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Abstract

We describe SLIPPER� a new rule learner that gener�
ates rulesets by repeatedly boosting a simple� greedy�
rule�builder� Like the rulesets built by other rule learn�
ers� the ensemble of rules created by SLIPPER is com�
pact and comprehensible� This is made possible by
imposing appropriate constraints on the rule�builder�
and by use of a recently�proposed generalization of Ad�
aboost called con�dence�rated boosting� In spite of its
relative simplicity� SLIPPER is highly scalable� and an
e�ective learner� Experimentally� SLIPPER scales no
worse than O�n log n�� where n is the number of exam�
ples� and on a set of 	
 benchmark problems� SLIPPER
achieves lower error rates than RIPPER 
� times� and
lower error rates than C��
rules 

 times�

Introduction

Boosting �Schapire �		�� Freund �		�� Freund �
Schapire �		�� is usually used to create ensemble clas�
si�ers� It is popular because it is simple� easy to
implement� well�understood formally� and e�ective at
improving accuracy� One disadvantage of boosting
is that improvements in accuracy are often obtained
at the expense of comprehensibility� If comprehen�
sibility is important� it is more appropriate to use
some learner that produces a compact� understandable
hypothesis�for instance� a rule learning system like
CN� �Clark � Niblett �	�	�� RIPPER �Cohen �		���
or C���rules �Quinlan �		��� However� the rule learn�
ing systems that perform best experimentally have the
disadvantage of being complex� hard to implement� and
not well�understood formally�
Here� we describe a new rule learning algorithm called

SLIPPER �for Simple Learner with Iterative Pruning
to Produce Error Reduction�� SLIPPER generates
rulesets by repeatedly boosting a simple� greedy� rule�
builder� SLIPPER�s rule�builder is much like the inner
loops of RIPPER �Cohen �		�� and IREP �F�urnkranz
� Widmer �		��� However� SLIPPER does not em�
ploy the �set�covering� process used by conventional
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rule learners�rather than removing examples covered
by a new rule� SLIPPER uses boosting to reduce the
weight of these examples�
Like the rulesets constructed by RIPPER and other

rule learners� SLIPPER�s rulesets have the desirable
property that the label assigned to an instance depends
only on the rules that ��re� for that instance� This
property is not shared by earlier applications of boost�
ing to rule learning �see for instance �Freund � Schapire
�		���� in which the behavior of the entire ensemble of
rules can a�ect an instance�s classi�cation� This prop�
erty makes classi�cations made by the rulesets easier
to understand� and is made possible by imposing ap�
propriate constraints on the base learner� and use of a
recently�proposed generalization of AdaBoost �Schapire
� Singer �		���
SLIPPER is simpler and better�understood formally

than other state�of�the�art rule learners� In spite of
this� SLIPPER scales well on large datasets� and is
an extremely e�ective learner� Experimentally� SLIP�
PER�s run�time on large real�world datasets scales no
worse than O�n logn�� where n is the number of exam�
ples� On a set of 
� benchmark problems� SLIPPER
achieves lower error rates than RIPPER �� times� and
lower error rates than C���rules �� times� The rulesets
produced by SLIPPER are also comparable in size to
those produced by C���rules�

The SLIPPER Algorithm

SLIPPER uses boosting to create an ensemble of rules�
The weak learner that is boosted �nds a single rule�
using essentially the same process as used in the in�
ner loops of IREP �F�urnkranz � Widmer �		�� and
RIPPER �Cohen �		��� Speci�cally� the weak learner
splits the training data� grows a single rule using one
subset of the data� and then prunes the rule using the
other subset� In SLIPPER� the ad hoc metrics used
to guide the growing and pruning of rules are replaced
with metrics based on the formal analysis of boosting
algorithms� The speci�c boosting algorithm used is a
generalization of Freund and Schapire�s AdaBoost �Fre�
und � Schapire �		�� that employs con�dence�rated
predictions �Schapire � Singer �		��� This generaliza�
tion allows the rules generated by the weak learner to



�abstain� �vote with con�dence zero� on examples not
covered by the rule� and vote with an appropriate non�
zero con�dence on covered examples�
The current implementation of SLIPPER only han�

dles two�class classi�cation problems� The output of
SLIPPER is a weighted ruleset� in which each rule R
is associated with a con�dence CR� To classify an in�
stance x� one computes the sum of the con�dences of
all rules that cover x� then predicts according to the
sign of this sum� if the sum is greater than zero� one
predicts the positive class� In order to make the rule�
set more comprehensible� we further constrain SLIP�
PER to generate only rules that are associated with
a positive con�dence rating�that is� all rules predict
membership in the positive class� The only rule with
a negative con�dence rating �i�e�� that predicts mem�
bership in the negative class� is a single default rule�
This representation is a generalization of propositional
DNF� and is similar to that used by many other rule
learners� for most rule learners the classi�er is a set of
rules� often with some associated numerical con�dence
measure� and often with some sort of voting scheme for
resolving possible con�icts in the predictions�
Below� we describe the SLIPPER algorithm in detail�

Boosting Con�dence�rated Rules

The �rst boosting algorithms �Schapire �		�� Freund
�		�� were developed for theoretical reasons�to answer
certain fundamental questions about pac�learnability
�Kearns � Valiant �		��� While mathematically beau�
tiful� these two algorithms were rather impractical�
Later� Freund and Schapire ��		�� developed the Ada�
Boost algorithm� which proved to be a practically useful
meta�learning algorithm� AdaBoost works by making
repeated calls to a weak learner � On each call the weak
learner generates a single weak hypothesis � after which
the examples are re�weighted� The weak hypotheses are
combined into an ensemble called a strong hypothesis �
Recently� Schapire and Singer ��		�� studied a gener�

alization of AdaBoost� in which a weak�hypothesis can
assign a real�valued con�dence to each prediction� The
weak�hypothesis can assign di�erent con�dences to dif�
ferent instances� and in particular� it can �abstain� on
some instances by making a prediction with zero con��
dence� The ability to abstain is important for our pur�
poses� We now give a brief overview of this extended
boosting framework and describe how it is used for con�
structing weighted rulesets� Since we have thus far im�
plemented only a two�class version of SLIPPER� we will
focus on the two�class case� however� the theory extends
nicely to multiple classes�
Assume that we are given a set of examples

h�x�� y��� � � � � �xm� ym�i where each instance xi belongs
to a domain X and each label yi is in f�����g� Assume
also that we have access to a weak learning algorithm�
which accepts as input the training examples along with
a distribution over the instances �initially uniform�� In
the generalized boosting setting� the weak learner com�
putes a weak hypothesis h of the form h � X � R� where

Given� �x�� y��� � � � � �xm� ym� � xi � X � yi � f�����g
Initialize D��i� � ��m�
For t � �� � � � � T �

� Train weak learner using distribution Dt�
� Get weak hypothesis ht � X � R�
� Choose �t � R�
� Update� Dt���i� � Dt�i� exp���tyiht�xi���Zt

Output �nal hypothesis� H�x� � sign
�PT

t�� �tht�x�
�

Figure �� A generalized version of AdaBoost with real val�
ued predictions �Schapire � Singer ������

the sign of h�x� is interpreted as the predicted label and
the magnitude jh�x�j as the con�dence in the predic�
tion� large numbers for jh�x�j indicate high con�dence
in the prediction� and numbers close to zero indicate low
con�dence� The weak hypothesis can abstain from pre�
dicting the label of an instance x by setting h�x� � ��
Pseudo�code describing the generalized boosting algo�
rithm is given in Figure �� here Zt is a normalization
constant that ensures the distribution Dt�� sums to ��
and �t depends on the weak�learner�
The weak�hypotheses that we use here are rules � In

SLIPPER� rules are conjunctions of primitive condi�
tions� As used by the boosting algorithm� however� a
rule R can be any hypothesis that partitions the set of
instances X into two subsets� the set of instances which
satisfy �are covered by� the rule� and those which do not
satis�ed the rule� If x satis�es R� we will write x � R�
In order to make the strong�hypothesis similar to a

conventional ruleset� we will force the weak�hypothesis
based on a rule R to abstain on all instances unsatis�ed
by R� by setting the prediction h�x� for x �� R to ��
We will also force the rules to to predict with the same
con�dence CR on every x � R� in other words� for the t�
th rule Rt generated by the weak learner� we will require
that �x � Rt� �tht�x� � CRt

� Thus� to classify an
instance x with the strong�hypothesis� one simply adds
up the con�dence CRt

for each rule Rt that is satis�ed
by x� and predicts according to the sign of this sum�
As a �nal constraint� we will require each rule R to be
in one of two forms� either R is a �default rule� �i�e��
x � X � x � R� or else R is such that CR is positive�
Thus each non�default rule R is associated with a single
real�valued con�dence CR� and can be interpreted as
follows� if R is satis�ed then predict class �positive�
with con�dence CR� and otherwise abstain�
In Figure �� Zt is a real value used to normal�

ize the distribution� Zt �
P

iDt�i� exp���tyiht�xi���
Thus Zt depends on both ht and �t� Schapire and
Singer ��		�� showed that to minimize training error�
the weak�learning algorithm should pick� on each round
of boosting� the weak hypothesis ht and weight �t which
lead to the smallest value of Zt� Assume that a rule R
has been generated by the weak learner� We will now
show how the con�dence value CR for rule R can be set



to minimize Zt� Omitting the dependency on t� Z can
rewritten in our case as

Z �
X
xi ��R

D�i� �
X
xi�R

D�i� exp��yiCR�� ���

where CR � �h�x�� Let W� �
P

xi ��R
D�i�� W� �P

xi�R�yi���
D�i�� and W� �

P
xi�R�yi���

D�i�� We

can now further simplify Equ� ��� and rewrite Z as

Z �W� �W� exp��CR� �W� exp��CR� � ���

Following Schapire and Singer ��		��� to �nd CR we
need to solve the equation dZ

dCR
� �� which implies that

Z is minimized by setting

CR � �

�
ln

�
W�

W�

�
� �
�

Since a rule may cover only a few examples� W� can
be equal to �� leading to extreme con�dence values� to
prevent this� in practice� we �smooth� the con�dence
by adding �

�n
to both W� and W��

 CR � �

�
ln

�
W� � ����n�

W� � ����n�

�
���

The smoothed con�dence value of any rule R is there�
fore bounded from above by �

�
ln��n��

The analysis of Singer and Schapire also suggests an
objective function to be used by the weak�learner which
constructs rules� Plugging the value of CR into Equ� ���
we get that

Z � W� � �
p
W�W�

� ��
�
W� � �

p
W�W� �W�

�

� ��
�p

W� �
p
W�

��
� ���

Thus� a rule R minimizes Z i� it maximizes j
p
W� �p

W�j� Note that a rule which minimizes Z by maxi�

mizing
p
W��

p
W� may be negatively correlated with

the positive class� and hence its con�dence value CR is
negative� As described earlier� in SLIPPER we restrict
ourselves to positively correlated rules� hence the objec�
tive function we attempt to maximize when searching
for a good rule is

!Z �
p
W� �

p
W� � ���

In summary� this use of boosting corresponds roughly
to the outer �set�covering� loop found in many rule
learners �Pagallo � Haussler �		�� Quinlan �		��
Brunk � Pazzani �		�� F�urnkranz � Widmer �		��
Cohen �		��� The major di�erence is that examples
covered by a rule are not immediately removed from
the training set� Instead� covered examples are given
lower weights� further� the degree to which an example�s
weight is reduced depends on the accuracy of the new
rule� The formal analysis of boosting given by Schapire
and Singer also suggests a new quality metric for rules�

Given� �x�� y��� � � � � �xm� ym� � xi � X � yi � f�����g
Initialize D�i� � ��m�
For t � �� � � � � T �

�� Train the weak�learner using current distribution D�

�a� Split data into GrowSet and PruneSet�

�b� GrowRule� starting with empty rule� greedily add
conditions to maximize Equ� ����

�c� PruneRule� starting with the output of GrowRule�
delete some �nal sequence of conditions to min�
imize Equ� ���� where  CR� is computed using
Equ� ��� and GrowSet�

�d� Return as Rt either the output of PruneRule� or
the default rule� whichever minimizes Equ� ����

�� Construct ht � X � R�
Let  CRt

be given by Equ� ��� �evaluated on the entire
dataset�� Then

ht�x� �

�
 CRt

if x � Rt

� otherwise


� Update�

�a� For each xi � Rt� set D�i� 	 D�i�� exp�yi 
  CRt
�

�b� Let Zt �
Pm

i��D�i��

�c� For each xi� set D�i�	 D�i��Zt�

Output �nal hypothesis� H�x� � sign
�P

Rt�x�Rt

 CRt

�

Figure �� The SLIPPER algorithm

notice that !Z encompassed a natural trade�o� between
accuracy �the proportion of the positive examples satis�
�ed by a rule to the total number of examples that the
rule satis�es� and coverage �the fraction of examples
that satisfy the rule��
Below� we will discuss how to construct rules based

on the objective function !Z as given by Equ� ����

Rule growing and pruning

We will now describe the weak�learner which generates
individual rules� This procedure is similar to the heuris�
tic rule�building procedure used in RIPPER �Cohen
�		�� and IREP �F�urnkranz � Widmer �		���
The rule�builder begins by randomly splitting the

dataset into two disjoint subsets� GrowSet and
PruneSet� The split is constrained so that the total
weight of examples in GrowSet is about �"
�
The rule�builder then invokes the GrowRule routine�

GrowRule begins with an empty conjunction of condi�
tions� and considers adding to this conjunction any con�
dition in one of the following forms� An � v� where An

is a nominal attribute and v is a legal value for An� or
Ac � � or Ac � �� where Ac is a continuous variable
and � is some value for Ac that occurs in the training
data� GrowRule then adds the condition that attains
the maximal value for !Zt on GrowSet� This process



is repeated until the rule covers no negative examples
from GrowSet� or no further re�nement improves !Zt�
This rule is often too speci�c� and �over�ts� the

training data� thus the resulting rule is immediately
pruned using the PruneRule routine� PruneRule con�
siders deleting any �nal sequence of conditions from
the rule� Each sequence of deletions de�nes a new rule
whose goodness is evaluated on PruneSet� As before�
each candidate rule R� partitions the PruneSet into
two subsets� depending on whether or not R� is sat�
is�ed� Similar to the de�nition of W� and W�� let
V� �respectively V�� be the total weight of the exam�
ples in PruneSet that are covered by R� and labeled
�� �respectively ���� Denote by  CR� the �smoothed�
prediction con�dence obtained by evaluating Equ� ���
on the W��W� associated with GrowSet� PruneRule

minimizes the formula

��� V� � V�� � V� exp ��  CR�� � V� exp ��  CR�� � ���

This can be interpreted as the loss �as de�ned by Singer
and Schapire� of the rule R�� with associated con�dence
 CR� � as estimated on the examples in PruneSet�
Subject to the limitations of this greedy� incomplete

search procedure� this rule will have a low Z score� It
is also guaranteed to be positively correlated with the
positive class� We also allow a default rule �a rule that
is satis�ed for all examples� to be used in a hypothesis�
indeed� without such a rule� it would be impossible for
the strong�hypothesis to classify any instances as neg�
ative� The rule�builder will thus return to the booster
either the output of PruneRule� or the default rule�
whichever rule has the lowest Z value� as determined
by Equ� ���� �This behavior is di�erent from other rule�
learners� which typically add a single default rule after
all other rules have been learned��
Note that the value of Equ� ��� and the con�dence

value  CR� which was calculated on GrowSet is used only
in the weak�learner search for a good rule�the booster
will assign a con�dence using Equ� ��� on the entire
dataset�
Pseudo�code for SLIPPER is given in Figure ��

Other details

It is possible for the weak�learner to generate the same
rule several times�for instance� the default rule is often
generated many times during boosting� Therefore� after
the last round of boosting� the �nal strong�hypothesis
is �compressed� by removing duplicate rules� Speci��
cally� if the strong�hypothesis contains a set of identical
rules R�� � � � � Rk� these are replaced by a single rule

R� with con�dence CR� �
Pk

i�� CRi
� This step reduces

the size of the strong�hypothesis� thus reducing classi�
�cation time and improving comprehensibility��

�Note that this step does not alter the actual predic�
tions of the learned ruleset� Other approaches that per�
form �lossy� compaction of the strong hypothesis by� for in�
stance� deleting rules associated with low con�dence values�

As described above� SLIPPER has one free
parameter�the number of rounds of boosting T � Al�
though there are theoretical analyses of the number of
rounds needed for boosting �Freund � Schapire �		��
Schapire et al� �		��� these tend not to give practi�
cally useful bounds� Therefore� we use internal �ve�fold
cross�validation �on the training set� to �x T � Five
training"holdout divisions of the data are created in
the usual way� and the algorithm of Figure � is run
�ve times for Tmax rounds on each training sets �where
Tmax is an upper bound set by the user�� The number
of rounds T � which produces the lowest average error
on the holdout data is then determined� breaking ties
in favor of smaller values of T �� and the algorithm is
�nally run again for T � rounds on the entire dataset�
In the experiments below� we always used a value of
Tmax � ����

Experiments

To evaluate SLIPPER� we used two sets of benchmark
problems� each containing �� two�class classi�cation
problems� The �rst set� the development set � was used
in debugging SLIPPER and evaluating certain varia�
tions of it� The second set� the prospective set � was
used as a secondary evaluation of the SLIPPER algo�
rithm� after development was complete� This two�stage
procedure was intended as a guard against the possibil�
ity of �over�tting� the benchmark problems themselves�
however� since the experimental results are qualitatively
similar on both the development and prospective sets�
we will focus on results across all 
� benchmark prob�
lems in the discussion below� These results are summa�
rized in Table � and Figure 
� and presented in more
detail in Table ��
The benchmark problems are summarized in Ta�

ble �� The problems from the development set are
discussed elsewhere �Cohen �		��� The problems in
the prospective set are taken without modi�cation
from the UC"Irvine repository �Blake� Keogh� � Merz
�	�	�� with these exceptions� the hypothyroid and
splice�junction problems were arti�cially made two�
class problems�in each case� the goal is to separate
most frequent class from the remaining classes� for
adult� we used a �����element subsample of the desig�
nated training set� and market� and market� are real�
world customer modeling problems provided by AT�T�
To measure generalization error� we used a designated
test set� when available� a single random partition of
the training set� for the larger problems� and strati�ed
���fold cross�validation otherwise� as indicated�
We compared SLIPPER�s performance to RIPPER

�Cohen �		��� with and without its �optimization�
step� the C��� decision�tree learner �Quinlan �		���
with pruning� and the C���rules rule learner �hence�

might lead to better generalization error �see for instance
�Margineantu � Dietterich ������ but are beyond the scope
of this this paper�



Percent Error on Test Data
Problem Name Source �Train �Test �Feat RIPPER C��� C���

�opt �opt Trees Rules Rules SLIPPER
Prospective�
adult uci ���� ����� �� ���� ���� ���� ���� ���� ����
blackjack att ���� ����� � �	�� �	�� ���	 ���� ���� ���	
market� att ���� ���� �� �
�� ���
 ���� �
�� ���� ����
market
 att ���� ����� � 	�� ��� 	�� 	�
 ��� ��	
splice�junction uci ��	� ���� �� ��� ��	 ��
 ��� ��� ��	
hypothyroid uci ���� ���� �	 ��� ��	 ��� ��� ��� ���
breast�wisc uci �		 ��CV 	 
�� ��� ��� ��� ��� ���
bands uci ��� ��CV 
	 ���
 ���� 
��� 
��� 
��� ����
crx uci �	� ��CV �� ���� ���� ���� ���� ���� ����
echocardiogram uci �� ��CV �� ��	 ��� ��� ��� ��
 ��

german uci ���� ��CV �� ���� ���� ���� ���� ���
 ����
hepatitis uci ��� ��CV �	 ���� �
�� ���� ���� ���� ����
heart�hungarian uci �	� ��CV �
 �	�� ���� ���� ���� ���� �	��
ionosphere uci 
�� ��CV 
� ���
 ���� ���
 ���
 ���
 ���
liver uci 
�� ��CV � 
��� 
��
 
��� 
��� 
��	 
���
horse�colic uci 
�� ��CV �
 ���� ���
 ���
 ���� ���
 ����
Development�
mushroom uci 
	�� ��
� �� ��� ��� ��� ��� ��� ���
vote uci 
�� �
� �� 
�� 
�� 
�� ��� 
�� 
��
move att ���
 ���� �� 
��� �	�
 ���� ���
 ���� �
�	
network� att ���� ���� 
� ���� ���� ���� ���� ���
 ����
network� att ���� ���� 
� ���� ���
 �
�
 ���
 ���	 ����
market� att ���� ���� �� �
�� ���
 ���� ���� ���� ����
weather att ���� ��	� 
� ���� ���	 
��
 ���� �	�� ����
coding uci ���� ����� �� 
��
 
��� 
��� 
��� 
��� 
���
ocr att �
�� �
�� ��� 
�� 
�� 
�� 
�� ��� ���
labor uci �� ��CV �� ���� ���� ���� ���� ���� ���

bridges uci ��� ��CV � �
�� �
�� ���� ���� ���� �
��
promoters uci ��� ��CV �� ���� �	�� ���� ���� ���� ���	
sonar uci ��� ��CV �� �	�� ���� 
��
 �	�� ���
 ����
ticket� att ��� ��CV �� ��� ��� ��� ��� ��� ���
ticket� att ��� ��CV �
 ��
 ��� ��� ��	 ��� ���
ticket
 att ��� ��CV �� ��� 
�� ��	 
�� ��	 ��

Average� Prospective Set ����
 ����� ����� ���	� ����� �����
Average� Development Set ����� ����� ����� ���	
 ���
� �����
Average� All Problems ����� ����� ����� ���	� ���	
 �����

Average Rank� All Problems ���� 
�
� ���� 
��	 
��� ���

#Lowest Error Rates� All Problems � 	 � 
 � �


Table �� Summary of the datasets used� and error rates for SLIPPER� four alternative rule learners �RIPPER with
and without optimization� C�rules� and C�rules�� and the C��� decision tree learner�

forth� C�rules�� and the C��� rule learner� �hence�
forth� C�rules�� a proprietary� unpublished descen�
dent of C�rules� RIPPER without optimization is in�
cluded as a relatively simple separate�and�conquer vari�
ant� this algorithm has been evaluated elsewhere under
the names IREP
 �Cohen �		�� and IRIP �F�urnkranz
�		���
The results are shown in detail in Table �� SLIPPER

obtains the average lowest error rate for both sets of

�That is� C
�� run with the �r option�

benchmarks� also� among the rule learners SLIPPER�
RIPPER� C�rules� and C�rules� SLIPPER obtains the
lowest error rate �� times� C�rules �� times� RIPPER
	 times� and C�rules � times� Also among these rule
learners� the average rank of SLIPPER is ���� compared
to ��� for RIPPER and C�rules� and ��� for C�rules��

Summaries of the experimental results are given in
Figure 
 and Table �� In the scatterplot of Figure 
�

�The corresponding �gures across all learning algorithms
compared are given in the table�
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Figure 
� Summary of experimental results� Points above
the lines y � x correspond to datasets for which SLIPPER
performs better than some second learner�

each point compares SLIPPER to some second learn�
ing system L on a single dataset� the x�axis position
of the point is the error rate of SLIPPER� and the y�
axis position is the error rate of L� Thus� points above
the lines y � x correspond to datasets for which SLIP�
PER performs better than some second learner� Visual
inspection con�rms that SLIPPER often substantially
outperforms each of the other rule learners� and that
its performance is almost always close to the best of
the other rule learners��

In Table �� let LR be the learner corresponding to a
row of the table� and let LC correspond to a column�
The upper triangle entries are the average� across all
benchmarks� of the quantity error�LC�"error�LR�� for
instance� the entries of the fourth column indicate that
SLIPPER�s error rate is� on average� about �$ to �$
lower than the other rule learners� The lower triangle
entries are the won�loss�tied record of learner LR versus
LC � a �win� indicating LR achieved a lower error rate�
A record is underlined if it is statistically signi�cant at
the 	�$ level� and bold�faced if it is statistically sig�
ni�cant at the 	�$ level�	 For instance� the �rst entry
of the fourth row indicates that SLIPPER achieves a
lower error rate than RIPPER �� times� a higher error
rate 	 times� and the same error rate 
 times� SLIP�
PER�s records versus C�rules and C�rules are similar�
The last two lines of the table give SLIPPER�s won�loss�
tied records for the development set and prospective set
only� indicating that these results are generally compa�
rable across both test sets� �An exception is SLIPPER�s
performance versus C�rules� it appears to be superior
on the development set� but only comparable on the
prospective set��
We also measured the size of the rulesets produced

�The sole exception to this is network�� on which SLIP�
PER performs noticeably worse than the other methods�

�That is� if one can reject the null hypothesis that the
probability of a win is ��
�� given there is no tie� with a

RIPPER C�rules C�rules SLIPPER

RIPPER ����
 ��		
 ��	��
C�rules ������� ����� ��	��
C�rules ������
 ������� ��	��
SLIPPER ���	�
 ������ �	�����
SLIPPER ������ ������ ����� �Prosp��

	���� ������ ������ �Devel��

Table �� Summary of experimental results� If LR and
LC are the learners corresponding to a row and column�
respectively� the upper triangle entries are the average of
error�LC��error�LR�� The lower triangle entries are the
won�loss�tied record of learner LR versus LC � a �win� in�
dicating LR achieved a lower error rate�

by the di�erent algorithms�
 The most compact rule�
sets are produced by RIPPER� the average size of RIP�
PER�s rulesets is ��� rules �or ��� without optimiza�
tion�� and RIPPER virtually always produces the small�
est ruleset�� The remaining three learners produce sim�
ilar sized rulesets� with SLIPPER tending to produce
somewhat smaller rulesets than the other two� The av�
erage size rulesets for C�rules� C�rules� and SLIPPER
are ���� rules� 
��� rules� and ���� rules� respectively�
and the respective average ranks among these three are
���� ��
� and ��	� The largest ruleset produced by SLIP�
PER is �	 rules �for coding��
Finally� we evaluated the scalability of the rule

learners on several large datasets� We used adult�
blackjack� with the addition of �� irrelevant noise vari�
ables� and market�� for which many examples were
available� C�rules was not run� since it is known to
have scalability problems �Cohen �		��� The results are
shown in the log�log plots of Figure ��� The fastest rule
learner for these datasets is usually C�rules� followed by
the RIPPER variants� SLIPPER �at least in the current
implementation� is much slower than either C�rules or
RIPPER� however� it scales very well with increasing
amounts of data� In absolute terms� SLIPPER�s per�
formance is still quite reasonable� SLIPPER needs ���
hours to process ������� examples of the blackjack�

and market� datasets� and 
� minutes to process the

����� training examples from the adult dataset�
To summarize� SLIPPER obtains the lowest error

rates on average� SLIPPERalso scales well to large
datasets� although it is somewhat less e%cient than
C�rules and RIPPER� SLIPPER�s rulesets are compa�
rable in size to those of C�rules and C�rules� although
somewhat larger than RIPPER�s�

two�tailed binomial test�
�In the ���CV experiments� we looked at the size of the

ruleset generated by running on all the data� not the average
of the cross�validation runs�

�However� it has been argued that RIPPER over�prunes
on the sort of the smaller problems that predominate in the
UC�Irvine repository �Frank � Witten ������

�Timing results are given in CPU seconds on a MIPS Irix
��	 with 
�� MHz R����� processors�
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Figure �� Run�time performance of SLIPPER� RIPPER� and C�rules on large datasets�

Concluding remarks

We have described SLIPPER� a new rule learning al�
gorithm which uses con�dence�rated boosting to learn
an ensemble of rules� Although the SLIPPER algo�
rithm is relatively simple� SLIPPER performs well on
a set of 
� benchmark problems� relative to RIPPER�
SLIPPER achieves lower error rates �� times� and the
same error rate 
 times� relative to C���rules� SLIPPER
achieves lower error rates �� times� and the same rate
� times� and relative to C���rules� SLIPPER achieves
lower error rates �	 times� and the same rate � times�
Using a two�tailed sign test� these di�erences between
RIPPER� C���rules� and C���rules are signi�cant at
	�$� 	�$� and ��$ levels respectively� SLIPPER
also performs best among these three systems accord�
ing to several measures of aggregate performance� such
as average rank� SLIPPER�s rulesets are of moderate
size�comparable to those produced by C���rules and
C���rules�and the algorithm also scales well on large
datasets�
As noted above� SLIPPER is based on two lines of

research� The �rst line of research is on scalable� noise�
tolerant separate�and�conquer rule learning algorithms
�Pagallo � Haussler �		�� Quinlan �		��� such as re�
duced error pruning �REP� for rules �Brunk � Paz�
zani �		��� IREP �F�urnkranz � Widmer �		��� and
RIPPER �Cohen �		��� The second line of research
is on boosting �Schapire �		�� Freund �		��� in par�
ticular the AdaBoost algorithm �Freund � Schapire
�		��� and its recent successor developed by Schapire
and Singer ��		���
SLIPPER is similar to an earlier application of boost�

ing to rule learning �Freund � Schapire �		��� in
which AdaBoost was used to boost a rule�builder called
FindDecRule� In contrast to SLIPPER� Freund and
Schapire used a heuristic based on an information gain
criterion that has no formal guarantees� SLIPPER also
places a greater emphasis on generating comprehensible
rulesets� in particular� SLIPPER generates relatively
compact rulesets� and SLIPPER�s use of con�dence�
rated boosting allows it to construct rules that �ab�
stain� on instances that are not covered by a rule�
thus the label assigned to an instance depends only on

the rules that ��re� for that instance� In Freund and
Schapire�s rule boosting algorithm� in contrast� the la�
bel for an instance always depends on all the rules in
the ensemble� The algorithm also always generates a
ruleset of �xed size �in their experiments� ��� rules��

SLIPPER�s use of boosting is a departure from the
separate�and�conquer approach used by many earlier
rule learners� Another alternative is the RISE algo�
rithm �Domingos �		��� which combines rule learning
and nearest�neighbour classi�cation using a bottom�
up �conquering without separating� control structure�
However� the ruleset constructed by RISE is somewhat
more di%cult to interpret� since the label assigned to
an instance depends not on the rules that cover it� but
on the rule that is �nearest��

More recently� Hsu� Etzioni� and Soderland ��		��
described an experimental rule learner called DAIRY
which extends the set�covering approach of traditional
rule learners by �recycling� examples�that is� by re�
ducing the weight of examples that have been �covered�
by previous rules� rather than removing these examples�
DAIRY�s recycling method was shown experimentally
to improve performance on a number of text classi��
cation problems� SLIPPER�s combination of boosting
and rule�building is similar to recycling� and could be
viewed as a formally justi�ed variant of it�

We note that there are important practical advan�
tages to using learning methods that are formally
well understood� For instance� existing formal analy�
sis �Schapire � Singer �		�� generalizes the boosting
method used here to multi�class learning problems� and
also to a setting in which misclassi�cation costs are un�
equal� In further work� we plan to implement a multi�
class version of SLIPPER� and an extension of SLIP�
PER for minimizing an arbitrary cost matrix� which
maps each pair of �predicted label�correct label� to an
associated cost� We also plan to evaluate SLIPPER
on text classi�cation benchmarks� the current imple�
mentation of SLIPPER� which is based on code used in
RIPPER� inherits from RIPPER the ability to handle
text e%ciently�
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