
Using Real-Valued Genetic: Algorithms to Evolve R,de Sets for 
Classification * 

Arthur L. Corcorau 

Abstyaact- In this paper, we use a genetic al- 
gorithm to evolve a set of classificatioii rules with 
real-valued attributes. We show how real-valued 
attribute ranges can be encoded with real-valued 
genes and present a new uniform inethod for rep- 
resenting don’t cares in the rules. We view su- 
pervised classification as an optimization problem, 
and evolve rule sets that maximise the number of 
correct classifications of input instances. We use a 
variant of the Pitt approach to genetic-based ma- 
chine learning system with a novel conflict reso- 
lution mechanism between competing rules within 
the same rule set. Experimental results dernon- 
strate the effectiveness of our proposed approach 
on a benchmark wine classifier system. 

I .  INTRODUCTION 
Genetic algorithms (GAS) have proved to be robust, do- 
main independent mechanisms for numeric and symbolic 
optimization[7]. Our previous work has demonstrated ef- 
fective genetic-based rule learning in discrete domains [13]. 
In the real world, however, most classification problems 
involve real-valued features. To develop a classification 
mechanism that can be applied to a wide variety of real- 
world problems, in this paper, we combine ideas from our 
previous work with recent advances in real-valued param- 
eter optimization [6,  91 in GAS to build classification sys- 
tems. 

The physical world abounds with problems that require 
classification of observed instances into a set of target 
classes. The goal of a supervised classification system is to 
generate a set of rules from a set of preclassified training 
instances, which can then be used to classify future in- 
stances. An accurate rule induction mechanism improves 
quality of classification and greatly reduces the cost of pro- 
viding such classification. Application domains include 
medical diagnosis, fault detection in electro-mechanical 
devices, evaluating credit applications, predicting crop 
quality, etc. 

*This research has been partially supported by OCAST Grant 
AR2-004 and Sun Microsystems, Inc. Both authors are with The De- 
partment of Mathematical and Computer Sciences, The University 
of Tulsa, 600 South College Avenue, Tulsa, Oklahoma 74104-3189. 

Sailclip Sen 

In this paper, we formulate the supervised classifica- 
tion problem as a function optimization problem. The 
goal of the optimization problem is to develop a rule set 
that maximizes the number of correct classifications of 
training set instances. A GA is used to evolve structures 
representing sets of classification rules. Each rule in a rule 
set matches only a subset of all possible input instances, 
while the set of rules together is expected to cover the 
whole input space. Whereas previous approaches to using 
GAS for evolving rule sets for supervised classification rely 
on the assumption of discrete domains [a ] ,  we are partic- 
ularly interested in the more difficult problems involving 
continuous variables. Since real genes lead to an explo- 
sion of the search space over binary genes, we believe it is 
a challenge and a contribution to show that GAS can be 
used to develop rule sets with continuous variables. 

This paper is organized as follows: Section I1 provides 
an introduction to genetic-based machine learning sys- 
tems. Section 111 describes how genetic algorithms can 
be used to optimize the classification rule set. This in- 
cludes how the problem can be encoded into a representa- 
tion suitable for the genetic algorithm and how the fitness 
function is designed. Section IV contains experimental re- 
sults which were obtained when a genetic algorithm was 
used to evolve a continuous classification rule set for a 
benchmark problem. Finally, Section V presents a brief 
summary and conclusions based on our results. 

I I .  GENETIC-BASED MACHINE LEARNING SYSTEMS 
Genetic-Based Machine Learning (GBML) systems are 
rule-based systems which determine class membership of 
input instances from a set of attributes. That is, a partic- 
ular instance is examined based on several attributes. The 
attributes values could have been derived from laboratory 
test results or from environmental sensor readings. A clas- 
sifier system matches the set of attributes corresponding 
to an instance against a set of rules to determine the class 
membership of the instance. These domain-independent 
classification mechanisms are particularly useful in prob- 
lem domains for which there is no known precise model 
to determine the class, or for which determining a precise 
model is impractical. 

There are two principal schools of thought in designing 

120 



GBML systems [3]. The first school of researchers pro- 
poses to use genetic algorithms to evolve individual rules, 
a collection of which comprises the classification exper- 
tise of the system. This approach to building classifier 
systems was  originally proposed by John Holland at the 
IJniversity of Michigan, and hence is referred to as the 
Michigan approach [8]. The other school of thought has 
been popularized by Ken De Jong and Steve Smith [14] 
from the IJniversity of Pittsburgh, and is therefore referred 
to a.s the Pitt approach to building classifier systems. In 
this approach, genetic algorithms are used to evolve struc- 
tures, each of which represent a complete set of rules for 
classification. So, each structure in the population in the 
Pitt approach correspond to the entire set of rules in the 
Michigan approach. 

While debate rages on which of these two is the bet- 
ter approach to building classifier systems, the Pitt ap- 
proach seems to be better suited at bat.ch-mode learning 
(where all training instances are available before learning 
is initiated) and for static domains, and the Michigan < ~ p -  
proach is more flexible to handle incremental-mode learn- 
ing (training instances arrive over time) and dynamically 
changing domains. We have chosen the Pitt approach in 
this paper to take advantage of the availability of all train- 
ing data before learning is initiated. 

111. PROPOSED APPROACH 

In this section we present our approach to using GAS with 
real genes to evolve classification rule sets. As mentioned 
above, we use the Pitt approach of evolving rule sets by 
GAS. In the following, we first describe the semantics of 
real-valued genes as rule conditions, and then present the 
evaluation function for chromosomes in the GA popula- 
tion. 

A .  Encoding of the problem 

The choice of an efficient representation is one of the most 
important issues in designing a genetic algorithm. In our 
GA, each chromosome represents a set of classification 
rules. Each of the classification rules is composed of a 
set of A attributes and a class value. Each attribute in 
the rule has two real variables which indicate the mini- 
mum and maximum in the range of valid values for that 
attribute. A don’t cure condition occurs when the max- 
imum value is less than the minimum value. The class 
value can be either an integer or a real. This manner of 
representing don’t cares allow us to eliminate the need for 
special don’t care symbols, and also obviates the need to 
enforce the validity of rules after applying operators mod- 
ifying the rule sets. When each attribute value in an input 
instance is either contained in the range specified for the 
corresponding attribute of a rule or the rule attribute is 
a don’t care, the rule matches the instance and the class 

value indicates the membership class of the instance. We 
use a fixed-length chromosome for the G A ,  where each 
chromosome is made up of a fixed number (71) of rules 
encoded as above. The length of a chromosome is thus 
n(2A + 1). 

H .  Fitness function design and conflict resolution 
Given an appropriate encoding of the problem, the next 
step in the design of the genetic algorithm is the design 
of the fitness function. The fitness function evaluates a 
chromosome to determine its fitness relative to the other 
chromosomes in the population. The (:;A uses this infor- 
mation during reproduction to evolve better chromosomes 
over generations. 

Since each chromosome in our representation comprises 
an entire classification rule set, the fitness function must 
measure the collective effectiveness of the rule set. A rule 
set is evaluated by its ability to correctly predict class 
memberships of the instances in a pre-classified training 
set. The fitness of a particular chromosome is simply 
the percentage of test instances correctly classified by the 
chromosome’s rule set. Each rule in the rule set is com- 
pared with each of the instances. If the rule matches the 
instance, the rule’s class prediction is compared with the 
actual known class for the instance. Since there is more 
than one rule, it is possible for multiple rules to match 
a particular instance and predict different classifications. 
When matching rules do not agree on classification, some 
form of conflict resolution must be used. 

Conflict resolution is perhaps the most important issue 
to consider in the design of the objective function. We 
decided to use a form of weighted voting. A history of the 
number of correct and incorrect matches is maintained for 
each rule. Each matching rule votes for its class by adding 
the number of correct and incorrect matches to the cor- 
responding variables for its class. The winning class is 
determined by examining the total number of correct and 
incorrect matches assigned to each class. The first objec- 
tive is to select the class with the least number of incorrect 
matches by rules predicting that class. If there is a tie 
between two classes on this metric, the second objective 
is to select the class with the greatest number of correct 
matches. If there is still a tie between two or more classes, 
one of the classes is arbitrarily In either case, the winning 
class is compared with the actual known class. If they 
are the same, this contributes to the percentage of correct 
answers for this classifier set. Finally, the number of cor- 
rect or incorrect matches is incremented appropriately for 
each of the matching rules. The above conflict resolution 
mechanism is a modification of that used in our previous 
work [13]. We use a democratic approach of pooling votes 
instead of using the class predicted by the best individual 
as determined by performance history. 

121 



C. Crossover and mutat ion 

The purpose of recombination operators such as crossover 
and mutation in a genetic algorithm is to obtain new 
points in the search space. Since our chromosomes are 
composed of nonhomogeneous alleles, it is necessary to use 
modified versions of the standard operators. We designed 
three operators: modified simple (one point) crossover , 
creep mutation, and simple random mutation. Simple 
crossover was  modified so that the random crossover point 
always falls on a rule boundary. Creep mutation is ap- 
plied to each attribute’s minimum and maximum value 
with a probability denoted as the creep rate. Attribute 
values which are to be mutated are incremented or decre- 
mented by the creep fract ion,  which is a fraction of the 
valid range for the attribute value. Sinc.e it is possible 
for the range to differ greatly between any two attributes, 
the amount of change applied may be quite different even 
though the creep fraction is the same. In addition, it is 
equally likely that the attribute value will be incremented 
or decremented, and the value is adjusted if necessary so 
it will fall in the valid range for the attribute. Note, creep 
mutation makes it possible for the range specified in the 
chromosome for the attribute to change from a normal 
range to a don’t care or vice versa. Creep mutation is in- 
tended to occur often: on the order of half of the attribute 
values are creeped in each recombination. We chose a high 
frequency of the creep operator because of the complexity 
of searching a space consisting of a large number of real- 
valued genes. Finally, simple random mutation replaces 
randomly selected attribute range values or class values 
with random values from the appropriate valid range. As 
in creep mutation, simple random mutation can change 
valid range specifications to don’t c.ares and vice versa. 
Unlike creep mutation, simple random mutation can also 
change the class values. Simple random mutation is in- 
tended to be applied infrequently: on the order of once 
per recombination. 

D. Benchmark classification problem 

We selected a suitable benchmark classification problem 
based on the large collection of test data at The UCI 
Repository of Machine Learning Databases [lo]. The test 
data we selected was for wine classification [5]. This data 
consists of 178 instances, each consisting of 13 real-valued 
attributes and one of three classifications. The data has 
been obtained from chemical analysis of wines grown in 
the same region in Italy, but derived from three different 
cultivars. The chemical analysis determined the quanti- 
ties of 13 constituents found in each of the three types of 
wine. The data contains 59 instances from the first class, 
71 from the second class, and 48 from the third class. The 
source of the data is Forina et al. [4] and it has recently 

Best I Average I Worst 1 Variance 1 Standard Deviation 
100% 1 99.5% [ 98.3% [ 4.524e-OS I 6.726e-03 

Table 1: Results obtained by the G A  

I Method I Classification Rate 1 
CiA (best) 

100% 

99.4% 
98.9% 
96.1% 

GA (average) 99.5% 

Table 2: Results obtained using various methods 

been used by Aeberhard et al. [ l l ,  121. 

IV. EXPERIMENTAL RESULTS 

We developed a genetic algorithm for wine classification 
using LibGA [l]. LibGA allowed us to easily write our 
objective function and recombination operators using our 
problem encoding. Our GA used an elitist generational 
population model without any overlap of the populations. 
Fixed length chromosomes were used with 60 rules per 
chromosome rule set. Since each rule has two genes corre- 
sponding to each of 13 attributes and another gene for its 
class prediction, the length of a rule is 27. With 60 rules, 
this results in a total chromosome length of 1620. The 
population size was chosen to be 1500. Uniform random 
selection was  used to reduce the selection pressure since 
roulette selection resulted in premature convergence (at 
the start of the run all rule sets performed very poorly as 
few rules matched any instance, we may use biased ini- 
tialization to address this problem in our future work). 
Our modified simple (one point) crossover operator was  
used with crossover probability of one. Creep mutation 
was used with creep rate of 0.5 and creep amount of0.01. 
This meant that half of the attribute values were modi- 
fied in each recombination, and that the amount of creep 
was one percent of the span between the minimum and 
maximum values in the range. Simple random mutation 
occurred with a mutation rate of 1, which in LibGA meant 
one mutation per recombination. 

Table 1 summarizes the results obtained by the genetic 
algorithm over ten independent runs. The numbers indi- 
cate the best, average, and worst classification percentage 
over the ten runs as well as the variance and standard de- 
viation. Exactly half of the runs obtained a perfect 100% 
classification rate. Two of the runs obtained a 98.3% clas- 
sification rate and the other three obtained a 99.4% clas- 
sification rate. Thus, the average classification rate was  
99.5%. 

Table 2 summarizes the results that Aeberhard [12] ob- 

122 



Classification 
Rate 

1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 
0 50 100 150 200 250 300 

Generations 

Figure 1: Convergence Profile for the GA 

tained using various methods on the wine classification 
problem as well as the results obtained by the best and 
average genetic algorithm. All of the techniques that Ae- 
berhard tested used the leave-one-out technique. Tech- 
nique 1NN used Z-transformed data. Table 2 shows that 
our GA-based classification approach was  able to cover 
the training set extremely well. 

Figure 1 shows the convergence profile for one of the 
runs of the genetic algorithm. The figure plots classifica- 
tion rate by generation of the GA. In this case, the GA 
was able to obtain a perfect classification rate in less than 
100 generations. 

The best rule set developed by the GA has some inter- 
esting characteristics. Approximately a third of the rule 
set actually matches any input instance, and these rules 
are perfect in all but a couple of cases, i.e., they predict 
correctly whenever they match. This means that conflkt 
resolution is not necessary once the best rule set has been 
evolved. Conflict resolution mechanism is, however, im- 
portant to evaluate fitnesses of less than perfect rule sets, 
and as such is essential to prevent premature convergence 
of the GA. The two-thirds of the rule set that does not 
match any input are also necessary for the GA to search 
the space of classification rules. We observed significant 
decrease in performance with much smaller rule set sizes. 
The large percentage of non-matching rules in the best 
rule set, however, suggests the possible benefits of using 
variable size rule sets in the GA population. 

V. CONCLUSIONS 

In this paper, we have shown how a genetic algorithm 
can be used to evolve rule sets with real variables for su- 
pervised classification problems. Our GA used the Pitt 
approach to encode the rule set and a weighted voting 
scheme for conflict resolution. Attributes were represented 
in the rules by real valued ranges and don’t cares were rep- 
resented by a range where the minimum value was greater 
than the maximum value. We used three structure modi- 
fication operators: modified simple (one point) crossover, 

creep mutation, and simple random mutation. We tested 
our GA on a benchmark wine classification problem. Our 
results show the GA is capable of developing an effective 
rule set to accurately classify almost all instances. This 
suggests the promise of using GAS to optimize rule sets 
for classification problems with real attributes. 

In the future, we would like to extend our GA to use 
variable length rules and add a selection pressure to reduce 
the size of the rules. In this way we can obtain both 
compact and optimal rule sets. We plan to apply our 
approach to a number of different supervised classification 
problems and compare corresponding results with other 
promising machine learning approaches. 

ACKNOWLEDGEMENTS 

This research has been partially supported by OCAST 
Grant AR2-004. The authors also wish to acknowledge the 
support of Sun Microsystems, Inc. Special thanks to P. M. 
Murphy and D. W. Aha for making The UCI Repository 
of Machine Learning Databases available and to M. Forina 
for making the wine recognition data available. 

REFERENCES 

A. L. Corcoran and R. L. Wainwright. LibGA: A 
user-friendly workbench for order-based genetic al- 
gorithm research. In E. Deaton, K. M. George, 
H. Berghei, and G. Hedrick, editors, Proceedings 
of the 1993 A C M / S I G A P P  Syiitposiu~ri on Applied 
Computing, pages 111-118, New York, 1993. ACM 
Press. 

K. A. De Jong and W. M. Spears. Learning concept 
classification rules using genetic algorithms. In Pro- 
ceedings of the 1991 International Joint Conference 
on Artificial Inielligence, pages 651-656, 1991. 

K. A. DeJong. Genetic-algorithm-based learning. 
In Y. Kodratoff and R. Michalski, editors, Ma-  
chine Learning, Volume I l l .  Morgan Kaufmann, Los 
Alamos, CA, 1990. 

M. Forina et al. Parvus - an extendible package for 
data exploration, classification and correlation. lnsti- 
tute of Pharmaceutical and Food Analysis and Tech- 
nologies, Via Brigata Salerno, 16147 Genoa, Italy, 
July 1991. 

M. Forina et al. Wine recognition database. Avail- 
able via anonymous ftp from ics.uci.edu in directory 
/pub/machine-learning- databases/wine, 1992. 

D. Goldberg. Real-coded genetic algorithms, virtual 
alphabets, and blocking. Complex Systems,  5 :  139- 
168, 1991. 

123 

http://ics.uci.edu


[7] D. E. Goldberg. Genet ic  Algorithms in  Search, Op-  
t imization, and Machine Learning. Addison-Wesley, 
Reading, Massachusetts, 1989. 

[$I J .  H. Holland. Escaping brittleness: the possibili- 
ties of general-purpose learning algorithms applied to 
parallel rule-based systems. In R. Michalski, J. Car- 
bonell, and T. M. Mitchell, editors, Machine Learn- 
ing, an artificial intelligence approach: Volume I I .  
Morgan Kaufmann, Los Alamos, CA, 1986. 

[9] J .  D. Kelly and L. Davis. A hybrid genetic algo- 
rithm for classification. In Proceedings of the Inter- 
national Joint Conference on Artificial Intelligence, 
pages 645-650, 1991. 

[lo] P. M. Murphy and D. W. Aha. UCI Repository of 
Machine Learning Databases [machine-readable data 
repository]. Maintained a t  The Department of In- 
formation and Computer Science, The University of 
California at Irvine, 1992. 

[ l l ]  D. C. S. Aeberhard and 0. de Vel. The classification 
performance of RDA. Technical Report 92-01, Dept. 
of Computer Science and Dept. of Mathematics and 
Statistics, James Cook University of North Queens- 
land, 1992. Also submitted to Journal of Chemomet- 
rics. 

[12] D. C. S. Aeberhard and 0. de Vel. Comparison of 
classifiers in high dimensional settings. Technical Re- 
port 92-02, Dept. of Computer Science and Dept. of 
Mathematics and Statistics, James Cook University 
of North Queensland, 1992. Also submitted to Tech- 
nometrics. 

[13] S. Sen. Improving classification accuracy through 
performance history. In Proc. 5 th  Intl Conf on Ge-  
netic Algorithms, 1993. 

[14] S. F. Smith. A learning sys t em based on genetic 
adaptive algorithms. PhD thesis, University of Pitts- 
burgh, 1980. (Dissertation Abstracts International, 
41, 4582B; University Microfilms No. 81-12638). 

124 


