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Abstract

We describe SLIPPER, a new rule learner that gener-
ates rulesets by repeatedly boosting a simple, greedy,
rule-builder. Like the rulesets built by other rule learn-
ers, the ensemble of rules created by SLIPPER is com-
pact and comprehensible. This is made possible by
imposing appropriate constraints on the rule-builder,
and by use of a recently-proposed generalization of Ad-
aboost called confidence-rated boosting. In spite of its
relative simplicity, SLIPPER is highly scalable, and an
effective learner. Experimentally, SLIPPER scales no
worse than O(nlogn), where n is the number of exam-
ples, and on a set of 32 benchmark problems, SLIPPER
achieves lower error rates than RIPPER 20 times, and
lower error rates than C4.5rules 22 times.

Introduction

Boosting (Schapire 1990; Freund 1995; Freund &
Schapire 1997) is usually used to create ensemble clas-
sifiers. It is popular because it is simple, easy to
implement, well-understood formally, and effective at
improving accuracy. One disadvantage of boosting
is that improvements in accuracy are often obtained
at the expense of comprehensibility. If comprehen-
sibility is important, it is more appropriate to use
some learner that produces a compact, understandable
hypothesis—for instance, a rule learning system like
CN2 (Clark & Niblett 1989), RIPPER (Cohen 1995),
or C4.5rules (Quinlan 1994). However, the rule learn-
ing systems that perform best experimentally have the
disadvantage of being complex, hard to implement, and
not well-understood formally.

Here, we describe a new rule learning algorithm called
SLIPPER (for Simple Learner with Iterative Pruning
to Produce Error Reduction). SLIPPER generates
rulesets by repeatedly boosting a simple, greedy, rule-
builder. SLIPPER’s rule-builder is much like the inner
loops of RIPPER (Cohen 1995) and IREP (Fiirnkranz
& Widmer 1994). However, SLIPPER does not em-
ploy the “set-covering” process used by conventional
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rule learners—rather than removing examples covered
by a new rule, SLIPPER uses boosting to reduce the
weight of these examples.

Like the rulesets constructed by RIPPER and other
rule learners, SLIPPER’s rulesets have the desirable
property that the label assigned to an instance depends
only on the rules that “fire” for that instance. This
property is not shared by earlier applications of boost-
ing to rule learning (see for instance (Freund & Schapire
1996)), in which the behavior of the entire ensemble of
rules can affect an instance’s classification. This prop-
erty makes classifications made by the rulesets easier
to understand, and is made possible by imposing ap-
propriate constraints on the base learner, and use of a
recently-proposed generalization of AdaBoost (Schapire
& Singer 1998).

SLIPPER is simpler and better-understood formally
than other state-of-the-art rule learners. In spite of
this, SLIPPER scales well on large datasets, and is
an extremely effective learner. Experimentally, SLIP-
PER’s run-time on large real-world datasets scales no
worse than O(nlogn), where n is the number of exam-
ples. On a set of 32 benchmark problems, SLIPPER
achieves lower error rates than RIPPER 20 times, and
lower error rates than C4.5rules 22 times. The rulesets
produced by SLIPPER are also comparable in size to
those produced by C4.5rules.

The SLIPPER Algorithm

SLIPPER uses boosting to create an ensemble of rules.
The weak learner that is boosted finds a single rule,
using essentially the same process as used in the in-
ner loops of IREP (Fiirnkranz & Widmer 1994) and
RIPPER (Cohen 1995). Specifically, the weak learner
splits the training data, grows a single rule using one
subset of the data, and then prunes the rule using the
other subset. In SLIPPER, the ad hoc metrics used
to guide the growing and pruning of rules are replaced
with metrics based on the formal analysis of boosting
algorithms. The specific boosting algorithm used is a
generalization of Freund and Schapire’s AdaBoost (Fre-
und & Schapire 1997) that employs confidence-rated
predictions (Schapire & Singer 1998). This generaliza-
tion allows the rules generated by the weak learner to



“abstain” (vote with confidence zero) on examples not
covered by the rule, and vote with an appropriate non-
zero confidence on covered examples.

The current implementation of SLIPPER only han-
dles two-class classification problems. The output of
SLIPPER is a weighted ruleset, in which each rule R
is associated with a confidence C'r. To classify an in-
stance x, one computes the sum of the confidences of
all rules that cover x, then predicts according to the
sign of this sum: if the sum is greater than zero, one
predicts the positive class. In order to make the rule-
set more comprehensible, we further constrain SLIP-
PER to generate only rules that are associated with
a positive confidence rating—that is, all rules predict
membership in the positive class. The only rule with
a negative confidence rating (i.e., that predicts mem-
bership in the negative class) is a single default rule.
This representation is a generalization of propositional
DNF, and is similar to that used by many other rule
learners: for most rule learners the classifier is a set of
rules, often with some associated numerical confidence
measure, and often with some sort of voting scheme for
resolving possible conflicts in the predictions.

Below, we describe the SLIPPER algorithm in detail.

Boosting Confidence-rated Rules

The first boosting algorithms (Schapire 1990; Freund
1995) were developed for theoretical reasons—to answer
certain fundamental questions about pac-learnability
(Kearns & Valiant 1994). While mathematically beau-
tiful, these two algorithms were rather impractical.
Later, Freund and Schapire (1997) developed the Ada-
Boost algorithm, which proved to be a practically useful
meta-learning algorithm. AdaBoost works by making
repeated calls to a weak learner. On each call the weak
learner generates a single weak hypothesis, after which
the examples are re-weighted. The weak hypotheses are
combined into an ensemble called a strong hypothesis.

Recently, Schapire and Singer (1998) studied a gener-
alization of AdaBoost, in which a weak-hypothesis can
assign a real-valued confidence to each prediction. The
weak-hypothesis can assign different confidences to dif-
ferent instances, and in particular, it can “abstain” on
some instances by making a prediction with zero confi-
dence. The ability to abstain is important for our pur-
poses. We now give a brief overview of this extended
boosting framework and describe how it is used for con-
structing weighted rulesets. Since we have thus far im-
plemented only a two-class version of SLIPPER, we will
focus on the two-class case; however, the theory extends
nicely to multiple classes.

Assume that we are given a set of examples
((z1,91),---,(Tm,ym)) where each instance x; belongs
to a domain X and each label y; isin {—1,+1}. Assume
also that we have access to a weak learning algorithm,
which accepts as input the training examples along with
a distribution over the instances (initially uniform). In
the generalized boosting setting, the weak learner com-
putes a weak hypothesis A of the form h : X — R, where

Given: (mlayl)a---a(wmvym) ; m €A, Yi € {_17+1}
Initialize D1 (i) = 1/m.

Fort=1,...,T:

Train weak learner using distribution Dj.

Get weak hypothesis h; : X — R.

Choose a; € R.

Update: Diy1(i) = D(i) exp(—anyihe(z:))/ Zt

Output final hypothesis: H(z) = sign (EtT:l atht(x))

Figure 1: A generalized version of AdaBoost with real val-
ued predictions (Schapire & Singer 1998).

the sign of h(z) is interpreted as the predicted label and
the magnitude |h(z)| as the confidence in the predic-
tion: large numbers for |h(z)| indicate high confidence
in the prediction, and numbers close to zero indicate low
confidence. The weak hypothesis can abstain from pre-
dicting the label of an instance x by setting h(z) = 0.
Pseudo-code describing the generalized boosting algo-
rithm is given in Figure 1; here Z; is a normalization
constant that ensures the distribution D4 sums to 1,
and a; depends on the weak-learner.

The weak-hypotheses that we use here are rules. In
SLIPPER, rules are conjunctions of primitive condi-
tions. As used by the boosting algorithm, however, a
rule R can be any hypothesis that partitions the set of
instances X’ into two subsets: the set of instances which
satisfy (are covered by) the rule, and those which do not
satisfied the rule. If = satisfies R, we will write x € R.

In order to make the strong-hypothesis similar to a
conventional ruleset, we will force the weak-hypothesis
based on a rule R to abstain on all instances unsatisfied
by R, by setting the prediction h(z) for x ¢ R to 0.
We will also force the rules to to predict with the same
confidence Cr on every € R; in other words, for the ¢-
th rule R; generated by the weak learner, we will require
that Vo € Ry, aihe(x) = Cgr,. Thus, to classify an
instance x with the strong-hypothesis, one simply adds
up the confidence Cg, for each rule R, that is satisfied
by x, and predicts according to the sign of this sum.
As a final constraint, we will require each rule R to be
in one of two forms: either R is a “default rule” (i.e.,
z € X = z € R) or else R is such that Cg is positive.
Thus each non-default rule R is associated with a single
real-valued confidence C'r, and can be interpreted as
follows: if R is satisfied then predict class “positive”
with confidence Cg, and otherwise abstain.

In Figure 1, Z; is a real value used to normal-
ize the distribution: Z; = Y, Dy(i) exp(—aryihe(x;)).
Thus Z; depends on both h; and «;. Schapire and
Singer (1998) showed that to minimize training error,
the weak-learning algorithm should pick, on each round
of boosting, the weak hypothesis h; and weight a; which
lead to the smallest value of Z;. Assume that a rule R
has been generated by the weak learner. We will now
show how the confidence value Cg for rule R can be set



to minimize Z;. Omitting the dependency on ¢, Z can
rewritten in our case as

Z=7Y D(i)+ Y D(i)exp(-yiCr), (1)

z;¢R z;€ER
where Cr = ah(z). Let Wo = 32, ,p D(i), Wy =

inER:yi:+1 D(Z)v and W, = EﬂviER:yi:—l D(Z) We
can now further simplify Equ. (1) and rewrite Z as

Z=Wy+Wyiexp(—Cr)+W_exp(+Cr) . (2)

Following Schapire and Singer (1998), to find Cr we
need to solve the equation % = 0, which implies that
Z is minimized by setting

Cr=1h (%) . (3)

Since a rule may cover only a few examples, W_ can
be equal to 0, leading to extreme confidence values: to
prevent this, in practice, we “smooth” the confidence
by adding 5- to both W, and W_:

A1 Wi +1/(2n)
o=t (W 170m) S

The smoothed confidence value of any rule R is there-
fore bounded from above by 1 1n(2n).

The analysis of Singer and Schapire also suggests an
objective function to be used by the weak-learner which
constructs rules. Plugging the value of Cr into Equ. (2)
we get that

Z

Wo + 2/Wa W
- 1- (W+ o /W + W,)

= 1 (VW - V) (5)

Thus, a rule R minimizes Z iff it maximizes |\/W; —
v/W_|. Note that a rule which minimizes Z by maxi-

mizing /W_ —+/W, may be negatively correlated with
the positive class, and hence its confidence value Cp is
negative. As described earlier, in SLIPPER we restrict
ourselves to positively correlated rules, hence the objec-
tive function we attempt to maximize when searching
for a good rule is

Z =Wy —/W_. (6)

In summary, this use of boosting corresponds roughly
to the outer “set-covering” loop found in many rule
learners (Pagallo & Haussler 1990; Quinlan 1990;
Brunk & Pazzani 1991; Firnkranz & Widmer 1994;
Cohen 1995). The major difference is that examples
covered by a rule are not immediately removed from
the training set. Instead, covered examples are given
lower weights; further, the degree to which an example’s
weight is reduced depends on the accuracy of the new
rule. The formal analysis of boosting given by Schapire
and Singer also suggests a new quality metric for rules:

Given: (mlayl)a---a(wmvym) ; m €A, Yi € {_17+1}
Initialize D(i) = 1/m.

Fort=1,...,T:

1. Train the weak-learner using current distribution D:
(a) Split data into GrowSet and PruneSet.

(b) GrowRule: starting with empty rule, greedily add
conditions to maximize Equ. (6).

(c) PruneRule: starting with the output of GrowRule,
delete some final sequence of conditions to min-
imize Equ. (7), where Cr is computed using
Equ. (4) and GrowSet.

(d) Return as R; either the output of PruneRule, or
the default rule, whichever minimizes Equ. (5).

2. Construct hy : X — R:
Let Cg, be given by Equ. (4) (evaluated on the entire
dataset). Then

_ éRt if x € Ry
he() = { 0 otherwise

3. Update:
(a) For each z; € Ry, set D(i) < D(i)/ exp(y; - Cr,)
(b) Let Z, = Y%, D(i).
(c) For each x;, set D(i) «+ D(i)/Z;.

Output final hypothesis: H(x) = sign (ZRt:zeRt C’Rt)

Figure 2: The SLIPPER algorithm

notice that Z encompassed a natural trade-off between
accuracy (the proportion of the positive examples satis-
fied by a rule to the total number of examples that the
rule satisfies) and coverage (the fraction of examples
that satisfy the rule).

Below, we will discuss how to construct rules based
on the objective function Z as given by Equ. (6).

Rule growing and pruning

We will now describe the weak-learner which generates
individual rules. This procedure is similar to the heuris-
tic rule-building procedure used in RIPPER (Cohen
1995) and IREP (Firnkranz & Widmer 1994).

The rule-builder begins by randomly splitting the
dataset into two disjoint subsets, GrowSet and
PruneSet. The split is constrained so that the total
weight of examples in GrowSet is about 2/3.

The rule-builder then invokes the GrowRule routine.
GrowRule begins with an empty conjunction of condi-
tions, and considers adding to this conjunction any con-
dition in one of the following forms: A,, = v, where A,
is a nominal attribute and v is a legal value for A4,,; or
A, <0 or A. > 6, where A, is a continuous variable
and 6 is some value for A. that occurs in the training
data. GrowRule then adds the condition that attains
the maximal value for Z; on GrowSet. This process



is repeated until the rule covers no negative examples
from GrowSet, or no further refinement improves Z.

This rule is often too specific, and “overfits” the
training data; thus the resulting rule is immediately
pruned using the PruneRule routine. PruneRule con-
siders deleting any final sequence of conditions from
the rule. Each sequence of deletions defines a new rule
whose goodness is evaluated on PruneSet. As before,
each candidate rule R’ partitions the PruneSet into
two subsets, depending on whether or not R’ is sat-
isfied. Similar to the definition of W, and W_, let
Vy (respectively V_) be the total weight of the exam-
ples in PruneSet that are covered by R’ and labeled
+1 (respectively —1). Denote by Cr the (smoothed)
prediction confidence obtained by evaluating Equ. (4)
on the W, ,W_ associated with GrowSet. PruneRule
minimizes the formula

(1-=Vy —V_)+Vyiexp(—=Cr)+ V_exp (+Cr) . (7)

This can be interpreted as the loss (as defined by Singer
and Schapire) of the rule R’, with associated confidence

Chrr, as estimated on the examples in PruneSet.

Subject to the limitations of this greedy, incomplete
search procedure, this rule will have a low Z score. It
is also guaranteed to be positively correlated with the
positive class. We also allow a default rule (a rule that
is satisfied for all examples) to be used in a hypothesis—
indeed, without such a rule, it would be impossible for
the strong-hypothesis to classify any instances as neg-
ative. The rule-builder will thus return to the booster
either the output of PruneRule, or the default rule—
whichever rule has the lowest Z value, as determined
by Equ. (5). (This behavior is different from other rule-
learners, which typically add a single default rule after
all other rules have been learned.)

Note that the value of Equ. (7) and the confidence

value C'r which was calculated on GrowSet is used only
in the weak-learner search for a good rule—the booster
will assign a confidence using Equ. (4) on the entire
dataset.

Pseudo-code for SLIPPER is given in Figure 2.

Other details

It is possible for the weak-learner to generate the same
rule several times—for instance, the default rule is often
generated many times during boosting. Therefore, after
the last round of boosting, the final strong-hypothesis
is “compressed” by removing duplicate rules. Specifi-
cally, if the strong-hypothesis contains a set of identical
rules Ry, ..., Ry, these are replaced by a single rule
R’ with confidence Crr = Zle Cr;. This step reduces
the size of the strong-hypothesis, thus reducing classi-
fication time and improving comprehensibility.!

!Note that this step does not alter the actual predic-
tions of the learned ruleset. Other approaches that per-
form “lossy” compaction of the strong hypothesis by, for in-
stance, deleting rules associated with low confidence values,

As described above, SLIPPER has one free
parameter—the number of rounds of boosting 7'. Al-
though there are theoretical analyses of the number of
rounds needed for boosting (Freund & Schapire 1997;
Schapire et al. 1997), these tend not to give practi-
cally useful bounds. Therefore, we use internal five-fold
cross-validation (on the training set) to fix 7. Five
training/holdout divisions of the data are created in
the usual way, and the algorithm of Figure 2 is run
five times for Tyq, rounds on each training sets (where
T'maz 18 an upper bound set by the user). The number
of rounds T which produces the lowest average error
on the holdout data is then determined, breaking ties
in favor of smaller values of 7, and the algorithm is
finally run again for 7* rounds on the entire dataset.
In the experiments below, we always used a value of
Tmaz = 100.

Experiments

To evaluate SLIPPER, we used two sets of benchmark
problems, each containing 16 two-class classification
problems. The first set, the development set, was used
in debugging SLIPPER and evaluating certain varia-
tions of it. The second set, the prospective set, was
used as a secondary evaluation of the SLIPPER algo-
rithm, after development was complete. This two-stage
procedure was intended as a guard against the possibil-
ity of “overfitting” the benchmark problems themselves;
however, since the experimental results are qualitatively
similar on both the development and prospective sets,
we will focus on results across all 32 benchmark prob-
lems in the discussion below. These results are summa-
rized in Table 2 and Figure 3, and presented in more
detail in Table 1.

The benchmark problems are summarized in Ta-
ble 1. The problems from the development set are
discussed elsewhere (Cohen 1995). The problems in
the prospective set are taken without modification
from the UC/Irvine repository (Blake, Keogh, & Merz
1989), with these exceptions: the hypothyroid and
splice-junction problems were artificially made two-
class problems—in each case, the goal is to separate
most frequent class from the remaining classes; for
adult, we used a 5000-element subsample of the desig-
nated training set; and market1 and market?2 are real-
world customer modeling problems provided by AT&T.
To measure generalization error, we used a designated
test set, when available; a single random partition of
the training set, for the larger problems; and stratified
10-fold cross-validation otherwise, as indicated.

We compared SLIPPER’s performance to RIPPER
(Cohen 1995), with and without its “optimization”
step; the C4.5 decision-tree learner (Quinlan 1994),
with pruning, and the C4.5rules rule learner (hence-

might lead to better generalization error (see for instance
(Margineantu & Dietterich 1997)) but are beyond the scope
of this this paper.



Percent Error on Test Data

Problem Name | Source #Train #Test #Feat RIPPER C4.5 C5.0

—opt | +opt | Trees | Rules | Rules | SLIPPER
Prospective:
adult uci 5000 16281 14| 172 | 16.0 | 16.0 15.0 15.1 14.7
blackjack att 5000 10000 4| 29.1| 29.1| 279 28.0 27.8 27.9
market2 att 5000 6000 68 | 43.1 | 413 | 455 43.1 414 42.6
market3 att 5000 15000 4 9.1 8.6 9.5 9.3 8.6 8.9
splice-junction uci 2190 1000 60 6.5 5.9 4.3 4.8 4.5 5.9
hypothyroid uci 2514 1258 29 1.0 0.9 0.4 0.4 0.4 0.7
breast-wisc uci 699 10CV 9 3.7 4.6 6.6 5.2 5.0 4.2
bands uci 540 10CV 39 | 283 | 270 30.0 30.0 30.2 22.8
Crx uci 690 10CV 15 15.5 15.2 14.2 15.5 14.0 15.7
echocardiogram uci 74 10CV 12 2.9 5.5 5.5 6.8 4.3 4.3
german uci 1000 10CV 20 | 28.6 | 287 | 275 27.0 28.3 27.2
hepatitis uci 155 10CV 19 20.7 23.2 18.8 18.8 20.1 17.4
heart-hungarian uci 294 10CV 13| 19.7 | 20.1 20.8 20.0 21.8 19.4
ionosphere uci 351 10CV 34 10.3 10.0 10.3 10.3 12.3 7.7
liver uci 345 10CV 6| 327 313 | 377 375 31.9 32.2
horse-colic uci 300 10CV 23| 170 | 16.3 | 16.3 16.0 15.3 15.0
Development:
mushroom uci 3988 4136 22 0.2 0.0 0.2 0.2 0.7 0.2
vote uci 300 135 16 3.7 3.0 3.0 5.2 3.0 3.0
move att 1483 1546 10| 351 | 293 | 278 25.3 26.8 23.9
networkl att 2500 1077 30 | 25.0 | 25.7| 284 26.6 26.3 25.1
network?2 att 2600 1226 35| 21.7| 213 | 233 22.3 22.9 26.6
market1 att 1565 1616 10 23.4 22.3 21.8 20.5 21.2 20.1
weather att 1000 4597 35| 285 | 289 | 31.3 28.7 29.2 28.7
coding uci 5000 15000 15| 343 | 328 | 34.1 32.6 32.4 30.2
ocr att 1318 1370 576 3.0 34 3.6 3.6 4.7 2.0
labor uci 57 10CV 16 | 18.0 | 18.0 | 14.7 14.7 18.4 12.3
bridges uci 102 10CV T 13.7| 13.7| 15.7 17.5 15.7 13.7
promoters uci 106 10CV 57 18.1 19.0 22.7 18.1 22.7 18.9
sonar uci 208 10CV 60 | 29.8 | 24.2 | 30.3 29.8 28.3 25.5
ticketl att 556  10CV 78 1.8 1.6 1.6 1.6 1.6 2.7
ticket2 att 556  10CV 53 6.3 4.7 4.2 4.9 4.2 4.5
ticket3 att 556  10CV 61 4.5 3.2 2.9 34 2.9 4.3
Average: Prospective Set 17.83 | 17.75 | 18.20 | 17.97 | 17.55 16.65
Average: Development Set 16.70 | 15.70 | 16.60 | 15.93 | 16.31 15.11
Average: All Problems 17.26 | 16.72 | 17.40 | 16.95 | 16.93 15.88
Average Rank: All Problems 4.05| 3.36 | 4.06 3.59 3.41 2.53
#Lowest Error Rates: All Problems 6 9 6 3 8 13

Table 1: Summary of the datasets used, and error rates for SLIPPER, four alternative rule learners (RIPPER with
and without optimization, C4rules, and Cbrules), and the C4.5 decision tree learner.

forth, C4rules); and the C5.0 rule learner? (hence-
forth, Cbrules), a proprietary, unpublished descen-
dent of C4rules. RIPPER without optimization is in-
cluded as a relatively simple separate-and-conquer vari-
ant; this algorithm has been evaluated elsewhere under
the names IREP* (Cohen 1995) and IRIP (Fiirnkranz
1998).

The results are shown in detail in Table 1. SLIPPER
obtains the average lowest error rate for both sets of

2That is, C5.0 run with the -r option.

benchmarks; also, among the rule learners SLIPPER,
RIPPER, C4rules, and C5rules, SLIPPER obtains the
lowest error rate 17 times, C5rules 10 times, RIPPER
9 times, and C4rules 5 times. Also among these rule
learners, the average rank of SLIPPER is 2.0, compared
to 2.6 for RIPPER and C5rules, and 2.8 for C4rules.?
Summaries of the experimental results are given in
Figure 3 and Table 2. In the scatterplot of Figure 3,

3The corresponding figures across all learning algorithms
compared are given in the table.
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Figure 3: Summary of experimental results. Points above
the lines y = = correspond to datasets for which SLIPPER
performs better than some second learner.

each point compares SLIPPER to some second learn-
ing system L on a single dataset: the z-axis position
of the point is the error rate of SLIPPER, and the y-
axis position is the error rate of L. Thus, points above
the lines y = x correspond to datasets for which SLIP-
PER performs better than some second learner. Visual
inspection confirms that SLIPPER often substantially
outperforms each of the other rule learners, and that
its performance is almost always close to the best of
the other rule learners.*

In Table 2, let Ly be the learner corresponding to a
row of the table, and let Lo correspond to a column.
The upper triangle entries are the average, across all
benchmarks, of the quantity error(L¢)/error(Lpg); for
instance, the entries of the fourth column indicate that
SLIPPER’s error rate is, on average, about 2% to 4%
lower than the other rule learners. The lower triangle
entries are the won-loss-tied record of learner Lg versus
L¢, a “win” indicating Lg achieved a lower error rate.
A record is underlined if it is statistically significant at
the 90% level, and bold-faced if it is statistically sig-
nificant at the 95% level.> For instance, the first entry
of the fourth row indicates that SLIPPER achieves a
lower error rate than RIPPER 20 times, a higher error
rate 9 times, and the same error rate 3 times. SLIP-
PER’s records versus C4rules and Cbrules are similar.
The last two lines of the table give SLIPPER’s won-loss-
tied records for the development set and prospective set
only, indicating that these results are generally compa-
rable across both test sets. (An exception is SLIPPER’s
performance versus Cbrules: it appears to be superior
on the development set, but only comparable on the
prospective set.)

We also measured the size of the rulesets produced

“The sole exception to this is network2, on which SLIP-
PER performs noticeably worse than the other methods.

®That is, if one can reject the null hypothesis that the
probability of a win is 0.50, given there is no tie, with a

RIPPER Cd4rules Cb5rules SLIPPER

RIPPER 1.023 0.993 0.961

C4rules 14-17-1 1.066 0.971

Cb5rules 14-15-3  16-14-2 0.977
SLIPPER 20-9-3 22-8-2 19-11-2

SLIPPER 11-4-1  12-4-0 8-7-1  (Prosp.)

9-5-2 1042  11-4-1  (Devel.)

Table 2: Summary of experimental results. If Lr and
L¢c are the learners corresponding to a row and column,
respectively, the upper triangle entries are the average of
error(L¢)/error(Lr). The lower triangle entries are the
won-loss-tied record of learner Lr versus L¢, a “win” in-
dicating Lr achieved a lower error rate.

by the different algorithms.® The most compact rule-
sets are produced by RIPPER: the average size of RIP-
PER’s rulesets is 6.0 rules (or 8.1 without optimiza-
tion), and RIPPER virtually always produces the small-
est ruleset.” The remaining three learners produce sim-
ilar sized rulesets, with SLIPPER tending to produce
somewhat smaller rulesets than the other two. The av-
erage size rulesets for C4rules, C5rules, and SLIPPER
are 22.1 rules, 30.7 rules, and 17.8 rules, respectively,
and the respective average ranks among these three are
1.8, 2.3, and 1.9. The largest ruleset produced by SLIP-
PER is 49 rules (for coding).

Finally, we evaluated the scalability of the rule
learners on several large datasets. We used adult;
blackjack, with the addition of 20 irrelevant noise vari-
ables; and market3, for which many examples were
available. C4rules was not run, since it is known to
have scalability problems (Cohen 1995). The results are
shown in the log-log plots of Figure 4.5 The fastest rule
learner for these datasets is usually C5rules, followed by
the RIPPER variants. SLIPPER (at least in the current
implementation) is much slower than either C5rules or
RIPPER; however, it scales very well with increasing
amounts of data. In absolute terms, SLIPPER’s per-
formance is still quite reasonable: SLIPPER needs 1-2
hours to process 100,000 examples of the blackjack+
and market3 datasets, and 30 minutes to process the
30,000 training examples from the adult dataset.

To summarize, SLIPPER obtains the lowest error
rates on average. SLIPPERalso scales well to large
datasets, although it is somewhat less efficient than
Cb5rules and RIPPER. SLIPPER’s rulesets are compa-
rable in size to those of C4rules and Cb5rules, although
somewhat larger than RIPPER’s.

two-tailed binomial test.

In the 10-CV experiments, we looked at the size of the
ruleset generated by running on all the data, not the average
of the cross-validation runs.

"However, it has been argued that RIPPER. over-prunes
on the sort of the smaller problems that predominate in the
UC/Irvine repository (Frank & Witten 1998).

®Timing results are given in CPU seconds on a MIPS Irix
6.3 with 200 MHz R10000 processors.
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Figure 4: Run-time performance of SLIPPER, RIPPER, and C5rules on large datasets.

Concluding remarks

We have described SLIPPER, a new rule learning al-
gorithm which uses confidence-rated boosting to learn
an ensemble of rules. Although the SLIPPER algo-
rithm is relatively simple, SLIPPER performs well on
a set of 32 benchmark problems: relative to RIPPER,
SLIPPER achieves lower error rates 20 times, and the
same error rate 3 times; relative to C4.5rules, SLIPPER
achieves lower error rates 22 times, and the same rate
2 times; and relative to C5.0rules, SLIPPER achieves
lower error rates 19 times, and the same rate 2 times.
Using a two-tailed sign test, these differences between
RIPPER, C4.5rules, and C5.0rules are significant at
94%, 98%, and 80% levels respectively. SLIPPER
also performs best among these three systems accord-
ing to several measures of aggregate performance, such
as average rank. SLIPPER’s rulesets are of moderate
size—comparable to those produced by C4.5rules and
C5.0rules—and the algorithm also scales well on large
datasets.

As noted above, SLIPPER is based on two lines of
research. The first line of research is on scalable, noise-
tolerant separate-and-conquer rule learning algorithms
(Pagallo & Haussler 1990; Quinlan 1990), such as re-
duced error pruning (REP) for rules (Brunk & Paz-
zani 1991), IREP (Fiirnkranz & Widmer 1994), and
RIPPER (Cohen 1995). The second line of research
is on boosting (Schapire 1990; Freund 1995), in par-
ticular the AdaBoost algorithm (Freund & Schapire
1997), and its recent successor developed by Schapire
and Singer (1998).

SLIPPER is similar to an earlier application of boost-
ing to rule learning (Freund & Schapire 1996), in
which AdaBoost was used to boost a rule-builder called
FindDecRule. In contrast to SLIPPER, Freund and
Schapire used a heuristic based on an information gain
criterion that has no formal guarantees. SLIPPER also
places a greater emphasis on generating comprehensible
rulesets; in particular, SLIPPER generates relatively
compact rulesets, and SLIPPER’s use of confidence-
rated boosting allows it to construct rules that “ab-
stain” on instances that are not covered by a rule;
thus the label assigned to an instance depends only on

the rules that “fire” for that instance. In Freund and
Schapire’s rule boosting algorithm, in contrast, the la-
bel for an instance always depends on all the rules in
the ensemble. The algorithm also always generates a
ruleset of fixed size (in their experiments, 100 rules).

SLIPPER’s use of boosting is a departure from the
separate-and-conquer approach used by many earlier
rule learners. Another alternative is the RISE algo-
rithm (Domingos 1996), which combines rule learning
and nearest-neighbour classification using a bottom-
up “conquering without separating” control structure.
However, the ruleset constructed by RISE is somewhat
more difficult to interpret, since the label assigned to
an instance depends not on the rules that cover it, but
on the rule that is “nearest”.

More recently, Hsu, Etzioni, and Soderland (1998)
described an experimental rule learner called DAIRY
which extends the set-covering approach of traditional
rule learners by “recycling” examples—that is, by re-
ducing the weight of examples that have been “covered”
by previous rules, rather than removing these examples.
DAIRY’s recycling method was shown experimentally
to improve performance on a number of text classifi-
cation problems. SLIPPER’s combination of boosting
and rule-building is similar to recycling, and could be
viewed as a formally justified variant of it.

We note that there are important practical advan-
tages to using learning methods that are formally
well understood. For instance, existing formal analy-
sis (Schapire & Singer 1998) generalizes the boosting
method used here to multi-class learning problems, and
also to a setting in which misclassification costs are un-
equal. In further work, we plan to implement a multi-
class version of SLIPPER, and an extension of SLIP-
PER for minimizing an arbitrary cost matrix, which
maps each pair of (predicted label,correct label) to an
associated cost. We also plan to evaluate SLIPPER
on text classification benchmarks: the current imple-
mentation of SLIPPER, which is based on code used in
RIPPER, inherits from RIPPER the ability to handle
text efficiently.
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