event or the expectation). Then we should use the
first-order model. On the contrary, when we want to give the range
of values for non-linear parameters as the variance or the entropy, the
first-order model misses relevant information as well as the induced
probability measure does.

Future works would apply these ideas to making decisions in the presence
of vague data. Some recent papers in the literature are devoted to testing
hypothesis on the basis of fuzzy samples (see, for instance, [14, 18, 20]).
Those papers follow the Kruse and Meyer approach on fuzzy random vari-
ables, and use Zadeh’s extension principle to define “fuzzy decisions”. In
particular, Filzmoser and Viertl [18] and Denoeux et al. [14] independently
generalize the concept of set-valued critical level to the case of fuzzy data
and they define the fuzzy critical level. But they claim that a defuzzification
is needed to take a crisp decision. According to our first-order model, we can
apply natural extension techniques to get an interval-valued generalization
of the concept of p-value, in the presence of fuzzy sample data. Thus, we
will be able to follow the natural approach described in [17], to reach a crisp
decision: when the upper and lower bounds of the p-value are on one side
of the a— significance level, the decision of the hypothesis test is clear. But
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when the bounds straddle the threshold, the test is inconclusive, since the
imprecision in the data prevents us to make a clear determination. We plan
to compare this approach with the defuzzifications of fuzy tests proposed in
those papers.
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9 Appendix

Proof of Lemma 6.1. Let B € 0y an arbitrary measurable subset of (2s.
We must check that I'*(B) € o1®0|g,1). We will see that I'*(B) coincides with
a numerable intersection N, NI (B), where each I'} (B) is a measurable set.

For each n € IN, consider the partition of the unit interval {I},... 12"},
where I! = [’2_—,},2%), i=1,...,2" —1, > = [2;;1, ]. Let us now define

the multi-valued mapping T, : Q; x [0, 1] — p(2) as follows:

Dp(w,a) = Xia (w), if (w,a) € Qx I, i=1,...,2"

omn

Let us check that T}, (B) belongs to o1 ® Bjg17. In fact, I',(B) = {(w,a) €

Q1 x[0,1] : Tp(w,a) N B # 0} = U, X%, (B) x I.. Since X* (B) € o0y
) an a7

and I}, € By, Vi =1,...,2", we derive that I';,(B) belongs to the product

o—algebra 01 ® [ ;). Now, it only remains to check the equality I'"*(B) =
mTLGNF:L(B)
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(C) Let (w,a) be an arbitrary element in I'*(B). For each n € IN, there
exists an index i, such that o € Ifl(n). And we observe that w €

X*(B) C Xf(mq (B). We conclude that I'*(B) C Nuen I (B).
o

(D) For an arbitrary (w,a) € ﬂnelNI‘,*l(B), there exists a sequence of
indices (i(n))pey such that w € X*(B)i(nzlq and (Z(g#)new up-
ward converging to « : Thus, according to the properties of a—cuts,
X*(B)a = MuenX*(B)im)-1. Hence, w € XZ(B), or equivalently,

2mn

(w,a) € T*(B). O

To check the result given in Lemma 6.2, the following lemma will be
used. The proof is immediate.

Lemma 9.1. Let (Q,01) and (Q2,02) be two measurable spaces. Let X :
O — F(Q2) a fuzzy random variable. For each w € 0, let II(-|wy) : 02 —
[0,1] denote the possibility measure associated to the fuzzy set X (w), i.e.,
MI(Blw) = supye g X (w)(b), VB € 0. Then, the following equalities hold:

II(Blw) = sup{a € [0,1] : Xo(w)NB#0}=A{aec0,1] : we X (B)}).

Proof of Lemma 6.2. It is an immediate consequence of Fubini’s theorem
and Lemma 9.1.

Proof of Theorem 6.3. Consider an arbitrary measurable selection of T,
g € S(I'). Let us define the mapping P : 2 x 1 — [0,1] as

P(C,w) = Ag5H(C) = Mg~ (C)2),VC € 0, Yuw € Q.
We will next prove that it belongs to the class H.

e We observe that Pf(-,w) is a probability measure: In fact, it is the
probability measure induced by the measurable function g,,, Vw € ;.

e We can easily check P2(C,-) is o1 — Bjo,1) measurable, since it can be
written as PZ(C,w) = A[¢g71(C)]2), Yw € Q.

e Let us now check that P?(C,w) < II(C|w), Yw € O, VC € o9.
In fact, P(C,w) = AM{a : g(w,a) € C}) < AM{a : T(w,a)NC #
0})) = A([T*(C)]}). Furthermore, A([T*(C)]}) coincides with IT1(C|w).

w

Finally, the equality [, PZ(B,w)dPi(w) = (P ® A\)(g~*(B)) is straightfor-
ward. [
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Proof of Theorem 7.1. Under the conditions given in Corollary 6.4, the
following equality holds:

1
P(B) :/0 P} (B)da, ¥B € 0.

Furthermore, for each a € [0,1], the upper probability Py can be written

as a function of P; o X1 In fact:
P} (B)=Pio X ' (Fg), VB € o,

where Fg = {F € F(22) : F, N B # 0}.

Hence, P can be written as a function of P; o X~ 1. Furthermore, we can
easily check that P satisfies the equalities P(B) = 1 — P(B¢), VB € o,.
Hence, it can be also written as a function of P, o X 1. O

The proof of Theorem 7.2 will be supported on these two lemmas. The
proof of the first one is straightforward. The second one is given in [8].

Lemma 9.2. Let 7 : [0,1] — [0,1] be an arbitrary fuzzy set on the unit
interval. Let ¢ : [0,1] — ©([0,1]) be a graded set associated to it, i.e.,
satisfying

Tz € QD(O‘) C 7o, Va e [07 1]7

Then . .
/ sup moda = / sup p(a)da and
0 0

1 1
/ inf modo = / inf p(a)da.
0 0

Lemma 9.3. Let us consider a probability space (Q1,01, P1) and a measur-
able space (Q2,02). Let X : 1 — F(Q2) be a fuzzy random variable. Let
P4 (Bo) represent the fuzzy possibility assignation of the event By. Then:

[Pg(B)lx € P(Xa)(B) € [Pg(B)la, VB €0, a € 0,1].

Proof of Theorem 7.2. By Lemmas 9.2 and 9.3, the following equalities
hold:

1 B 1 B
| suplPe(Blada = [ supP(Xa)(B) da
0 0

and

1 5 1 5
/ inf[Pg (B)]a da = / inf P(X,)(B) da.
0 0
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Furthermore, according to Theorem [35]:

sup P(X,)(B) = P (B) and inf P(X,)(B) = P, ¢ (B), VB € 05.
By Corollary 6.4, the upper and lower probabilities of B can be calculated
as follows:

1 1
P(B) :/0 P% (B)da and P(B) :/0 P, ¢ (B)da, VB € o.

Now, according to Equation 6, the upper and lower probabilities associated
to Walley’s reduction can be expressed as follows:

J— 1 ~
Py (B) :/0 sup[Pg (B)]a da and

1 ~
Py (B) :/0 inf[Pg (B)]o da, VB € 0.

Thus, we can easily derive the result given in Equation 7. [
The following lemma will be used to prove Theorem 7.3.

Lemma 9.4. [19] Let (Q, A, P) be a probability space, (¥, A’) be a measur-
able space and let T : Q@ — P() be a random set. For any bounded random
variable f : Q' — R, let foT : Q@ — p(R) denote the random set whose
image is f(T'(w)) := {f(w') : W € A}, for each w € Q. Then, the following
equality holds
(C) | fdpP*= / sup(f oT)dP.
Q

Q/

Proof of Theorem 7.3. Let us prove the first equality. We must notice
that the supremum of M (Pg(Byp)) coincides with the Choquet integral of
the identity function with respect to the possibility measure associated to

the fuzzy set PX(BO), ie.
sup M(Py (Bo)) = (C) /iddHBO,

where II g, denotes the possibility measure associated to the fuzzy set PX (Bo).
This is so because any possibility measure is an order 2 alternating capacity.

Furthermore, consider the nested random set I'g, : [0,1] — ([0, 1]) defined

as follows:

Do) = {p € [0,1] : Pg(Bo)(p) = a}, Va.
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According to [12], its Dempster’s upper probability coincides with the pos-
sibility measure associated to Pg(Bp). Thus, according to Lemma 9.4, the
following equalities hold:

1 1
supM(Pf((Bo)):/o sup(idoFBO)da:/O sup P(Xa)(Bo) dov.

According to Corollary 6.4 and Lemma 9.2, we get the following equality:
1 ~ —
/ sup P(X,)(Bo) da = P(By),
0

and so the equality sup M (P (Bo)) = P(By) is fulfilled. By duality, we can
check the equality inf M (Pg(By)) = P(By). O
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