

RULES-6: A Simple Rule Induction Algorithm for Supporting Decision Making

D T Pham A A Afify
Manufacturing Engineering Centre Manufacturing Engineering Centre

School of Engineering, Cardiff University School of Engineering, Cardiff University
Cardiff, Queen's Buildings, The Parade, Cardiff, Queen's Buildings, The Parade,

Newport Road, Cardiff CF24 3AA Newport Road, Cardiff CF24 3AA

phamdt@cf.ac.uk afifyae@cf.ac.uk

Abstract – RULES-3 Plus is a member of the RULES family of

simple inductive learning algorithms with successful

engineering applications. However, it requires modification in

order to be a practical tool for problems involving large data

sets. In particular, efficient mechanisms for handling

continuous attributes and noisy data are needed. This paper

presents a new rule induction algorithm called RULES-6,

derived from the RULES-3 Plus algorithm. The algorithm

employs a fast and noise-tolerant search method for extracting

IF-THEN rules from examples. It also uses simple and effective

methods for rule evaluation and continuous attributes handling.

A detailed empirical evaluation of the algorithm is reported in

the paper. The results presented demonstrate the strong

performance of the algorithm.

1. INTRODUCTION

Recently, there has been substantial attention devoted to

the use of machine learning techniques as tools for decision

support. These methods have been applied to a wide variety

of problems in engineering [1-3] because of their ability to

discover patterns from data. The integration of these methods

with conventional decision support systems can provide a

means for significantly improving the quality of decision

making. A decision support system can employ machine

learning techniques to derive knowledge directly from prior

decision examples and to refine this knowledge continually.

Inductive learning is perhaps the most widely used

machine learning technique. Inductive learning algorithms

are simple and fast. Another advantage is that they generate

models that are easy to understand. Finally, inductive

learning algorithms are more accurate compared with other

machine learning techniques.

Inductive learning techniques can be divided into two

main categories, namely, decision tree induction and rule

induction [4]. RULES (RULe Extraction System) is a family

of inductive learning algorithms that follow the rule

induction approach. The first three algorithms in the RULES

family of algorithms (RULES-1, 2 and 3) were developed by

Pham and Aksoy [5-7]. Later, the rule forming procedure of

RULES-3 was improved by Pham and Dimov [8] and the

new algorithm was called RULES-3 Plus. Compared to its

immediate predecessor RULES-3, RULES-3 Plus has two

new strong features. First, it employs a more efficient search

procedure instead of the exhaustive search conducted in

RULES-3. Second, it incorporates a metric called the H

measure [9] for selecting and sorting candidate rules

according to their generality and accuracy. The first

incremental learning algorithm in the RULES family was

RULES-4 [10]. RULES-4 allows the stored knowledge to be

updated and refined rapidly when new examples are

available. RULES-4 employs a Short Term Memory (STM)

to store training examples when they become available. The

STM has a user-specified size. When the STM is full,

RULES-4 invokes RULES-3 Plus to generate rules. Pham et

al. [11] described another algorithm also based on RULES-3

Plus, called RULES-5, which can effectively handle

problems involving continuous attributes. As with RULES-3

Plus, RULES-5 employs the H measure for evaluating the

quality of rules.

RULES-3 Plus has been employed for the extraction of

classification rules for solving different engineering

problems, e.g., the recognition of design form features in

CAD models for computer aided process planning [12], the

mapping of manufacturing information to design features

[12] and the classification of defects in automated visual

inspection [13]. RULES-3 Plus still suffers from problems

that limit its efficiency and widespread use. One of the main

problems is that RULES-3 Plus learns a complete and

consistent rule set that tries to cover all of the positive and

none of the negative training instances1. In the case of noisy

data, this leads to the generation of over-specific rules that

overfit the training data. A second problem is that the H

measure is computationally complex and does not lead to the

highest level of predictive accuracy and generality. Finally,

continuous-valued attributes are discretised using a simplistic

equal-width approach [14] before data is passed to the

learning system. This discretisation method is arbitrary and

does not seek to discover any information inherent in the

data, thereby hampering the ability of RULES-3 Plus to

learn.

This paper presents RULES-6, a new rule induction

algorithm which addresses the weaknesses of the RULES-3

Plus algorithm. In particular, it employs a new noise-tolerant

search method which relaxes the consistency constraint and

uses search-space pruning rules which significantly reduce

the search time. It also adopts a simple metric for rule

evaluation and a more robust method for handling continuous

attributes. These enhancements enable the efficient

generation of accurate and compact rule sets.

The paper is organised as follows. Section 2 briefly

reviews RULES-3 Plus. Section 3 gives a detailed

description of the RULES-6 algorithm. Section 4 discusses

the evaluation of the performance of RULES-6 using real

1
Instances of the target class (the class of the training instance under

consideration) in the training set are called positive instances. Instances in

the training set that do not belong to the target class are called negative

instances.

21840-7803-9252-3/05/$20.00 ©2005 IEEE

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on April 17,2010 at 11:36:27 UTC from IEEE Xplore. Restrictions apply.

data. Section 5 concludes the paper and provides suggestions

for future work.

2. RULES-3 PLUS

The RULES-3 Plus algorithm works in an iterative

fashion. In each iteration, it takes a seed example not covered

by previously created rules to form a new rule. Having found

a rule, RULES-3 Plus removes those examples that the rule

covers from the training set, by marking them, and appends a

rule at the end of its rule set. The algorithm stops when all

examples in the training set are covered. This produces an

unordered set of complete and consistent rules. It should be

noted that the examples covered by previously formed rules

are only marked in order to stop RULES-3 Plus from

repeatedly finding the same rule. However, these examples

are used to guide the specialisation process and to assess the

accuracy and generality of each newly formed rule.

To form a rule, RULES-3 Plus performs a general-to-

specific beam search for the most general and consistent rule.

It starts with the most general rule and specialises it in steps

considering only conditions extractable from the selected

seed example. The aim of specialisation is to construct a rule

that covers the seed example and as many positive examples

as possible while excluding all negative examples. The result

is a rule that is consistent and as general as possible.

A pseudo-code description of RULES-3 Plus and a simple

example clearly illustrating its operation can be found in [8].

3. RULES-6

A pseudo-code description of RULES-6 is given in Fig. 1.

Like its predecessors in the RULES family, RULES-6

extracts rules by processing one example at a time. The

algorithm first selects a seed example, the first example in

the training set not covered by previously created rules, and

then calls the Induce-One-Rule procedure to extract a rule

that covers that example. Following this, all covered

examples are marked, the learned rule is added to the rule set

and the process repeated until all examples in the training set

have been covered. The Induce-One-Rule procedure is

outlined in Fig. 2.

The Induce-One-Rule procedure searches for rules by

carrying out a pruned general-to-specific search. The search

Procedure Induce_Rules (TrainingSet, BeamWidth)

RuleSet = ∅

While all the examples in the TrainingSet are not covered Do

 Take a seed example s that has not yet been covered.

 Rule = Induce_One_Rule (s, TrainingSet, BeamWidth)

 Mark the examples covered by Rule as covered.

 RuleSet = RuleSet ∪ {Rule}

End While

Return RuleSet

End

Fig. 1. A pseudo-code description of RULES-6

Procedure Induce_One_Rule (s: Seed example, Instances: Training set, w: Beam width)

PartialRules = NewPartialRules = ∅

BestRule = most general rule (the rule with no conditions)

PartialRules = PartialRules ∪ {BestRule} (step 1)

While PartialRules ≠ ∅ Do (step 2)

 For each Rule ∈ PartialRules Do

 {First, generate all specialisations of the current rule, save useful ones and determine

 all the InvalidValues according to one of the conditional tests in steps (5), (6) or (7)}

 For each nominal attribute Ai that does not appear in Rule Do

 If vis ∈ Rule.ValidValues, where vis is the value of Ai in s Then

 NewRule = Rule ∧ [Ai = vis] (step 3)

 If NewRule.Score > BestRule.Score Then (step 4)

 BestRule = NewRule

 If Covered_Positives (NewRule) ≤ MinPositives OR (step 5)

 Covered_Negatives (Rule) – Covered_Negatives (NewRule)

 ≤ MinNegatives OR (step 6)

 Consistency (NewRule) = 100% Then (step 7)

 Parent (NewRule).InvalidValues = Parent (NewRule).InvalidValues + {vis}

 (step 8)

 Else

 NewPartialRules = NewPartialRules ∪ {NewRule} (step 9)

 End For

 End For

 Empty PartialRules

 For each Rule ∈ NewPartialRules Do

 {Next, delete partial rules that cannot lead to an improved rules and determine

 all the InvalidValues according to the conditional test in step (10)}

 If Rule.OptimisticScore ≤ BestRule.Score Then (step 10)

 NewPartialRules = NewPartialRules – {Rule} (step 11)

 Parent (Rule).InvalidValues = Parent (Rule).InvalidValues

 + Last_Value_Added (Rule) (step 12)

 End For

 For each Rule ∈ NewPartialRules Do

 {Finally, remove from the ValidValues set of each rule all the values that

 will lead to unnecessary construction of useless specialisations at subsequent

 specialisation steps}

 Rule.ValidValues = Rule.ValidValues – Parent (Rule).InvalidValues (step 13)

 End For

 If w > 1 Then

 Remove from NewPartialRules all duplicate rules

 Select w best rules from NewPartialRules and insert into PartialRules (step 14)

 Remove all rules from NewPartialRules

End While

Return BestRule

End

Fig. 2. A pseudo-code description of the Induce_One_Rule procedure
PartialRules: a list of rules to be specialised and NewPartialRules: a new list

of rules to be used for further specialisations.

aims to generate rules which cover as many examples from

the target class and as few examples from the other classes as

possible, while ensuring that the seed example remains

covered. As a consequence, simpler rules that are not

consistent, but are more accurate for unseen data, can be

learned. This contrasts with the rule forming procedure of

2185

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on April 17,2010 at 11:36:27 UTC from IEEE Xplore. Restrictions apply.

RULES-3 Plus, which restricts its search to only those rules

that are completely consistent with the training data, leading

to overfitting if the data is noisy.

A beam search is employed to find the best rule. This is

done by using two rule lists named PartialRules and

NewPartialRules. PartialRules, which is the same size as the

beam width w, stores the w best partial rules during the

specialisation process. Only the rules in this list are

considered for further specialisation. NewPartialRules is

used to save valid partial rules obtained by specialising the

rules in PartialRules. The learning of single rules starts with

the most general rule whose body is empty (step (1) in Figure

2) and specialises it by incrementally adding conditions to its

body (step (3) in Figure 2). Possible conditions are attribute-

value pairs of the selected seed example. In the case of

nominal attributes, conditions of the form [Ai = vis] are

created, where vis is the value of Ai in the selected seed

example s. In the case of continuous attributes, an off-line

discretisation method is used to split the range of each

attribute into a number of smaller intervals that are then

regarded as nominal values. For each condition, a new rule is

formed by appending a condition to the current rule that

differs from the conditions already included in the rule. The

score of each new rule is computed and the rule with the best

accuracy is remembered (step (4) in Figure 2). The new rule

is then inserted into the NewPartialRules list (step (9) in

Figure 2) unless one of the conditional tests (step (5), (6) or

(7) in Figure 2) prevents this because it is deemed that no

improved rule will be obtained from the new rule. In the

latter case, the new rule is regarded as ineffective and

additional specialisations will not improve the values for the

quality measure. If the new rule is discarded, the last attribute

value used to form it is added to the set of attribute values

(InvalidValues) of its immediate parent, the current rule, so

as to ensure that it will be removed from the other

specialisations of the same parent rule (step (8) in Figure 2).

Thus, the NewPartialRules list only contains useful rules that

can be employed for further specialisation. This process is

repeated until there are no remaining rules to be specialised

in the PartialRules list.

Another test that allows sections of the search space to be

pruned away is now applied to each rule in the

NewPartialRules list after the best rule overall in the current

specialisation step is identified. Rules that satisfy the

conditional test at step (10) are removed from the

NewPartialRules list (step (11) in Figure 2), again, because

they will not lead to improved rules. The last attribute values

used to generate these rules are added to the InvalidValues of

their parents (step (12) in Figure 2). All InvalidValues are

then deleted from the corresponding set of ValidValues for

each rule in the NewPartialRules list (step (13) in Figure 2).

Such values cannot lead to a viable specialisation from any

point in the search space that can be reached via identical sets

of specialisations and thus excluding them will prevent the

unnecessary construction of ineffective specialisations at

subsequent specialisation steps.

After eliminating all duplicate rules, the best w rules from

the NewPartialRules list are chosen to replace all rules in the

PartialRules list (step (14) in Figure 2). The comparison

between rules is based on the quality measure defined in the

next section. If two rules have an equal quality measure, the

simpler rule, in other words, the one with fewer conditions, is

selected. If both the quality measure and the number of

conditions of the rules are the same, the more general rule

that covers more instances is chosen.

The specialisation process is then repeated until the

PartialRules list becomes empty (step (2) in Figure 2) due to

the tests at steps (5), (6), (7) and (10). It should be noted that

the PartialRules and NewPartialRules lists are reused after

each iteration. During specialisation, the best rule obtained is

stored and returned at the end of the procedure. In RULES-3

Plus, the specialisation process stops once a consistent rule

that covers the seed example has been formed and this rule is

taken as the best one. It should be noted that consistent rules

having a very low coverage might be discovered in the early

stages of the rule generation process and stopping the search

process once a consistent rule has been found might lead to

the generation of non-optimal rules. On the other hand, if the

search process continues, more general rules might be

created.

The following sections discuss the key ideas underlying

RULES-6 in more detail.

3.1. Rule Quality Metric

Given that the rule induction process could be conceived

as a search process, a metric is needed to estimate the quality

of rules found in the search space and to direct the search

towards the best rule. The rule quality measure is a key

element in rule induction. In real-world applications, a

typical objective of a learning system is to find rules that

optimise a rule quality criterion that takes both training

accuracy and rule coverage into account so that the rules

learned are both accurate and reliable.

A quality measure must be estimated from the available

data. All common measures are based on the number of

positive and negative instances covered by a rule. Several

different metrics are used in existing algorithms. These

include purity, information content, entropy, the metric

applied in RIPPER, accuracy, Laplace and the m-

probability-estimate [15, 16].

The performance of the H measure and the seven quality

measures mentioned above when used with the RULES-6

algorithm was evaluated empirically [17]. The evaluation

was carried out on a large number of data sets and the results

showed that the m-probability-estimate outperformed the

other measures. Therefore, RULES-6 employs the m-

probability-estimate to select the best rule (step (4) in Figure

2) and to decide on the best specialisations to retain (step

(14) in Figure 2) after each specialisation step.

3.2. Search-space Pruning Rules

The size of the search space for inducing one rule grows

exponentially with both the number of attributes used to

describe each instance and the number of values allowed for

2186

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on April 17,2010 at 11:36:27 UTC from IEEE Xplore. Restrictions apply.

each attribute. Moreover, the iterative nature of rule

induction algorithms suggests that the computational

requirements would be high on large data sets even with the

reduced search spaces considered by algorithms such as

RULES-6. Therefore, an efficient search method is essential

in order for a learning algorithm to handle large data sets.

The search space can be efficiently organised by taking

advantage of a naturally occurring structure over the

hypothesis space that exists for any classification learning

problem − a general-to-specific partial ordering of

hypotheses [18]. This structure implies that all specialisations

of a rule cover a monotonically decreasing number of

positive and negative instances. This organisation property

provides a powerful source of constraints on the search

performed by the RULES-6 algorithm. RULES-6 constrains

the search space by employing the four pruning rules listed in

Table 1. These pruning rules remove portions of the search

space that do not maximise the quality measure, thus

significantly speeding up the search process. Since the rules

removed by the pruning rules are relatively poor rules,

pruning rules improve performance without affecting the

quality of the learned rules. The effectiveness of these

pruning rules depends upon how efficiently they can be

implemented and upon the regularity of the data to which the

search is applied. These pruning rules and how their effect is

maximised are detailed in [17].

3.3. Discretisation Method

Since most real-world applications of classification

learning involve continuous-valued attributes, properly

handling these attributes is important. Discretisation of the

data is one possibility. The usual approach to discretisation

of continuous-valued attributes is to perform this

discretisation off-line, prior to the learning process [19].

First, all continuous attributes in the data are discretised to

obtain a discrete data set. Then learning algorithms are

applied to this discretised data set.

Several off-line discretisation methods have been developed.

Four different state-of-the-art off-line discretisation

procedures are the equal-width method proposed by Wong

and Chiu [14], the 1R Discretizer proposed by Holte [20], the

entropy-based discretisation method by Fayyad and Irani

[21] and the “optimal” discretisation method of Cai [22].

These methods are representative of the existing

discretisation techniques and widely used in other

comparative studies.

Table 1. Search-space pruning rules employed by RULES-6

r′ is any specialisation of rule r and Prune (r) indicates that the children of r

should not be searched.

1. If Covered_Positives (r) ≤ MinPositives Then Prune (r)

2. If Covered_Negatives (r) – Covered_Negatives (r′) ≤ MinNegatives

 Then Prune (r′)

3. If Consistency (r) = 100% Then Prune (r)

4. If Optimistic_Score (r) ≤ Score (BestRule) Then Prune (r)

The experimental results of many studies [22, 23] have

indicated that the choice of a discretisation method depends

on both the data to be discretised and the learning algorithm.

The performance of the four discretisation methods

mentioned above when used with the RULES-6 algorithm

was evaluated empirically [17]. The evaluation was carried

out on a large number of data sets and the results showed that

the performance of the RULES-6 algorithm significantly

improved when continuous-valued attributes were discretised

using the entropy method. As a result, this discretisation

method is adopted for use with RULES-6.

4. EMPIRICAL EVALUATION OF RULES-6

This section presents an empirical evaluation to assess the

performance of the RULES-6 algorithm. RULES-6 was

compared to its immediate predecessor RULES-3 Plus and to

the well-known inductive learner C5.0 [24] which is

probably the best performing induction algorithm

commercially available.

Three criteria were used to evaluate the performance of the

tested algorithms, namely, classification accuracy, rule set

complexity and execution time. All execution times were

obtained on a Pentium IV computer with a 2.4 GHz

processor, 512 MB of memory and the Windows NT 4.0

operating system.

In order to draw reliable conclusions about the behaviour

of the learning algorithms, 40 data sets were considered. All

data sets were obtained from the University of California at

Irvine (UCI) repository of machine learning databases [25].

In the experiments conducted in this study, the hold-out

approach was used to partition the data into training and test

data [26]. For large data sets with more than 1000 instances,

each set was randomly divided once into a training set with

two-thirds of the data and a test set with the remaining one-

third. For small data sets with fewer than 1000 instances, the

above procedure was repeated ten times, and the results were

averaged.

RULES-6 and C5.0 each has a number of parameters

whose values determine the quality of their induced rule sets.

RULES-6 was tested using values of 4, 2 and 1 for beam

width, MinPositives and MinNegatives respectively. C5.0

was run with the default settings.

4.1. Comparison with RULES-3 Plus

This section describes an empirical study to compare

RULES-6 against RULES-3 Plus. Table 2 lists the results

obtained. As can be seen from the table, the performance

obtained by RULES-6 was impressive. There were

considerable improvements in classification accuracy for 25

data sets. For data sets Abalone, German-organisation,

Glass2, Heart-Hungarian, Hepatitis, Horse-colic,

Lymphography, Shuttle, Sick-euthyroid and Vehicle the

improvements were more obvious. The accuracy degraded

for 11 data sets. For the remaining 4 data sets, equivalent

results were obtained. It can also be seen from the table that

RULES-6 produced much more compact rule sets than

2187

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on April 17,2010 at 11:36:27 UTC from IEEE Xplore. Restrictions apply.

Table 2. Results for RULES-3 Plus and RULES-6

 RULES-3 Plus RULES-6

Data Set Name

Acc.

(%)

Rules

Conditions

Rules

explored

CPU

Time (s)

Acc.

(%)

Rules

Conditions

Rules

explored

CPU

Time (s)

Abalone 18.5 313 1947 26853 28 25.3 21 49 1012 1

Adult 77.5 6686 70144 1986685 29938 83.1 118 395 16193 415

Anneal 99.7 37 119 10119 3 93.3 16 45 1912 1

Australian 83.9 148 807 26301 4 85.2 29 115 2892 0

Auto 62.3 48 94 5534 0 62.3 14 44 1582 0

Balance-scale 77.0 213 691 3341 1 64.6 11 29 155 0

Breast 95.7 40 94 2023 1 92.3 10 20 257 0

Breast-cancer 68.4 86 284 5674 1 72.6 26 74 1311 0

Car 88.4 165 801 7826 2 84.2 44 137 1374 1

Chess 99.0 108 2164 176109 347 98.5 31 141 8728 19

Cleve 77.7 33 73 2214 0 82.2 17 48 913 0

Crx 80.0 142 863 30277 4 79.5 34 119 3624 1

Diabetes 66.8 190 739 12399 2 71.5 12 25 305 0

German 70.9 247 1043 57120 13 75.7 77 289 8402 3

German-organisation 66.4 252 1381 90770 29 76.6 58 286 9684 3

Glass2 69.1 46 154 2894 0 78.2 5 8 43 0

Heart-disease 81.1 60 158 4985 1 83.3 16 52 725 0

Heart-Hungarian 72.4 48 196 5611 1 79.6 11 28 396 0

Hepatitis 61.5 25 47 2023 0 82.7 11 29 519 0

Horse-colic 75.0 91 223 12526 1 80.9 31 105 3902 1

Hypothyroid 94.9 138 1743 88221 164 95.5 17 44 1000 2

Ionosphere 92.3 48 94 7654 2 94.0 15 38 1588 1

Iris 94.0 13 25 122 0 96.0 4 5 20 0

Lymphography 80.0 26 56 2431 0 86.0 15 37 882 0

Monk1 100.0 22 61 759 0 100.0 22 61 652 0

Monk2 98.8 262 1504 13709 1 83.6 47 174 1572 0

Monk3 95.1 12 23 270 0 95.1 12 23 263 0

Mushroom 100.0 25 37 1556 5 100.0 28 83 2779 14

Promoter 74.3 14 26 3481 1 77.1 9 14 1146 0

Satimage 82.0 915 7993 798350 1943 82.8 196 666 42926 155

Segment 90.5 172 1198 51880 35 89.6 42 112 3136 3

Shuttle 91.7 63 289 4689 87 99.7 55 108 1927 60

Sick-euthyroid 89.4 195 3119 154065 291 97.2 22 66 1678 3

Sonar 68.6 37 67 9293 1 70.0 13 39 921 0

Soybean-large 93.9 76 542 46253 13 82.0 29 82 3953 1

Splice 91.8 239 1127 209203 340 92.7 135 474 66354 118

Tic-tac-toe 94.7 89 374 7970 1 97.8 29 101 1757 0

Tokyo 91.3 83 478 48551 27 89.4 19 49 3673 2

Vehicle 59.6 214 875 42013 7 68.1 31 125 4032 1

Vote 97.0 33 134 4999 0 95.6 10 22 464 0

Total 3271.0 11654 101787 3966753 33294 3343.9 1342 4361 204652 805

RULES-3 Plus. The total number of rules decreased by

88.5% from 11654 to 1342. Also, the total number of

conditions dropped by 95.7% from 101787 to 4361. The

reduction in the number of rules and number of conditions

for the Adult data set is particularly notable. The fewer and

more general rules created by the RULES-6 algorithm made

it much faster than RULES-3 Plus as indicated in Table 8.

The total number of evaluations fell by 94.8% from 3966753

to 204652 and this was accompanied by a total 97.6%

reduction in the execution time from 33294 seconds to 805

seconds. These results confirm that RULES-6 is more robust

to noise and more accurate than RULES-3 Plus.

4.2. Comparison with C5.0

C5.0 has a facility to generate a set of pruned production

rules from a decision tree. Table 3 presents the performance

results of RULES-6 and C5.0. In each case, the accuracy on

the test data and the complexity of the resulting rule sets are

given. The number of rules was taken as a measure of the

complexity of the rule set. A complexity of one was assigned

to the default rule.

It is clear from Table 3 that the accuracy obtained by

RULES-6 was in total higher than that of C5.0. In addition,

RULES-6 achieved the higher accuracy for 19 out of 40 data

sets, while C5.0 achieved better accuracy for 17 out of 40

data sets. Both algorithms achieved similar accuracies for the

remaining 4 data sets. It is also clear from the table that in

total RULES-6 created fewer rules than C5.0. However, with

RULES-6, the number of rules was lower for 10 data sets and

Table 3. Results for C5.0 and RULES-6

 C5.0 RULES-6

Data Set Name Accuracy (%) No. of Rules Accuracy (%) No. of Rules

Abalone 23.4 522 25.3 21

Adult 86.4 100 83.1 118

Anneal 93.3 11 93.3 16

Australian 87.4 20 85.2 29

Auto 62.3 23 62.3 14

Balance-Scale 81.3 19 64.6 11

Breast 95.0 9 92.3 10

Breast-cancer 75.8 17 72.6 26

Car 91.8 58 84.2 44

Chess 97.2 21 98.5 31

Cleve 77.2 13 82.2 17

Crx 84.5 23 79.5 34

Diabetes 70.7 14 71.5 12

German 72.7 15 75.7 77

German-organisation 71.8 17 76.6 58

Glass2 69.1 9 78.2 5

Heart 78.9 12 83.3 16

Heart-Hungarian 74.5 7 79.6 11

Hepatitis 76.9 5 82.7 11

Horse-colic 83.8 10 80.9 31

Hypothyroid 94.8 5 95.5 17

Ionosphere 89.7 6 94.0 15

Iris 92.0 5 96.0 4

Lymphography 76.0 7 86.0 15

Monk1 100.0 17 100.0 22

Monk2 65.7 1 83.6 47

Monk3 100.0 6 95.1 12

Mushroom 99.8 10 100.0 28

Promoter 74.3 7 77.1 9

Satimage 86.9 118 82.8 196

Segment 93.4 24 89.6 42

Shuttle 99.9 12 99.7 55

Sick-euthyroid 90.4 8 97.2 22

Sonar 74.3 11 70.0 13

Soybean-large 93.4 32 82.0 29

Splice 92.7 60 92.7 135

Tic-tac-toe 92.2 34 97.8 29

Tokyo 92.3 8 89.4 19

Vehicle 69.9 46 68.1 31

Vote 97.0 5 95.6 10

Total 3328.9 1347 3343.9 1342

higher in 30 data sets. The smaller number of rules produced

by C5.0 can be attributed to the rule set (decision tree)

pruning techniques employed. Research is ongoing to

develop pruning techniques for the RULES-6 algorithm.

Overall, RULES-6 is very competitive compared with C5.0.

5. CONCLUSIONS AND FUTURE WORK

RULES-6 is an improved version of the RULES-3 Plus

algorithm. The innovation in RULES-6 is that it has the

ability to handle noise in the data, which is achieved by

employing a search method that tolerates inconsistency in the

rule specialisation process. This makes the rule sets extracted

by RULES-6 both more accurate and substantially simpler

than those produced using RULES-3 Plus. RULES-6 also

employs appropriate search-space pruning rules to avoid

useless specialisations and to terminate search during rule

construction, which substantially increases the efficiency of

the learning process. Finally, RULES-6 adopts a very simple

criterion for evaluating the quality of rules and a robust

method for handling attributes with continuous values, which

further improves the performance of the algorithm. The new

features of RULES-6 make it not only more robust and

effective but also more efficient, thus enhancing the

usefulness of the algorithm for applications involving very

large data sets.

More work could be carried out to improve the

performance of RULES-6. Additional rule-space pruning

strategies could be considered to increase the speed of the

learning algorithm further. Post-pruning techniques could

also be used to reduce the error and complexity of the learned

2188

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on April 17,2010 at 11:36:27 UTC from IEEE Xplore. Restrictions apply.

rule set in a post-processing phase. Finally, a method for

discretisation of continuous-valued attributes during the

learning process could be considered. Incorporating

discretisation into the learning process has the advantage of

taking into account the bias inherent in the learning system as

well as the interactions between the different attributes.

6. ACKNOWLEDGEMENTS

An extended version of this paper will be published in

the Proceedings of the Institution of Mechanical Engineers,

Part C: Journal of Mechanical Engineering Science.

This work was carried out within the ERDF (Objective

One) projects “Innovation in Manufacturing”, “Innovative

Technologies for Effective Enterprises” and “Supporting

Innovative Product Engineering and Responsive

Manufacturing” (SUPERMAN: Phases 1 and 2) and within

the project “Innovative Production Machines and Systems”

(I*PROMS).

7. REFERENCES

[1] Braha, D. Data Mining for Design and Manufacturing:

Methods and Applications. Kluwer Academic

Publishers, Boston, 2001.

[2] Monostori, L. AI and machine learning techniques for

managing complexity, changes and uncertainties in

manufacturing. Proceedings of the 15th Triennial World

Congress, Barcelona, Spain, 2002, 119-130.

[3] Pham, D.T. and Afify, A.A. Machine learning

techniques and their applications in manufacturing.

Proceedings of the Institution of Mechanical Engineers,

Part B: Journal of Engineering Manufacture, 2005, 219

(5), 395-412.

[4] Pham, D.T. and Afify, A.A. Machine learning:

Techniques and trends. Proceedings of the 9th

International Workshop on Systems, Signals and Image

Processing (IWSSIP-02), Manchester, UK, 2002, 12-36.

[5] Pham, D.T. and Aksoy, M.S. An algorithm for

automatic rule induction. Artificial Intelligence in

Engineering, Elsevier Science Limited, 1993, 227-282.

[6] Pham, D.T. and Aksoy, M.S. RULES: A simple rule

extraction system. Expert Systems with Applications,

1995, 8 (1), 59-65.

 [7] Pham, D.T. and Aksoy, M.S. A new algorithm for

inductive learning. Journal of Systems Engineering,

1995, 5, 115-122.

[8] Pham, D.T. and Dimov, S.S. An efficient algorithm for

automatic knowledge acquisition. Pattern Recognition,

1997, 30 (7), 1137-1143.

[9] Lee, C. Generating classification rules from databases.

Proceedings of the 9th Conference on Application of

Artificial Intelligence in Engineering, PA, USA, 1994,

205-212.

[10] Pham, D.T. and Dimov, S.S. An algorithm for

incremental inductive learning. Proceedings of the

Institution of Mechanical Engineers, Part B: Journal of

Engineering Manufacture, 1997, 211, 239-249.

[11] Pham, D.T., Bigot, S. and Dimov, S.S. RULES-5: A

rule induction algorithm for problems involving

continuous attributes. Proceedings of the Institution of

Mechanical Engineers, Part C: Journal of Mechanical

Engineering Science, 2003, 217 (12), 1273-1286.

[12] Pham, D.T. and Dimov, S.S. An approach to concurrent

engineering. Proceedings of the Institution of

Mechanical Engineers Part B: Journal of Engineering

Manufacture, 1998, 212, 13-27.

[13] Jennings, N.R. Automated Visual Inspection of Engine

Valve Stem Seals. Internal Report, University of Wales

Cardiff, Cardiff, UK, 1996.

[14] Wong, A.K.C. and Chiu, D.K.Y. Synthesizing statistical

knowledge from incomplete mixed-mode data. IEEE

Transactions on Pattern Analysis and Machine

Intelligence, 1987, 9 (6), 796-805.

[15] Fürnkranz, J. and Flach, P.A. An analysis of rule

evaluation metrics. Proceedings of the 20th International

Conference on Machine Learning, Washington, DC,

USA, AAAI Press, 2003, 202-209.

[16] Pham, D.T. and Afify, A.A. SRI: A scalable rule

induction algorithm. Submitted to Proceedings of the

Institution of Mechanical Engineers, Part C: Journal of

Mechanical Engineering Science, 2004.

[17] Afify, A.A. Design and Analysis of Scalable Rule

Induction Systems. Ph.D. thesis, University of Wales

Cardiff, School of Engineering, Systems Engineering

Division, Cardiff, UK, 2004.

[18] Mitchell, T.M. Machine Learning. McGraw Hill, New

York, 1997.

[19] Liu, H., Hussain, F., Tan, C. L. and Dash, M.

Discretization: An enabling technique. Data Mining and

Knowledge Discovery, 2002, 6, 393-423.

[20] Holte, R.C. Very simple classification rules perform

well on most commonly used data sets. Machine

Learning, 1993, 11, 63-90.

[21] Fayyad, U.M. and Irani, K.B. Multi-interval

discretization of continuous-valued attributes for

classification. Proceedings of the 13th International

Joint Conference on Artificial Intelligence, Chambery,

France, 1993, 1022-1027.

[22] Cai, Z. Technical Aspects of Data Mining. Ph.D. thesis,

University of Wales Cardiff, Cardiff, UK, 2001.

[23] Pham, D.T. and Afify, A.A. On-line discretisation of

continuous-valued attributes in rule induction.

Proceedings of the Institution of Mechanical Engineers,

Part C: Journal of Mechanical Engineering Science,

2005 (In press).

[24] RuleQuest. Data Mining Tools C5.0. Pty Ltd, 30 Athena

Avenue, St Ives NSW 2075, Australia. Available from:

http://www.rulequest.com/see5-info.html.

[25] Blake, C.L. and Merz, C.J. UCI Repository of Machine

Learning Databases. University of California,

Department of Information and Computer Science,

Irvine, CA, 1998. Available from:

http://www.ics.uci.edu/~mlearn/MLRepository.html.

[26] Efron B. and Tibshirani R. An Introduction to the

Bootstrap. Chapman & Hall, USA, 1993.

2189

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on April 17,2010 at 11:36:27 UTC from IEEE Xplore. Restrictions apply.

