
SLIQ: A Fast Scalable Classifier for Data Mining

Manish Mehta, Rakesh Agrawal and Jorma Rissanen

IBM Almaden Research Center
650 Harry Road, %n Jose, CA 95120

Abstract. Classification is an important problem in the emerging field
of data mining. Although classification has been studied extensively in
the past, most of the classification algorithms are designed only for
memory-resident data, thus limiting their suitability for data mining
large data sets. This paper discusses issues in building a scalable classi-
fier and presents the design of SLIQ’ , a new classifier. SLIQ is a decision
tree classifier that can handle both numeric and categorical attributes.
It uses a novel pre-sorting technique in the tree-growth phase. This sort-
ing procedure is integrated with a breadth-fist tree growing strategy
to enable classification of disk-resident datasets. SLIQ also uses a new
tree-pruning algorithm that is inexpensive, and results in compact aad
accurate trees. The combination of these techniques enables SLIQ to scale
for lerge data sets and classify data sets irrespective of the number of
classes, attributes, and examples (records), thus making it an attractive
tool for data mining.

1 Introduction

The success of computerized data management has resulted in the accumulation
of huge amounts of data in several organizations. There is a growing perception
that analyses of these large data bases can turn this “passive data” into useful
“actionable information”. The recent emergence of Data Mining, or Knowledge
Discovery in Databases, is a testimony to this trend. Data mining involves the
development of tools that can extract patterns from large data bases.

CZassification is an important data mining problem [l] and can be described
as follows. The input data, also called the training set, consists of multiple ex-
amples (records), each having multiple attributes or features. Additionally, each
example is tagged with a special class label. The objective of classification is to
analyze the input data and to develop an accurate description or model for each
class using the features present in the data. The class descriptions are used to
classify future test data for which the class labels are unknown. They can also be
used to develop a better understanding of each class in the data. Applications of
classification include credit approval, target marketing, medical diagnosis, treat-
ment effectiveness, store location, etc.

Classification has been studied extensively (see [13] for an excellent overview
of various techniques). However, the existing classification algorithms have the

’ SLIQ stands for Supervised Learning h Quest, where Quest is the Data Mining
project at the IBM Ahnaden Research Center.

19

problem that they do not scale. Most of the current algorithms have the restric-
tion that the training data should fit in memory. This is perhaps a result of the
type of applications to which classification has been hitherto applied. In many
applications, there were simply not many training examples available. As a mat-
ter of fact, the largest dataset in the Irvine Machine Learning repositary is only
700KB with 20000 examples. Even in [5], a classifier built with database con-
siderations, the size of the training set was overlooked. Instead, the focus was
on building a classifier that can use database indices to improve the retrieval
efficiency while classifying test data.

In data mining applications, very large training sets with several million ex-
amples are common. Our primary motivation in this work is to design a classifier
that scales well and can handle training data of this magnitude. The ability to
classify larger training data can also improve the classification accuracy [2][3].

Given our goal of classifying large data sets, we focus mainly on decision
tree classifiers [4][10]. D ecision tree classifiers are relatively fast compared to
other classification methods. Methods like neural networks can have extremely
long training times even for small datasets. A decision tree can be converted
into simple and easy to understand classification rules [lo]. They can also be
converted into SQL queries for accessing databases 151. Finally, tree classifiers
obtain similar and sometimes better accuracy when compared with other classi-
fication methods 1’71. Figure 1 gives an example of a decision tree classifier for a
toy dataset of six examples.

(Age <- 35) (salmy c= 40) (S~hry <= 50)
xx B C B G

Fig. 1. Example of a decision tree

The idea of modifying tree classifiers to enable them to classify large datasets
has been explored previously. Previous proposal include sampling of data at each
decision tree node [2], and discretixation of numeric attributes [2]. These meth-
ods decrease classification time significantly but also reduce the classification
accuracy. Ghan and Stolfo [3] have studied the method of partitioning the input
data and then building a classifier for each partition. The outputs of the mul-
tiple classifiers are then combined to get the final classification. Their results
show that classification using multiple classifiers never achieves the accuracy of
a single classifier that can classify all of the data.

The decision-tree classifier we present, called SLIQ, uses novel techniques
that improve learning time for the classifier without loss in accuracy. At the same
time, these techniques allows classification to be performed on large disk-resident
training data. Consequently, given training data that can be handled by other

20

decision tree classifiers, SLIQ exhibits the same accuracy characteristics, but
executes faster and produces small trees. However, SLIQ imposes no restrictions
on the amount of training data or the number of attributes in the examples.
Therefore, SLIQ can potentially obtain higher accuracies by classifying Iarger
training datasets which cannot be handled by other classifiers.

The rest of the paper is organized as follows. Section 2 describes a generic
decision tree classifier and Section 3 discusses scalability issues. Sections 4 and 5
present the design and a detailed performance analysis of SLIQ, respectively.
FinalIy, Section 6 contains our conclusions.

2 Decision-Tree Classification

Most decision-tree classifiers (e.g. CART [4], C4.5 [lo]) perform classification in
two phases: Tree Building and Dee Pruning.

Tree Building An initial decision tree is grown in this phase by repeatedly
partitioning the training data. The training set is split into two or more partitions
using an attribute’. This process is repeated recursively until all the examples
in each partition belong to one class. Figure 2 gives an overview of the process.

MakeTree(‘IYaining Data 2’)
Partition(T);

Partition(Data S)
if (all points in S are in the same class)) then return; ,
Evaluate splits for each attribute A
Use best split found to partition S into S1 and 52;
Partition($);
Partition(Sz);

Fig. 2. Tree-Building Algorithm

Tree Pruning The tree built in the first phase compietely cIassifies the training
data set. This implies that branches are created in the tree even for spurious
“noise” data and statistical fluctuations. These branches can lead to errors when
classifying test data. Tree pruning is aimed at removing these branches from the
decision tree by selecting the subtree with the least estimated error rate.

3 Scalability Issues

3.1 Tree Building

There are two main operations during tree building: i) evaluation of splits for
each attribute and the selection of the best split and ii) creation of partitions
using the best split. Having determined the overall best split, partitions can
be created by a simple application of the splitting criterion to the data. The

’ Multivariate splits based on values of multiple attributes have also been proposed[4].

21

complexity lies in determining the best split for each attribute. The choice of
the splitting criterion depends on the domain of the attribute being numeric or
categorical (attributes with a finite discrete set of possible values). But let us
first specify how alternative splits for an attribute are compared.

3.1.1 Splitting Index A splitting index is used to evaluate the “goodness”
of the alternative splits for an attribute. Several splitting indices have been
proposed in the past[13]. W e use the gini index, originally proposed in [4]. If a
data set T contains examples from n classes, gini is defined as

gini = 1 - &;

where pj is the relative frequency of class j in T.

3.1.2 Splits for Numeric Attributes A binary split of the form A _< v, where
v is a real number, is used for numeric attributes. The first step in evaluating
splits for numeric attributes is to sort the training examples based on the values
of the attribute being considered for splitting. Let wi, 212, . . . , v, be the sorted
values of a numeric attribute A. Since any value between zli and vi+1 will divide
the set into the same two subsets, we need to examine only n - 1 possible splits.
Typically, the midpoint of each interval v; - w;+i is chosen as the split point.
The cost of evaluating splits for a numeric attribute is dominated by the cost of
sorting the values. Therefore, an important scalability issue is the reduction of
sorting costs for numeric attributes.

3.1.3 Splits for Categorical Attributes If S(A) is the set of possible values
of a categorical attribute A, then the split test is of the form A E S’, where
S’ c S. Since the number of possible subsets for an attribute with n possible
values is 2”) the search for the best subset can be expensive. Therefore, a fast
algorithm for subset selection for a categorical attribute is essential.

3.2 Tree Pruning

The tree pruning phase examines the initial tree grown using the training data
and chooses the subtree with the least estimated error rate. There are two main
approaches to estimating the error rate: one using the original training dataset
and the other using an independent dataset for error estimation.

Cross-validation [4] belongs to the first category. Multiple samples are taken
from the training data and a tree is grown for each sample. These multiple trees
are then used to estimate the error rates of the subtrees of the original tree.
Although this approach selects compact trees with high accuracies, it is inap-
plicable for large data sets, where building even one decision tree is expensive.
Alternative approaches [lo] th a use only a single decision tree often lead to t
large decision trees.

The second class of methods divide the training data into two parts where one
part is used to build the tree and the other for pruning the tree. The data used

22

for pruning should be selected such that it captures the “true” data distribution,
which brings up a potential problem with this method. How large should the test
sample be and how should it be selected? Moreover, using portions of the data
only for pruning, reduces the number of training examples available for the tree
growing phase, which can lead to reduced accuracy.

The challenge for a scalable classifier in the pruning phase is to use an algo-
rithm that is fast, and leads to compact and accurate decision trees.

4 SLIQ Classifier

We first give a brief overview of SLIQ and then give details about the techniques
used in SLIQ to address the scalability issues identified in the previous section.

4.1 Overview

SLIQ is a decision tree classifier that can handle both numeric and categorical
attributes. SLIQ uses a pre-sorting technique in the tree-growth phase to reduce
the cost of evaluating numeric attributes. This sorting procedure is integrated
with a breadth-first tree growing strategy to enable SLIQ to classify disk-resident
datasets. In addition, SLIQ uses a fast subsetting algorithm for determining splits
for categorical attributes. SLIQ also uses a new tree-pruning algorithm based on
the Minimum Description Length principle [ll]. This algorithm is inexpensive,
and results in compact and accurate trees. The combination of these techniques
enables SLIQ to scale for large data sets and classify data sets with a large
number of classes, attributes, and examples.

4.2 Pre-Sorting and Breadth-First Growth

For numeric attributes, sorting time is the dominant factor when finding the best
split at a decision tree node [Z]. Therefore, the first technique used in SLIQ is to
implement a scheme that eliminates the need to sort the data at each node of
the decision tree. Instead, the training data are sorted just once for each numeric
attribute at the beginning of the tree growth phase.

To achieve this pre-sorting, we use the following data structures. We create a
separate list for each attribute of the training data. Additionally, a separate list,
called class list, is created for the class labels attached to the examples. An entry
in an attribute list has two fields: one contains an attribute value, the other an
index into the class list. An entry of the class list also has two fields: one contains
a class label, the other a reference to a leaf node of the decision tree. The ith
entry of the class list corresponds to the ith example in the training data. Each
leaf node of the decision tree represents a partition of the training data, the
partition being defined by the conjunction of the predicates on the path from
the node to the root. Thus, the class list can at any time identify the partition
.to which an example belongs. We assume that there is enough memory to keep
the class list memory-resident. Attribute lists are written to disk if necessary.

Initially, the leaf reference fields of all the entries of the class list are set to
point to the root of the decision tree. Then a pass is made over the training

TRAINING DATA

23

AFTER PRE-SORTING

Age List

ClSSS

LM
Salary Index

salary List

Class Leaf

class List

Fig. 3. Example of Pre-Sorting
EvaluateSplits()

for each attribute A do
traverse attribute list of A
for each value TV in the attribute list do

fhd the corresponding entry in the class list, end
hence the corresponding class and the leaf node (say I)

update the class histogram in the leaf I
if A is a numeric attribute then

compute splitting index for test (A 5 v) for leaf 1
if A is a categorical attribute then

for each leaf of the tree do

find subset of A with best split

Fig. 4. Evaluating Splits

data, distributing values of the attributes for each example across all the lists.

Each attribute value is also tagged with the corresponding class list index. The
attribute lists for the numeric features are then sorted independently. Figure 3
illustrates the state of the data structures before and after pre-sorting.

4.2.1 Processing Node Splits Rather than using a depth-first strategy used
in the earlier decision-tree classifiers, we grow trees breadth-first. Consequently,
splits for all the leaves of the current tree are simultaneously evaluated in one
pass over the data. Figure 4 gives a schematic of the evaluation process.

To compute the gini splitting-index (see Section 3.1) for an attribute at a
node, we need the frequency distribution of class values in the data partition
corresponding to the node. The distribution is accumulated in a class histogram
attached with each leaf node. For a numeric attribute, the histogram is a list of
pairs of the form <class, frequency>. For a categorical attribute, this histogram
is a list of triples of the form <attribute value, class, frequency>.

Attribute lists are processed one at a time (recall that the attribute lists can
be on disk). For each value IJ in the attribute list for the current attribute A, we

24

65 I 1 4 EI IN3
I Update class bkto~rams and

Evd~~te lirst split for node N2 (salary <- 15)

Update chrr bbtogrnmr sad

Evaluate first split lor nodt N3 (salary <- 40)

N2 NJ

Fig. 5. Evaluating Splits: Example

find the the corresponding entry in the class list, which yields the corresponding
class and the leaf node. We now update the histogram attached with this leaf
node. If A is a numeric attribute, we compute at the same time the splitting-
index for the test A 2 v for this leaf. If A is a categorical attribute, we wait
till the attribute list has been completely scanned and then find the subset of A
with the best split. Thus, in one traversal of an attribute list, the best split using
this attribute is known for all the leaf nodes. Similarly, with one traversal of all
of the attribute lists, the best overall split for all of the leaf nodes is known. The
best split test is saved with each of the leaf nodes.

Figure 5 illustrates the evaluation of splits on the salary attribute for the
second level of the decision tree. The example assumes that the data has been
initially split on the age attribute using the split age 2 35. The class histograms
reflect the distribution of the points at each leaf node as a result of the split.
The L values represent the distributions for examples that satisfy the test and
R values represent examples that do not satisfy the test. We show how the
class histograms are updated as each split is evaluated. The first value in the
salary list belongs to node N2. So the first split evaluated is (salary <_ 15)
for N2. After this split, the corresponding example (salary 15, class index 2)
which satisfies the predicate belongs to the left branch and the rest belong to
the right branch. The class histogram of node N2 is updated to reflect this fact.
Next, the split (salary 5 40) is evaluated for node N3. After the split, the
corresponding example (salary 40, class index 4) belongs to the left branch and
the class histogram of node N3 is updated to reflect this fact.

25

4.2.2 Updating the Class List The next step is to create child nodes for each
of the leaf nodes and update the class list. Figure 6 gives the update process.

UpdateLabels
for each attribute A used in a split do

traverse attribute list of A
for each value u in the attribute list do

find the corresponding entry in the class list (say e)
find the new class c to which v belongs by applying

the splitting test at node referenced from e
upd&e the class label for e to c
update node referenced in e to the child corresponding to the class c

Fig. 6. Updating Class List

As an illustration, Figure 7 shows the class list being updated after the nodes
N2 and N3 have been split on the salary attribute. The salary attribute list is
being traversed and the class list entry (entry 4) corresponding to the salary
value of 40 is being updated. First, the leaf reference in the entry 4 of class list
is used to find the node to which the example used to belong (N3 in this case).
Then, the split selected at N3 is applied to find the new child to which the
example belongs (N6 in this case). The leaf reference field of entry 4 in the class
list is updated to reflect the new value.

aau
List

Age List

Class A A
List

Class Leaf Class Leaf

(Salary -z- 4.0) (Salary -z- 4.0)

N.5 N6 N.5 N6 N7 N7

Salsly Lint Class List Class List

Fig. 7. Class List Update: Example

Salsly Lint

Fig. 7. Class List Update: Example

42.3 An Optimization While growing the tree, the above two steps of split-
ting nodes and updating labels are repeated until each leaf node becomes a pure
node (i.e. it contains examples belonging to only one class) and no further splits
are required. Note that some nodes may become pure earlier than others and it
may be better to condense the attribute lists to discard entries corresponding to
examples belonging to these pure nodes. This optimization can easily be imple-
mented by rewriting condensed lists when the the savings from reading smaller
lists outweigh the extra cost of writing condensed lists. The information required
to make this decision is available from the previous pass over the data.

The important thing to note about pre-sorting and breadth-first growth is
that these strategies allow SLIQ to scale for large data sets with no loss in

26

accuracy. This is because the set of splits evaluated with and without pre-sorting
is identical. Pre-sorting simply eliminates the task of resorting data at each node
and removes the restriction that the training set be memory-resident.

4.3 Subsetting for Categorical Attributes

The splits for a categorical attribute A are of the form A E S’, where S’ C S and
S is the set of possible values of attribute A. The evaluation of all the subsets
of S can be prohibitively expensive, especially if the cardinality of S is large.

SLIQ uses a hybrid approach to overcome this issue. If the cardinality of S is
less than a threshold, MAXSETSIZE, then all of the subsets of S are evaluated 3.
Otherwise, a greedy algorithm (initially proposed for IND [8]) is used to obtain
the desired subset. The greedy algorithm starts with an empty subset S and
adds that one element of S to S which gives the best split. The process is
repeated until there is no improvement in the splits. This hybrid approach finds
the optimal subset if S is small and also performs well for larger subsets.

4.4 Tree Pruning

The pruning strategy used in SLIQ is based on the principle of Minimum De-
scription Length (MDL) [ll]. W e fi t rs review briefly the MDL principle and then
show its application in decision-tree pruning.

The MDL principle states that the best model for encoding data is the one
that minimizes the sum of the cost of describing the data in terms of the model
and the cost of describing the model. If M is a model that encodes the data D,
the total cost of the encoding, cost(nll, D), is defined as:

cosd(M,D) = coLd(D 1 M) + cost(M)

where, cost(D] M) is the cost, in number of bits, of encoding the data given a
model M and cost(M) is the cost of encoding the model M. In the context of
the decision tree classifiers, the models are the set of trees obtained by pruning
the initial decision tree T, and the data is the training set S. The objective of
MDL pruning is to find the subtree of T that best describes the training set S.

Earlier applications of the MDL principle to tree pruning [9][12] showed that
the resultant trees were “over-pruned”, causing a decrease in the classification
accuracy. In [6], an alternative application of MDL was presented that yielded
small trees without sacrificing accuracy. However, the pruning algorithm in [6]
was limited; it either pruned all or none of the children of a node in the decision
tree. We present a new algorithm that is able to prune a subset of the children
at each node and thus subsumes the previous algorithm.

There are two components of the pruning algorithm: the encoding scheme
that determines the cost of encoding the data and the model, and the algorithm
used to compare various subtrees of T.

’ We use a default MAXSETSIZE of 10, since 21° subsets can be evaluated fairly

quickly.

27

4.4.1 Data Encoding The cost of encoding a training set S by a decision tree
T is defined as the sum of all classification errors. A classification of an example
is an error if the classification produced by T is not the same as the original class
label of the example. This count of misclassification errors is collected during
the tree building phase. So, the data encoding step is inexpensive.

4.4.2 Model Encoding The encoding scheme for the model has to provide for
the cost of describing the tree and the costs of describing the tests used in the
tree at each internal node.

- Encoding the Tree: Given a decision tree, a node in the decision tree can
be an internal node with one or two children, or a leaf node. The number of
bits required to encode the tree depends on the permissible tree structures.
We explore three possible ways of encoding the tree:

1. CodeI: A node is allowed either 0 or two children. Since there are only
two possibilities, it takes only one bit to encode each node.

2. Codez: Each node can have no children, a left child, a right child, or
both children. Therefore, 2 bits are needed to encode the four possible
values of each node.

3. Codes: Only internal nodes are examined. So each node can have a left
child, a right child, or both children. This requires log(3) bits

- Encoding the Splits: The cost of encoding the splits depends on the type
of attribute tested for the split:

1. Numeric Attributes: If the split is of the form A 5 II where A is a numeric
attribute and v is a real-valued number, the cost of encoding this test
is simply the overhead of encoding II, say P. Although the value of P
should optimally be determined independently for each such test in the
decision tree, we assume a constant value of 1 throughout the tree. The
value of 1 was empirically determined.

2. Categorical Attributes: For tests of the form A & S, where A is a cate-
gorical attribute and S is a subset of the possible values of A, the cost
is calculated in a two-step process. First, we count the number of such
tests used in the tree, ?%A;, for each categorical attribute A;. Then the
cost of the test is calculated as In nA; .

From now on, Lteat denotes the cost of encoding any test at an internal node.

4.4.3 Pruning Algorithms The MDL pruning evaluates the code length at
each decision tree node to determine whether to convert the node into a leaf,
prune the left or the right child, or leave the node intact. For each of the above
options, the code length C(n) for a node n is calculated as follows:

Geaf(t) = L(t) + Errorst , if t is a leaf (1)

&th(t) = L(t) + Ltest + C(tl) + C(tz), if t has both children (2)

Ge&) = L(t) + L test + C(h) + C’(h), if t has only tl as a child (3)

Gig&) = L(i) + L test + C’(h) + C@,), if t has only t2 as a child (4)

28

Except for C’(ti), all the other quantities are self-explanatory. In the case of
partial pruning when either ti or t2 is pruned, the examples that fall into the
pruned branch are encoded using the statistics at the parent node. C (ti) repre-
sents the cost of encoding the children’s examples using the parent’s statistics.

We consider three pruning strategies:

1. Full: This strategy, first presented in [6], considers only options (1) and
(2). If Ckaf (t) is smaller than Cboth(t) f or a node t then both the children
are pruned and the node is converted into a leaf. This approach codes the
decision tree using only one bit (method Coder).

2. Partial: The partial pruning strategy chooses amongst all four options. Each
node is converted into the option with the shortest code length. This ap-
proach uses the second method for coding trees, Codez, which requires 2
bits for each node.

3. Hybrid: The hybrid method prunes the tree in two phases. It first uses the
Full method to get a smaller tree and then considers only options (2), (3)
and (4) to further prune the tree.

5 Performance Results

This section presents a detailed performance evaluation of SLIQ. We first discuss
the metrics used in the evaluation and then describe the experimental method-
ology. This is followed by a comparison of SLIQ with other tree classification
methods and the result of experiments showing SLIQ’s scalability.

5.1 Metrics

The primary metric for evaluating classifier performance is classification QCCU-
racy - the percentage of test samples that are correctly classified. We also present
the classification time, and the size of the decision tree as secondary metrics. The
ideal goal for a classifier is to produce compact, accurate trees in a short time.

5.2 Experimental Setup

The performance evaluation of SLIQ was divided into two parts. The first part
compares SLIQ with the classifiers provided with the IND classifier package [S].
The IND package implements two of the most popular decision tree classifiers:
CART [4] and C4 (a predecessor of C4.5 [lo]). Th ese implementations are hence-
forth referred to as IND-Cart and IND-C4. Since the IND classifiers handle only
datasets that 6t in memory, the comparison used datasets from the STATLOG
classification benchmark [7]. Table 1 summarizes the important parameters of
this benchmark.

The second part of the performance evaluation examines SLIQ’s performance
on disk-resident data. In the absence of a benchmark with large classification
datasets, we used the evaluation methodology and synthetic databases proposed
in [l]. Each tuple in these databases has nine attributes. Ten classification func-
tions were used in [l] to produce data distributions of varying complexities. In

29

Dataset Domain #Attributes #Classes #Example:
Australian Credit Analysis 14 2 690
Diabetes Disease diagnosis 8 2 768
DNA DNA Sequencing 180 3 3186
Letter Handwriting Recognition 16 26 20000
Satimage Landusage Images 36 6 6435
Segment Image Segmentation 19 7 2310
Shuttle Space Shuttle Radiation 9 7 57000
Vehicle Vehicle Identification 18 4 846

Table 1. STATLOG Benchmark Datasets

this paper, we use the functions which were the hardest to characterize and led
to the highest classification errors - functions 5 and 10. All experiments were
performed on an IBM RS/SOOO 250 workstation with a buffer pool of 64 MB
and executing the AIX 3.2.5 OS.

5.3 MDL Pruning

Section 4.4 presented the partial and hybrid MDL-based pruning algorithms that
can remove a subset of the children at any decision tree node. The first exper-
iment compares the performance of these algorithms to the full pruning algo-
rithm. Table 2 shows the classification accuracy of the different algorithms while
Table 3 shows the sizes of the final decision tree. The execution times of the
three algorithms nearly the same and have therefore not been shown.

(Dataset (full(partiallhybrid(
Australian 84.9 (85.11 84.91

[Dataset 1 fulllpartialihybrid]
Australian! 14.61 9.61 10.61 _---__---_

Diabetes 75.8 74.9 75.4 Diabetes 35.2 11 21.2
DNA 92.1 91.9 92.1 DNA 55.0 45.0 45.0
Letter 84.6 81.7 84.6 Letter 1141.0 729.0 879.0
Satimage 86.3 85.3 86.3 Segment Satimage 159.0 91.0 133.0 94.6 94.1 94.6

18.6 15.2 16.2 Shuttle 99.9 99.9 99.9 Segment
Shuttle 29 27 27

Vehicle 70.3 68.7 70.3 Vehicle 68.3 42.6 49.4

Table 2. Classification Accuracy Table 3. Decision Tree Size
The tables show that compared to full pruning, the partial pruning leads to

much smaller trees but at the cost of lower classification accuracy. This implies
that the partial MDL pruning is “over-aggressive”. Hybrid pruning, on the other
hand, achieves the same accuracy as full pruning, and leads to decision trees
that are, on the average, 22% smaller. Hybrid pruning is therefore the preferred
approach, and is used for the rest of the experiments in this paper.

5.4 Small Datasets

The next experiment compares the performance of SLIQ with IND-Cart and
IND-C4. Table 4 shows the classification accuracy of each of the algorithm on
the STATLOG benchmark. The results show that all the three classifiers achieve

30

similar accuracy. The largest difference is only 5.3% (Diabetes). However I Table 5
shows that there is a significant difference in the sires of the decision trees
produced by the classifiers. IND-C4 produces the largest decision trees for all the
datasets. The trees produced by IND-Cart are 2 (Segment) to 16.4 (Australian)
times smaller. SLIQ also produces trees that are comparable in size to IND-Cart
and 2.1 (Shuttle) to 8.5 (Diabetes) times smaller than IND-C4.

Dataset IND-Cart IND-C4 SLIQ
Australian 85.3 84.4 84.9
Diabetes 74.6 70.1 75.4
DNA 92.2 92.5 92.1
Letter 84.7 86.8 84.6
Satimage 85.3 85.2 86.3
Segment 94.9 95.9 94.6
Shuttle 99.9 99.9 99.9
Vehicle 68.8 71.1 70.3

IDataset [IND-Cart(IND-C41SLIQ]
Australian 5.21 851 10.61
Diabetes 11.5 179.7 21.2
DNA 35.0 171.0 45.0
Letter 1199.5 3241.3 879.0
Satimage 90.0 563.0 133.0
Segment 52.0 102.0 16.2
Shuttle 27 57 27
Vehicle 50.1) 249.0) 49.4

Table 4. Classification Accuracy Table 5. Pruned-Tree Size

Dataset IIND-Cart IND-C4 SLIQ
Australian 2.1 1.5 7.1
Diabetes 2.5 1.4 1.81
DNA 33.4 9.21 19.3
Letter 251.3 53.08 39.0
Satimage 224.7 37.06 16.5
Segment 30.2 9.7 5.2
Shuttle 460 80 33
Vehicle 7.62 2.7 1.8

Table 6. Execution Times

The final criterion for comparing the pruning algorithms is the execution
times of the algorithms. Table 6 shows that IND-Cart, which uses cross-validation
for pruning, has the largest execution time. The other two algorithms grow a
single decision tree, and therefore are nearly an order of magnitude faster in
comparison. SLIQ is faster than IND-C4, except for the Australian, Diabetes,
and DNA data. The Australian and Diabetes data are very small and, there-
fore, the full potential of pre-sorting and breadth-first growth cannot be fully
exploited by SLIQ. The DNA data consists only of categorical attributes, and
hence there are no sorting costs that SLIQ can reduce.

In summary, this set of experiments has shown that IND-Cart achieves good
accuracy and small trees. However, the algorithm is nearly an order of magnitude
slower than the other algorithms. IND-C4 is also accurate and has fast execution
times, but leads to large decision trees. SLIQ, on the other hand, does not
suffer from any of these drawbacks. It produces accurate decision trees that are
significantly smaller than the trees produced using IND-C4. At the same time,
SLIQ executes nearly an order of magnitude faster than IND-Cart.

31

1600- 700 __
+--Function5 m

. --~--Function10 8’
1400 - I’ 600

? 0 /8’ Q e!
a i200- 9 ,/’ .g 500

c lOoo-
I c

/’ ,’ i

FMO-
I

,i’ _,/’

de ‘F
400

,$ 300
600- /’ .’ 9

,*’ *A 7 200 400-
,’ I

-,+-
s*- -0 d 200- 100

--
--

0
jg’

I I I . I ’ I 0 ,““““‘I”.-“.“I’.‘...‘.‘i
0 2 4 6 8 10 0 loo 200 300

Number of Examples (In millions) Number of Atfributes

Fig. 8. SLIQ S&ability: #Examples Fig. 9. SLIQ Scalability: #Attributes

5.5 Scalability

The last set of experiments showed that SLIQ achieves good performance on
memory-resident data. This section examines the scalability of SLIQ along two
dimensions: the number of training examples, and the number of attributes in
the data. Synthetic databases (Section 5.2) were used for these experiments.

Scalability on number of training examples Figure 8 shows the perfor-
mance of SLIQ as the number of training examples is increased from 100,000 to
10 million. This corresponds to an increase in total database size from 4MB to
400MB.

The results show that SLIQ achieves near-linear execution times on disk-
resident data. This is because the total classification time is dominated by I/O
costs. Recall that SLIQ makes at most two complete passes over the data for
each level of the decision tree. Since I/O costs are directly proportional to the
size of the data, the total classification time also becomes a near-linear function
of data size. The two functions show different slopes because the size of the tree
and hence the number of passes made over the data is function-dependent. Total
linearity is not achieved because of two reasons. First, the pre-sorting time is
non-linear in the size of the data. Second, classifying larger data sets sometimes
leads to larger decision trees which requires extra passes over the data.

Scalability on number of attributes The next experiment studies the per-
formance of SLIQ as the number of attributes increases. Since the original syn-
thetic databases have only 9 attributes, extra attributes were created by adding
randomly generated values to each example. Note that the addition of these at-
tributes does not substantially change the final decision tree produced because
the extra attributes are not used by SLIQ anyway. The additional attributes
simply increase the classification time because of the need to examine additional
attributes at each level of the decision tree. The number of training examples
was fixed at 100,000 for this experiment. The number of attributes was increased

32

from 9 to 400, which represents an increase in the database size from 4MB to
160MB. Figure 9 shows the performance for functions 5 and 10. There is a dis-
continuity at 100 attributes, when the database size is just over 40 MB and the
attribute lists (80 MB) do not fit in memory. Recall that the buffer pool size was
fixed at 64 MB of memory for all the experiments*. For disk-resident data, the
classification time increases linearly, again due to the domination of I/O costs.

6 Conclusions

Classification is an important problem in data mining. Although classification
has been studied extensively in the past, the various techniques proposed for clas-
sification do not scale well for large data sets. We presented a new decision-tree
classifier, called SLIQ, which is designed specifically for scalability. SLIQ uses the
novel techniques of pre-sorting, breadth first growth, and MDL-based pruning.
An empirical performance evaluation shows that compared to other classifiers,
SLIQ achieves comparable or better classification accuracy but produces small
decision trees and and has small execution times. We also demonstrated that
SLIQ achieves good scalability and performs well for datasets with a large num-
ber of examples and attributes.

References

1. R. Agrawal, T. Imielinski, and A. Swami. Database mining: A performance per-
spective. IEEE fians. on Knowledge and Data Engineering, 5(6), Dec. 1993.

2. J. Catlett. Megainduction: Machine Learning on Very Large Databases. PhD the-
sis, University of Sydney, 1991.

3. P. K. Chan and S. J. StoIfo. Meta-learning for multistrategy and parallel learning.
In Proc. Second Intl. Workshop on Mu&strategy Learning, pages 150-165, 1993.

4. L. Breiman et. al. Classification and Regression Trees. Wadsworth, Belmont, 1984.
5. R. Agrawal et. al. An interval classifier for database mining applications. In Proc.

of the VLDB Conf., Vancouver, British Columbia, Canada, August 1992.
6. M. Mehta, J. Rissanen, and R. Agrawal. MDL-based decision tree pruning. In

Int? Conf. on Knowledge Discovery in Databases and Data Mining (KDD-95),

Montreal, Canada, Aug. 1995.
7. D. Michie, D. J. Spiegelhalter, and C. C. Taylor. Machine Learning, Neural and

Statistical Classification. E&s Horwood, 1994.
8. NASA Ames Res. Ctr. Intro. to IND Version 2.1, GA23-2475-02 edition, 1992.
9. J. R. Quinlan and R. L. Rivest. Inferring decision trees using minimum description

length principle. Information and Computation, 1989.
10. J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufman, 1993.
11. J. Rissanen. Stochastic Complexity in Statistical Inquiry. World Scientific Publ.

Co., 1989.
12. C. Wallace and J. Patrick. Coding decision trees. Machine Learning, 11:7-22,

1993.
13. S. M. Weiss and C. A. Kulikowski. Computer Systems that Learn: Classijication

and Prediction Methods from Statistics, Neural Nets, Machine Learning, and Ex-

pert Systems. Morgan Kaufman, 1991.

’ A similar discontinuity nlso occurs in the previous experiment at 800K tuples.

