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Abstract

Since most real-world applications of classifica-
tion learning involve continuous-valued attributes,
properly addressing the discretization process is an
important problem. This paper addresses the use
of the entropy minimization heuristic for discretiz-
ing the range of a continuous-valued attribute into
multiple intervals. We briefly present theoretical
evidence for the appropriateness of this heuristic
for use in the binary discretization algorithm used
in ID3, C4, CART, and other learning algorithms.
The results serve to justify extending the algorithm
to derive multiple intervals. We formally derive a
criterion based on the minimum description length
principle for deciding the partitioning of intervals.
We demonstrate via empirical evaluation on several
real-world data sets that better decision trees are ob-
tained using the new multi-interval algorithm.

1 Introduction

Classification learning algorithms typically use heuristics to
guide their search through the large space of possible relations
between combinations of attribute values and classes. One
such heuristic uses the notion of selecting attributes locally
minimizing the information entropy of the classes in a data set
(c.f. the ID3 algorithm [13] and its extensions, e.g. GID3 (2],
GID3* [5), and C4 [15], CART [1], CN2 [3] and others). See
[11; 5; 6] for a general discussion of the attribute selection
problem.

The attributes in a learning problem may be nominal (cat-
egorical), or they may be continuous (numerical). The term
“continuous” is used in the literature to refer to attributes
taking on numerical values (integer or real); or in general
an attribute with a linearly ordered range of values. The
above mentioned attribute selection process assumes that all
attributes are nominal. Continuous-valued attributes are dis-
cretized prior to selection, typically by partitioning the range
of the attribute into subranges. In general, a discretization is
simply a logical condition, in terms of one or more attributes,
that serves to partition the data into at least two subsets.

In this paper, we focus only on the discretization of
continuous-valued attributes. We first present a result about
the information entropy minimization heuristic for binary dis-
cretization (two-interval splits). This gives us:

" e a better understanding of the heuristic and its behavior,
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e formal evidence that supports the usage of the heuristic
in this context, and e
e again in computational efficiency that results in speeding '
up the evaluation process for continuous-valued attribute’
discretization. ok,
We then proceed to extend the algorithm to divide the range;
of a continuous-valued attribute into multiple intervals rather:
than just two. We first motivate the need for such a capabil;
ity, then we present the multiple interval generalization, and ™
finally we present the empirical evaluation results confirming! -
that the new capability does indeed result in producing better
decision trees. Hd

“ak

2 Binary Discretization o
A continuous-valued attribute is typically discretized during
decision tree generation by partitioning its range into two_
intervals. A threshold value, T\ for the continuous-valu
attribute A is determined, and the test A < T' is assigned {0
the left branch while A > T is assigned to the right branch!
We call such a threshold value, T, a cut point. This meth
for selecting a cut point is used in the ID3 [13] algorithm and'
its variants such as GID3* [5], in the CART algorithm [1}
and others [8]. It can generally be used in any algorithm for
learning classification trees or rules that handles continuous-
valued attributes by quantizing their ranges into two intervals
Although the results we present are applicable to discretization”
in general, they are presented in the particular context of top* :
down decision tree generation. ~ivali
Assume we are to select an attribute for branching at a node
having a set S of N examples. For each continuous-val
attribute A we select the “best” cut point T4 from its range0
values by evaluating every candidate cut pointin the range
values. The examples are first sorted by increasing value 0
the attribute A, and the midpoint between each successive P
of examples in the sorted sequence is evaluated as a potentid
cut point. Thus, for each continuous-valued attribute, N:
evaluations will take place (assuming that examples do, not;
have identical attribute values). For each evaluation O%%1
candidate cut point T', the data are partitioned into two els
and the class entropy of the resulting partition is compl!ted
Recall, that this discretization procedure is performed 10¢
for every node in the tree. ) o
Let T partition the set S of examples into the subsets.
and S,. Let there be k classes C,...,Ck and let P(Ci*

e

IThe test A > T stands for: “the value of A is greater than =
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on of examples in S that have class C;. The
f a subset S is defined as:

k

. = Z: P(C;, S) lOg(P(C{, S))

he logarithm base is 2, Ent(S) measures the amount
on needed, in bits, to specify the classes in S. To
resulting class entropy after a set S is partitioned
sets S; and Sz, we take the weighted average of their
i R R A IS S AL
For an example set S, an attribute A4, and a cut
t Sy C S be the subset of examples in S with A-
T and S, = S — S;. The class information entropy
riition induced by T, E(A, T; S), is defined as

' |51 52

WEI’H(S[) + EE“t(Sl) (1)

! et;z’aupn for A is determined by selecting the
4 for which E(A, Ty; S) is minimal amongst all
“Cut points.

ssion f Cut Point Selection
ain problems with this selection criterion is that
' .expensive. Although it is polynomial in com-

must be evaluated N — 1 times for each attribute

at the' N examples have distinct values). Since
ning programs are designed to work with large
ng'data; N is typically large. In the case of a
Ediscretized) attribute, this criterion requires only
ion'of an 7-partition, where r is the number of
nominal attribute. Typically, r < N. Indeed,
ith ID3-like algorithms confirms that they run
et ' when continuous attributes are present.

lem. - This objection is based on the fact
thm aftempts to minimize the weighted average
: g sets in the candidate binary partition (as
lon 1 above). The cut point may therefore

ne class in an attempt to minimize the
gure 1 illustrates this situation. Instead of
2 boundaries B1 or B2, the cut point may
0 that the average entropy of both sides is
fgﬁld be undesirable since it unnecessarily
ar e’sjt‘?'fﬂtl‘i‘e same class, resulting in larger (and

1) trees.

However, neither of these objections turns out to be true.
Theorem 1 below shows that regardless of how many classes
there are, and how they are distributed, the cut point will al-
ways occur on the boundary between two classes (see Defini-
tion 2 for a precise statement of what we mean by a boundary
point). This is indeed a desirable property of the heuristic
since it shows that the heuristic is “well-behaved” in terms
of the cut points it favours. It tells us that this heuristic will
never select a cut that is considered “bad” from the teleolog-
ical point of view. In addition, this result will also help us
improve the efficiency of the algorithm without changing its
function. : :

2.2 Cut Points Are Always on Boundaries

We show that the value T4 for attribute A that minimizes
the average class entropy E(A,T4;S) for a training set S
must always be a value between two examples of different
classes in the sequence of sorted examples. Let A(e) denote
the A-value of example e € S.

Definition 2: A value T in the range of A is a boundary point
iff in the sequence of examples sorted by the value of A, there
exist two examples ey, e; € S, having different classes, such
that A(e;) < T < A(ez); and there exists no other example
e € Ssuchthat A(e)) < A(e') <A(ex).”
Theorem 1 If T' minimizes the measure E(A,T;S), then T
is a boundary point.

Proof: is rather lengthy and thus omitted; see [5]. a

Corollary 1 The algorithm used by ID3 for finding a binary
partition for a continuous attribute will always partition the
data on a boundary point in the sequence of the examples
ordered by the value of that attribute.” "'~ .

Proof: Follows from Theorem 1 and definitions. O

The first implication of Corollary 1 is that it serves to sup-
port the usage of the entropy minimization heuristic in the
context of discretization. We use the information entropy
heuristic because we know, intuitively, that it possesses some
of the properties that a discrimination measure should, in
principle, possess. However, that in itself does not rule out
possibly undesirable situations, such as that depicted in Fig-
ure 1. The Corollary states that “obviously bad” cuts are never
favoured by the heuristic. This result serves as further formal
support for using the heuristic in the context of discretization,
since it tells us that the heuristic is well-behaved from the
teleological point of view.

In addition, Corollary 1 can be used to increase the effi-
ciency of the algorithm without changing its effects at all.
After sorting the examples by the value of the attribute 4,
the algorithm need only examine the b boundary points rather
than all N — 1 candidates. Note that: k — 1 < b < N —'1.
Since typically k < N we expect significant computational
savings to result in general. We have demonstrated significant
speedups in terms of the number of potential cut points eval-
uated in [7] for the ID3 algorithm. ID3 partitions the range
of a continuous-valued attribute into two intervals. Algo-
rithms that extract multiple intervals using a generalization of
this procedure (such as the one presented in the next section)
achieve higher speedups. Algorithms that search for rules
rather than decision trees also spend more effort on discretiza-
tion. The computational speedup in the evaluation process is
only a side benefit of Corollary 1. Its semantic significance
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is our focus in this paper since it justifies our generalizing the
same algorithm to generate multiple intervals rather than just
two.

3 Generalizing the Algorithm

Corollary 1 also provides support for extending the algorithm
to extract multiple intervals, rather than just two, in a single
discretization pass. The motivation for doing this is that
“better” trees are obtained”.

The training set is sorted once, then the algorithm is applied
recursively, always selecting the best cut point. A criterion is
applied to decide when to refrain from applying further binary
partitioning to a given interval. The fact that only boundary
points are considered makes the top-down interval derivation
feasible (since the algorithm never commits to a “bad” cut at
the top) and reduces computational effort as described earlier.

To properly define such an algorithm, we need to formu-
late a criterion for deciding when to refrain from partitioning
a given set of examples. The criterion needs to be well-
principled and theoretically justified. Empirical tests are later
used to verify that the assumptions behind the justification are
appropriate.

Why is the derivation of multiple ranges rather than bi-
nary ranges more advantageous from a tree generation per-
spective? Often, the “interesting” range may be an internal
interval within the attribute’s range. Thus, to get to such an
interval, a binary-interval-at-a-time approach leads to unnec-
essary and excessive partitioning of the examples that are out-
side the interval of interest. For example, assume that for an
attribute A with values in [0, 40], the subrange 12 < 4 < 20
is of interest. Assume that A’s range is discretized into:
{(-o0, 12),[12,20), [20, 25), [25, c0)}. Given an algorithm,
like GID3* [5], that is capable of filtering out irrelevant at-
tribute values, it is in principle possible to obtain the decision
tree of Figure 2(a). The attribute selection algorithm decided
that only two of the four available intervals are relevant. The
examples outside this interval are grouped in the subset la-
beled S in the figure. :

Using only a binary interval discretization algorithm, in
order to select out these two ranges the decision tree shown
in Figure 2(b) would be generated. Note that the set S is now
unnecessarily partitioned into the two subsets S1 and S2. For
the first tree, the algorithm has the option of partitioning S later
using some other, perhaps more appropriate, attribute. This
option is no longer available in the second situation, and the
choice of future attributes will be based on smaller subsets: S1
and S2. Essentially, this leads to the same sort of problems as
those caused by the irrelevant values problem discussed in [2;
5]. The details of how GID3* deals with this problem and
how only a subset of the values are branched on is beyond the
scope of this paper (see [5] for details.)

3.1 To Cut or not to Cut? That is the Question

Given the set S and a potential binary partition, 77, specified
on S by the given cut value T of attribute A, we need to
decide whether or not to accept the partition. This problem
is naturally formulated as a binary decision problem: accept

20ne tree being “better” that another in this context means that
it is smaller in size and that its (empirically estimated) error rate is
lower. In [4] we address the meaning of “better” more formally. See
[5] for further details.
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Figure 2: Decision Trees and Multi-interval Discretization.

or reject mp. Let HT be the hypothesis that ¢ induces if it
were accepted. Thatis, HT is the classifier that tests the value
of A against T' and then classifies examples that have value
less than T" according to the examples in E for which A-value
< T. Similarly, let NT represent the null hypothesis; that
is the hypothesis that would result if 7 were rejected. Thus
NT would classify all examples according to the classes in
E without examining the value of A. Since accept or reject
are the only possible actions, one of them must be the correct
choice for this situation; the other is incorrect. Of course we
have no way of directly deciding which is correct.

Let d4 be the decision to accept the partition #r, and let
dg represent rejecting it. The set of possible decisions in this
situation is D = {d4,dr} and we have a binary decision
problem to solve. If we assign a cost to our taking the wrong
decision, then the expected cost associated with a decision
rule that selects between {d 4, dgr} is expected to have cost:

B = c“PI‘Ob{dA A HT} + 622Pr0b{dR A NT}
+612Pr0b{dA A NT} + ¢33 Prob{dﬁ A HT}

where cy; and cy; represent the costs of making the correct
choice, and ¢, and c;; are the costs of making the wro
decision. This is the expected Bayes risk associated with
whatever decision rule is being used to select one of {d 4, dr}. -
The Bayes decision criterion, calls for selecting the decision
rule that minimizes the expected cost. i

Since we do not know what values to assign to ¢j; and
c21, we resort to the uniform error cost assignment. If we
let ¢j1o=. ¢n. =. 0 and let'.c;3 = ic .= 1, then min;;
mizing the Bayes risk reduces to a decision rule known as
Probability-of-Error Criterion (PEC) [12] which calls for min-;
imizing the probability of making the “wrong” decision. Sub:
sequently, it can be shown via a simple derivation [12] thatthe
Bayes decision criterion reduces to adopting the decisionrule
which, given data set S, selects the hypothesis HT for which
Prob{ HT'|S} is maximum among the competing hypotheses
[12]. We refer to this decision criterion as the Bayesian De-
cision Strategy. This strategy is also known as the maximum .
a posteriori (MAP) criterion [12], which in turn is equivalent
to PEC. - il

For our decision problem, the Bayesian decision strategy
(as well as MAP and PEC) calls for selecting the decision
d € D that corresponds to the hypothesis with the maximal
probability given a data set S: thus we should choose d4
if and only if Prob{HT|S} > Prob{NT|S}. If we had 2
way of determining the above two probabilities our problem
would be solved: simply choose the hypothesis that has the =
higher probability given the data, and Bayesian decision the:
ory guarantees that this is the best (minimum risk) strategy:
Unfortunately, there is no easy way to compute these probabil.'
ities directly. However, we shall adopt an approach that will
allow us to indirectly estimate which probability is greater. |



§H'r['he Minimum Description Length Principle
minimum description length of an object is defined to be
& imum number of bits required to uniquely specify that
Efout'of the universe of all objects. .

fo shall show that in the case of our decision prgbl_em,
lan employ the Minimum Description Length Prm.c1ple
JLP) to make a guess at the hypothesis with the higher
iability, given 2 fixed set of examples. The MDLP
General principle that is intended to encode the natu-
7 in science towards simpler theories that explain the
of data. The MDLP was originally introduced
[17] and has later been adopted by others [14;
n induction. We define it as defined in [14]:

n3: Given a set of competing hypotheses and a
f'data S, the minimum description length principle
P) calls for selecting the hypothesis HT' for which
enpth(HT) 4+ MLength(S|HT) is minimal among the
k es. MLength(HT) denotes the length of the
le encoding of HT, while MLength(S|HT)

gth':of the minimal encoding of the data given the

enience, we assume lengths are measured in bits.
coding of the data given the hypothesis may be thought
oding the data points that are the “exceptions” to the
lfksm HT. 1f HT fits the data exactly, then the latter
m goes to Zero.
fhe MDLP principle is not necessarily calling for some-
rent from the decision criteria discussed earlier. It
& 'easily shown that the MDLP and the Bayesian risk
nimization strategy (under the assumption of uniform error
retically related to each other. For lack of space
¢ derivation which simply consists of expanding
on for the number of bits needed to specify the
esis H given the data S: —log,(Prob{H|S}), using
le.. The final expression obtained is equivalent to
i is will serve as motivation for adopting the

reduces the arbitrariness of our adopting it
2 ot h(f;lqr:i__s‘_tic for deciding when to refrain from
it earlier arguments, if we had a way of finding
al encoding length of hypotheses and of the data
sis, then employing the MDLP for selecting
f competing hypotheses leads to choosing the
& maximum a posteriori probability (given
A this is equivalent to the PEC decision
» This means that the selected hypothesis will be
ich minimizes the probability of having made the
ecision. However, in the physical world we
: s to the probability distributions. Hence,
‘used as an estimate of cost, or a heuristic, for
between hypotheses.

g the MDLP: A Coding Problem
blem at hand is a coding problem. In our case, the
oblem is relatively simple. The set of competing
Ontains exactly two elements: {HT,NT}. We
& formulation used by Quinlan and Rivest [14]
¢d the MDLP in attribute selection in an attempt
act decision trees (see [18] for acommentary
‘case, the problem is fortunately simpler.
ulation of [14], the problem that needs to
mmunication problem. The goal is to com-

municate a method (classifier), that will enable the receiver

to determine the class labels of the examples in the set. Itis

assumed that a sender has the entire set of training examples,

while a receiver has the examples without their class labels.

The sender needs to convey the proper class labeling of the ex-

ample set to the receiver. The sender must essentially choose

the shortest description for specifying the classes.

Coding the Null Theory NT : Inthecaseof NT, the sender

must simply transmit the classes of the examples in S in

sequence. The sender sends N messages, each being a coded

class label (where N = |S5]). To encode the classes of the

examples in S, we may use an optimal (e.g. Huffman coding)

algorithm [16] to produce code optimized for average code
length. Since we have to transmit the class for each example

in the set S, multiplying the average code length I by N gives
us the total cost of transmitting the classes of the examples

in S. In addition, one needs to transmit the “code book” to
be used in decoding the classes. Transmitting the code book
consists of sending the code word associated with each class.

Hence, if there are k classes the length of the code book is
estimated by (k - I). Note that k is a constant that does not
grow with N, so the cost of the code book is a small constant
overhead.

Coding the Partition HT : The cut point chosen to parti-
tion the examples must be specified by the sender followed by
an encoding of the classes in each of the two subsets. Speci-
fying the cut value costs log, (N — 1) bits since we need only
specify one of the N — 1 examples in the sequence which the
cut value falls just before (or after).

The classifier HT corresponding to the binary partition,
7, partitions the set S into subsets S; and 5. What the
sender must transmit, then, is a specification of the cut point
followed by the sequence of classes in S, followed by the
classes in S;. Again, all we are interested in determining is
the minimal average length code for the classes in S; and Sz
as we did in the case of encoding the classes in S. Let I and
I, be the minimal average code lengths (in bits) for the classes
in S, and S, respectively. The cost of transmitting HT along
with the data given HT is . :

logz(N— D+ ]S;' -+ lSzt'Ig

We also need to transmit the code books for the respective
codings chosen for the classes in S and S;. Unlike the case of
transmitting S where we knew that all k classes are present, in
this case we must inform the receiver which subset of classes
is present in each of the two subsets S; and Sz, and then send
the respective code books. Since we know that our partition
is non-trivial, i.e. S1 # S2 # 0, we know that S; can have
any one of 2k _ 1 possible subsets of the k classes. Using a
lengthy derivation, it can be shown that

k-1
G = [Z (f,)z"'} ok rgmatieg

k=1

bits.

is the number of possible partitions out of which we need
to specify one. Hence we need log, (Gi) bits. Note that

log, (Gx) < 2log, (2* - 1)< 2k

3.4 The Decision Criterion
In our quest for the “correct” decision regarding whether or not
to partition a given subset further, we appealed to the MDLP.
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Table 1: Details of the Data Sets Used.

Data Set name examples | attributes | classes
Faulty operation data from the JPL Deep Space Network antenna controller DSN 258 12 5
Problems in a reactive ion etching process (RIE) in semiconductor manu- SRC1 94 3 4
facturing from Hughes Aircraft Company

The waveform domain described in [1] WVFRM 150 21 3
Data obtained from a response surface of multiple response variables in a RSM1 300 3 35
set of wafer etching experiments conducted at Hughes

RSMI with classes mapped to only two values: “good” and “bad” RSM2 300 3 2
Publicly available heart disease medical data from an institute in Cleveland HEART 303 13 2
The glass types data from the USA Forensic Science Service GLASS 214 9 6
The famous irs classification data used by R.A. Fisher (1936) IRIS 150 4 3
The echocardiogramdata of heart diseases from the Reed Institute of Miami ECG 132 9 2

In turn, this gave us a coding problem to solve. The solution
is readily available from information theory, c.f. Huffman
coding. However, we are not interested in the actual minimal
code itself. The only thing we need to know is the average
length of the minimal code. The following theorem gives us
this information directly and in the general case.

Theorem 2 Given a source of messages s with entropy
Ent(s), for any € > 0, there exists an optimal encoding of
the messages of s such that the average message code length
1, in bits, is such that Ent(s) < | < Ent(s) + €.

Proof: See Shannon’s Noiseless Coding Theorem in [9]. O

Note that this theorem requires that the entropy Ent(S)
be defined using logarithms to the base 2. In the case of our
simple communication problem, the source of messages is the
sender and the messages are the encoded classes. Theorem 2
tells us, that “we can bring the average code word length / as
close as we please to the entropy” of the source [9].

Let I be the average length of the code chosen to represent
the classes in S. Similarly, /; and I, are the corresponding
average code lengths for S; and S,. Putting all the derived
costs together we obtain:

Cost(NT) = N -Ent(S)+k-Ent(S)
Cost(HT) = log, (N — 1)+ |S5i|- Ent(S;) + |S2| - Ent(S>)
+ log, (3* — 2) + k4Ent(S1) + k2Ent(S3).

The MDLP prescribes accepting the partition iff
Cost(HT') < Cost(NT). Examine the condition under which

[Cost(NT) — Cost(HT)] > 0:
0 < NEnt(S)—|Si|-Ent(S)) — |S2| - Ent(S2)
— log, (N — 1) + kEnt(S) — log, (3*- 2)
—k1Ent(S)) — k2Ent(S3)

Now recall that the information gain of a cut point is
Gain(A,T;S) = Eny(S)- E(A,T,S)

— EHI(S) | llE t(S';) v ‘I*“‘JE [(Sz)

The above inequality, after divxdmg through by N, reduces to

Gain(A,T; S) — log, (g =l .A(Aﬁ’; 5)
where A(A, T S) =
log, (3* — 2) — [KEnt(S) — k:Ent(S)) — k>Ent(S5)] .
1026 Machine Learning

‘We are now ready to state our decision criterion for accept-
ing or rejecting a given partition based on the MDLP:

MDLPC Criterion: The partition induced by a cut point :
T for a set S of N examples is accepted iff

log, (N — 1) 2 A(A,T; S)
N N

“and it is rejected otherwise.”

Gain(A,T;S) >

Note that the quantities required to evaluate this criterion,
namely the information entropy of S, Sj, and S, are com-
puted by the cut point selection algorithm as part of cut pomt‘
evaluation. Fig

4 Empirical Evaluation ;
We compare four different decision strategies for dectdm
whether or not to accept a partition. For each data set used,!
we ran four variations of the algorithm using each of the
following criteria: i

1. Never Cut: the original binary interval algorithm.. ~,
2. Always Cut: always accept a cut unless all examples

have the same class or the same value for the attrib
3. Random Cut: accept or reject randomly based

flipping a fair coin.
4. MDLP Cut: the derived MDLPC criterion.

The first three strategies represent simple alternative demsmn
strategles that also cover the continuum of decnsmn strategles; _
since the first two are the two extrema. L

We used the data sets described in Table 1. Some of these, "
were obtained from the U.C. Irvine Machine Learning Repos:
itory and others from our own industrial applications of ma-
chine learning described in [10]. ‘The data sets represent a‘
mixture of characteristics ranging from few classes with many,
attributes to many classes with few attributes. e

For each data set, we randomly sampled a training subset
and used the rest of the set for testing. For each data set we..
repeated the sampling procedure followed by generating the -
tree and testing it 10 times. The results reported are in terms,
of the average number of leaves and percentage error rate on
classifying the test sets. The results are shown in Figure 32
Note that there is no difference between the tree generated by:
GID3* under the Never Cut strategy and the tree generated
by the ID3 algorithm. Thus, those columns in the charts may
be taken to reflect ID3’s performance. For ease of compar-
ison, we plot the results in terms of ratios of error rate and




Ratios of Error Rates (Basis = MDLP strategy)

9.8 1
H MDLP Cut
881 B Never Cut a
B Always Cut
‘i @ Random Cut %
2
5 o
7 3
/ :
7 °
4 =
a :
7 8
K
ﬁ 3
4
4
/4
o il S| s el melt
DSN SRC1 ECG GLASS HEART WVFRM

Data Set

imber of leaves of the various cut strategies to the MDLP
ategy. Note that the improvements are generally sig-
cant. The data set RSM1 proved a little problematic for
VIDLPC: One possiblereason is that the number of classes
¢ and the number of training examples is probably not
cient to make the recommendations of the MDLPC crite-
meaningful. Note that this hypothesis is consistent with
fact that performance dramatically improved for the set
\_ ‘which is the same data set but with only two classes.

Conclusion
presented results regarding continuous-valued at-
scretization using the information entropy minimiza-
¢. The results point out desirable behavior on the
euristic which in turn serves as further theoreti-
or the merit of the information entropy heuristic.
e efficiency of the cut point selection heuristic
ed without changing the final outcome of the
y way. Classification learning algorithms that
ormation entropy minimization heuristic for select-
oints can benefit from these results. We also used
basis for generalizing the algorithm to mul-
al discretization. We derive a decision criterion
nfém_'lation and decision theoretic notions to decide
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Bhes Microelectronics Center for support in the form of
arch grant. The work described in this paper was
by the Jet Propulsion Laboratory, California Insti-
Sy BY, under a contract with the National Aeronautics
“ I mstraﬁon‘

Friedman, J.H., Olshen, R.A., and Stone, C.J.
ification and Regression Trees. Monterey, CA:
Brooks.

Ratios of Number of Leaves (Basis=MDLP)

36
B MDLP Cut
3.2 B Never Cut
B Always Cut
2.8 P Random Cut
2.4
2.0 4
7
16 ?
p
s g )
1.2 o e [ = #
b oy
0.8 | A R a1 I ] )
DSN SRC1 RSM2 RSM1 IRIS ECG GLASS HEARTWVFRM

(10]

[11]

Data Set

Figure 3: Ratios of Error Rates and Number of Leaves Comparisons.

[2] Cheng,J., Fayyad, UM., Irani, K.B., and Qian, Z. (1988). “Im-
proved decision trees: A generalized version of ID3.” Proc. of
5th Int. Conf. on Machine Learning (pp. 100-108). San Mateo,
CA: Morgan Kaufmann.

[3] Clark, P. and Niblett, T. (1989). “The CN2 induction algo-
fthm.” Machine Learning, 3, 261-284.

[4] Fayyad, UM. and Irani, K.B. (1990). “What should be mini-

mized in a decision tree?” Proc. of the 8th Nat. Conf. on Al

AAAI-90 (pp. 749-754). Cambridge, MA: MIT Press.

Fayyad, UM. (1991). On the Induction of Decision Trees for

Multiple Concept Learning, PhD dissertation, EECS Dept., The

University of Michigan.

Fayyad, U.M. and Irani, K.B. (1992). “The attribute selection

problem in decision tree generation” Proc. of 10th Nat. Conf.

on' Al AAAI-92 (pp. 104-110). Cambridge, MA: MIT Press.

Fayyad, UM. and Irani, K.B. (1992). “On the handling of

continuous-valued attributes in decision tree generation” Ma-

chine Learning, 8, 87-102.

Gelfand, S., Ravishankar, C. and Delp, E. (1991). *“Aniterative

growing and pruning algorithm for classification tree design.”

IEEE Trans. on PAMI, 132, 163-174.

Hamming, R.W. (1980) Coding and Information Theory. En-

glewood Cliffs, NJ: Prentice-Hall. :

Irani, K.B., Cheng,J., Fayyad, UM, and Qian, Z. (1990). “Ap-

plications of Machine Learning Techniques in Semiconductor

Manufacturing.” Proc. Conf. on Applications of Al VIII (pp.

956-965), Bellingham, WA: SPIE.
Lewis, PM. (1962). “The characteristic selection problem in

recognition systems.” IRE Trans. on Info. Th., IT-8, 171-178.

[5]

[6]

[71

(8]

91

[12] Melsa, J.L. and Cohn, D.L. (1978) Decision and Estimation

Theory. New York: McGraw-Hill.

[13] Quinlan, I.R. (1986). “Induction of decision trees.” Machine

[14] Quinlan, J.R. and Rivest, R.L. (1989)

[15] Quinlan,J.R.(1990).

Learning 1, 81-106.
“Inferring decision trees

using the minimum description length principle.” Information

and Computation, Vol 80, pp. 227-248.
“Probabilistic decision trees.” In Machine

Learning: An Artificial Intelligence Approach, Volume I, San
Mateo, CA: Morgan Kaufmann.

[16] Reza, FM. (1961)An Introduction to Information Theory. New

[17] Rissanen, J. (1978) “Modeling

[18] Wallace, C.S. and Patrick, J.D.

York: McGraw-Hill.
by shortest data description.”

Automatica, Vol. 14, pp. 465-471.
(1991) “Coding Decision
Trees.” Technical Report 151, Melboume, Australia: Monash

University.

Fayyad and Irani 1027




	Fayyad1.jpg
	Fayyad2.jpg
	Fayyad3.jpg
	Fayyad4.jpg
	Fayyad5.jpg
	Fayyad6.jpg

