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Abstract – RULES-3 Plus is a member of the RULES family of 

simple inductive learning algorithms with successful 

engineering applications. However, it requires modification in 

order to be a practical tool for problems involving large data 

sets. In particular, efficient mechanisms for handling 

continuous attributes and noisy data are needed. This paper 

presents a new rule induction algorithm called RULES-6, 

derived from the RULES-3 Plus algorithm. The algorithm 

employs a fast and noise-tolerant search method for extracting 

IF-THEN rules from examples. It also uses simple and effective 

methods for rule evaluation and continuous attributes handling. 

A detailed empirical evaluation of the algorithm is reported in 

the paper. The results presented demonstrate the strong 

performance of the algorithm. 
 

1. INTRODUCTION 

 

Recently, there has been substantial attention devoted to 

the use of machine learning techniques as tools for decision 

support. These methods have been applied to a wide variety 

of problems in engineering [1-3] because of their ability to 

discover patterns from data. The integration of these methods 

with conventional decision support systems can provide a 

means for significantly improving the quality of decision 

making. A decision support system can employ machine 

learning techniques to derive knowledge directly from prior 

decision examples and to refine this knowledge continually. 

Inductive learning is perhaps the most widely used 

machine learning technique. Inductive learning algorithms 

are simple and fast. Another advantage is that they generate 

models that are easy to understand. Finally, inductive 

learning algorithms are more accurate compared with other 

machine learning techniques. 

Inductive learning techniques can be divided into two 

main categories, namely, decision tree induction and rule 

induction [4]. RULES (RULe Extraction System) is a family 

of inductive learning algorithms that follow the rule 

induction approach. The first three algorithms in the RULES 

family of algorithms (RULES-1, 2 and 3) were developed by 

Pham and Aksoy [5-7]. Later, the rule forming procedure of 

RULES-3 was improved by Pham and Dimov [8] and the 

new algorithm was called RULES-3 Plus. Compared to its 

immediate predecessor RULES-3, RULES-3 Plus has two 

new strong features. First, it employs a more efficient search 

procedure instead of the exhaustive search conducted in 

RULES-3. Second, it incorporates a metric called the H 

measure [9] for selecting and sorting candidate rules 

according to their generality and accuracy. The first 

incremental learning algorithm in the RULES family was 

RULES-4 [10]. RULES-4 allows the stored knowledge to be 

updated and refined rapidly when new examples are 

available. RULES-4 employs a Short Term Memory (STM) 

to store training examples when they become available. The 

STM has a user-specified size. When the STM is full, 

RULES-4 invokes RULES-3 Plus to generate rules. Pham et 

al. [11] described another algorithm also based on RULES-3 

Plus, called RULES-5, which can effectively handle 

problems involving continuous attributes. As with RULES-3 

Plus, RULES-5 employs the H measure for evaluating the 

quality of rules. 

RULES-3 Plus has been employed for the extraction of 

classification rules for solving different engineering 

problems, e.g., the recognition of design form features in 

CAD models for computer aided process planning [12], the 

mapping of manufacturing information to design features 

[12] and the classification of defects in automated visual 

inspection [13]. RULES-3 Plus still suffers from problems 

that limit its efficiency and widespread use. One of the main 

problems is that RULES-3 Plus learns a complete and 

consistent rule set that tries to cover all of the positive and 

none of the negative training instances1. In the case of noisy 

data, this leads to the generation of over-specific rules that 

overfit the training data. A second problem is that the H 

measure is computationally complex and does not lead to the 

highest level of predictive accuracy and generality. Finally, 

continuous-valued attributes are discretised using a simplistic 

equal-width approach [14] before data is passed to the 

learning system. This discretisation method is arbitrary and 

does not seek to discover any information inherent in the 

data, thereby hampering the ability of RULES-3 Plus to 

learn. 

This paper presents RULES-6, a new rule induction 

algorithm which addresses the weaknesses of the RULES-3 

Plus algorithm. In particular, it employs a new noise-tolerant 

search method which relaxes the consistency constraint and 

uses search-space pruning rules which significantly reduce 

the search time. It also adopts a simple metric for rule 

evaluation and a more robust method for handling continuous 

attributes. These enhancements enable the efficient 

generation of accurate and compact rule sets. 

The paper is organised as follows. Section 2 briefly 

reviews RULES-3 Plus. Section 3 gives a detailed 

description of the RULES-6 algorithm. Section 4 discusses 

the evaluation of the performance of RULES-6 using real  
_____________________________________________________________ 
1 
Instances of the target class (the class of the training instance under 

consideration) in the training set are called positive instances. Instances in 

the training set that do not belong to the target class are called negative 

instances. 
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data. Section 5 concludes the paper and provides suggestions 

for future work. 
 

2. RULES-3 PLUS  
 

The RULES-3 Plus algorithm works in an iterative 

fashion. In each iteration, it takes a seed example not covered 

by previously created rules to form a new rule. Having found 

a rule, RULES-3 Plus removes those examples that the rule 

covers from the training set, by marking them, and appends a 

rule at the end of its rule set. The algorithm stops when all 

examples in the training set are covered. This produces an 

unordered set of complete and consistent rules. It should be 

noted that the examples covered by previously formed rules 

are only marked in order to stop RULES-3 Plus from 

repeatedly finding the same rule. However, these examples 

are used to guide the specialisation process and to assess the 

accuracy and generality of each newly formed rule.  

To form a rule, RULES-3 Plus performs a general-to-

specific beam search for the most general and consistent rule. 

It starts with the most general rule and specialises it in steps 

considering only conditions extractable from the selected 

seed example. The aim of specialisation is to construct a rule 

that covers the seed example and as many positive examples 

as possible while excluding all negative examples. The result 

is a rule that is consistent and as general as possible. 

A pseudo-code description of RULES-3 Plus and a simple 

example clearly illustrating its operation can be found in [8]. 

 

3. RULES-6  

 

A pseudo-code description of RULES-6 is given in Fig. 1. 

Like its predecessors in the RULES family, RULES-6 

extracts rules by processing one example at a time. The 

algorithm first selects a seed example, the first example in 

the training set not covered by previously created rules, and 

then calls the Induce-One-Rule procedure to extract a rule 

that covers that example. Following this, all covered 

examples are marked, the learned rule is added to the rule set 

and the process repeated until all examples in the training set 

have been covered. The Induce-One-Rule procedure is 

outlined in Fig. 2. 

The Induce-One-Rule procedure searches for rules by 

carrying out a pruned general-to-specific search. The search  

 
Procedure Induce_Rules (TrainingSet, BeamWidth) 

RuleSet = ∅ 

While all the examples in the TrainingSet are not covered Do 

   Take a seed example s that has not yet been covered. 

   Rule = Induce_One_Rule (s, TrainingSet, BeamWidth) 

   Mark the examples covered by Rule as covered. 

   RuleSet = RuleSet ∪ {Rule} 

End While 

Return RuleSet 

End     

 

Fig. 1. A pseudo-code description of RULES-6 

Procedure Induce_One_Rule (s: Seed example, Instances: Training set, w: Beam width) 

PartialRules = NewPartialRules = ∅ 

BestRule = most general rule (the rule with no conditions) 

PartialRules = PartialRules ∪ {BestRule}                                                               (step 1)         

While PartialRules ≠ ∅ Do                                                                                     (step 2)           

   For each Rule ∈ PartialRules Do 

   {First, generate all specialisations of the current rule, save useful ones and determine 

     all the InvalidValues according to one of the conditional tests in steps (5), (6) or (7)}      

      For each nominal attribute Ai that does not appear in Rule Do 

         If vis ∈ Rule.ValidValues, where vis is the value of Ai in s Then  

            NewRule = Rule ∧ [Ai = vis]                                                                        (step 3) 

            If NewRule.Score > BestRule.Score Then                                                 (step 4) 

               BestRule = NewRule 

            If Covered_Positives (NewRule) ≤ MinPositives OR                                (step 5) 

               Covered_Negatives (Rule) – Covered_Negatives (NewRule)  

               ≤ MinNegatives OR                                                                                 (step 6) 

               Consistency (NewRule) = 100% Then                                                    (step 7) 

               Parent (NewRule).InvalidValues = Parent (NewRule).InvalidValues + {vis}  

                                                                                                                                 (step 8) 

            Else 

               NewPartialRules = NewPartialRules ∪ {NewRule}                                (step 9) 

      End For 

   End For 

   Empty PartialRules 

   For each Rule ∈ NewPartialRules Do 

   {Next, delete partial rules that cannot lead to an improved rules and determine  

     all the InvalidValues according to the conditional test in step (10)}  

       If Rule.OptimisticScore ≤ BestRule.Score Then                                         (step 10) 

          NewPartialRules = NewPartialRules – {Rule}                                         (step 11) 

          Parent (Rule).InvalidValues = Parent (Rule).InvalidValues 

         + Last_Value_Added (Rule)                                                                       (step 12)                                                                                                                   

   End For    

   For each Rule ∈ NewPartialRules Do 

   {Finally, remove from the ValidValues set of each rule all the values that  

     will lead to unnecessary construction of useless specialisations at subsequent 

     specialisation steps}  

        Rule.ValidValues = Rule.ValidValues – Parent (Rule).InvalidValues        (step 13) 

   End For 

   If w > 1 Then 

      Remove from NewPartialRules all duplicate rules   

   Select w best rules from NewPartialRules and insert into PartialRules            (step 14) 

   Remove all rules from NewPartialRules 

End While 

Return BestRule 

End 

 

Fig. 2. A pseudo-code description of the Induce_One_Rule procedure 
PartialRules: a list of rules to be specialised and NewPartialRules: a new list 

of rules to be used for further specialisations. 

 

aims to generate rules which cover as many examples from 

the target class and as few examples from the other classes as 

possible, while ensuring that the seed example remains 

covered. As a consequence, simpler rules that are not 

consistent, but are more accurate for unseen data, can be 

learned. This contrasts with the rule forming procedure of 
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RULES-3 Plus, which restricts its search to only those rules 

that are completely consistent with the training data, leading 

to overfitting if the data is noisy. 

A beam search is employed to find the best rule. This is 

done by using two rule lists named PartialRules and 

NewPartialRules. PartialRules, which is the same size as the 

beam width w, stores the w best partial rules during the 

specialisation process. Only the rules in this list are 

considered for further specialisation. NewPartialRules is 

used to save valid partial rules obtained by specialising the 

rules in PartialRules. The learning of single rules starts with 

the most general rule whose body is empty (step (1) in Figure 

2) and specialises it by incrementally adding conditions to its 

body (step (3) in Figure 2). Possible conditions are attribute-

value pairs of the selected seed example. In the case of 

nominal attributes, conditions of the form [Ai = vis] are 

created, where vis is the value of Ai in the selected seed 

example s. In the case of continuous attributes, an off-line 

discretisation method is used to split the range of each 

attribute into a number of smaller intervals that are then 

regarded as nominal values. For each condition, a new rule is 

formed by appending a condition to the current rule that 

differs from the conditions already included in the rule. The 

score of each new rule is computed and the rule with the best 

accuracy is remembered (step (4) in Figure 2). The new rule 

is then inserted into the NewPartialRules list (step (9) in 

Figure 2) unless one of the conditional tests (step (5), (6) or 

(7) in Figure 2) prevents this because it is deemed that no 

improved rule will be obtained from the new rule. In the 

latter case, the new rule is regarded as ineffective and 

additional specialisations will not improve the values for the 

quality measure. If the new rule is discarded, the last attribute 

value used to form it is added to the set of attribute values 

(InvalidValues) of its immediate parent, the current rule, so 

as to ensure that it will be removed from the other 

specialisations of the same parent rule (step (8) in Figure 2). 

Thus, the NewPartialRules list only contains useful rules that 

can be employed for further specialisation. This process is 

repeated until there are no remaining rules to be specialised 

in the PartialRules list. 

Another test that allows sections of the search space to be 

pruned away is now applied to each rule in the 

NewPartialRules list after the best rule overall in the current 

specialisation step is identified. Rules that satisfy the 

conditional test at step (10) are removed from the 

NewPartialRules list (step (11) in Figure 2), again, because 

they will not lead to improved rules. The last attribute values 

used to generate these rules are added to the InvalidValues of 

their parents (step (12) in Figure 2). All InvalidValues are 

then deleted from the corresponding set of ValidValues for 

each rule in the NewPartialRules list (step (13) in Figure 2). 

Such values cannot lead to a viable specialisation from any 

point in the search space that can be reached via identical sets 

of specialisations and thus excluding them will prevent the 

unnecessary construction of ineffective specialisations at 

subsequent specialisation steps. 

After eliminating all duplicate rules, the best w rules from 

the NewPartialRules list are chosen to replace all rules in the 

PartialRules list (step (14) in Figure 2). The comparison 

between rules is based on the quality measure defined in the 

next section. If two rules have an equal quality measure, the 

simpler rule, in other words, the one with fewer conditions, is 

selected. If both the quality measure and the number of 

conditions of the rules are the same, the more general rule 

that covers more instances is chosen. 

The specialisation process is then repeated until the 

PartialRules list becomes empty (step (2) in Figure 2) due to 

the tests at steps (5), (6), (7) and (10). It should be noted that 

the PartialRules and NewPartialRules lists are reused after 

each iteration. During specialisation, the best rule obtained is 

stored and returned at the end of the procedure. In RULES-3 

Plus, the specialisation process stops once a consistent rule 

that covers the seed example has been formed and this rule is 

taken as the best one. It should be noted that consistent rules 

having a very low coverage might be discovered in the early 

stages of the rule generation process and stopping the search 

process once a consistent rule has been found might lead to 

the generation of non-optimal rules. On the other hand, if the 

search process continues, more general rules might be 

created. 

The following sections discuss the key ideas underlying 

RULES-6 in more detail. 

 

3.1. Rule Quality Metric 

 

Given that the rule induction process could be conceived 

as a search process, a metric is needed to estimate the quality 

of rules found in the search space and to direct the search 

towards the best rule. The rule quality measure is a key 

element in rule induction. In real-world applications, a 

typical objective of a learning system is to find rules that 

optimise a rule quality criterion that takes both training 

accuracy and rule coverage into account so that the rules 

learned are both accurate and reliable.  

A quality measure must be estimated from the available 

data. All common measures are based on the number of 

positive and negative instances covered by a rule. Several 

different metrics are used in existing algorithms. These 

include purity, information content, entropy, the metric 

applied in RIPPER, accuracy, Laplace and the m-

probability-estimate [15, 16]. 

The performance of the H measure and the seven quality 

measures mentioned above when used with the RULES-6 

algorithm was evaluated empirically [17]. The evaluation 

was carried out on a large number of data sets and the results 

showed that the m-probability-estimate outperformed the 

other measures. Therefore, RULES-6 employs the m-

probability-estimate to select the best rule (step (4) in Figure 

2) and to decide on the best specialisations to retain (step 

(14) in Figure 2) after each specialisation step. 

 

3.2. Search-space Pruning Rules 

 

The size of the search space for inducing one rule grows 

exponentially with both the number of attributes used to 

describe each instance and the number of values allowed for 
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each attribute. Moreover, the iterative nature of rule 

induction algorithms suggests that the computational 

requirements would be high on large data sets even with the 

reduced search spaces considered by algorithms such as 

RULES-6. Therefore, an efficient search method is essential 

in order for a learning algorithm to handle large data sets. 

The search space can be efficiently organised by taking 

advantage of a naturally occurring structure over the 

hypothesis space that exists for any classification learning 

problem − a general-to-specific partial ordering of 

hypotheses [18]. This structure implies that all specialisations 

of a rule cover a monotonically decreasing number of 

positive and negative instances. This organisation property 

provides a powerful source of constraints on the search 

performed by the RULES-6 algorithm. RULES-6 constrains 

the search space by employing the four pruning rules listed in 

Table 1. These pruning rules remove portions of the search 

space that do not maximise the quality measure, thus 

significantly speeding up the search process. Since the rules 

removed by the pruning rules are relatively poor rules, 

pruning rules improve performance without affecting the 

quality of the learned rules. The effectiveness of these 

pruning rules depends upon how efficiently they can be 

implemented and upon the regularity of the data to which the 

search is applied. These pruning rules and how their effect is 

maximised are detailed in [17]. 

 

3.3. Discretisation Method 

 

Since most real-world applications of classification 

learning involve continuous-valued attributes, properly 

handling these attributes is important. Discretisation of the 

data is one possibility. The usual approach to discretisation 

of continuous-valued attributes is to perform this 

discretisation off-line, prior to the learning process [19]. 

First, all continuous attributes in the data are discretised to 

obtain a discrete data set. Then learning algorithms are 

applied to this discretised data set. 

Several off-line discretisation methods have been developed. 

Four different state-of-the-art off-line discretisation 

procedures are the equal-width method proposed by Wong 

and Chiu [14], the 1R Discretizer proposed by Holte [20], the 

entropy-based discretisation method by Fayyad and Irani 

[21] and the “optimal” discretisation method of Cai [22]. 

These methods are representative of the existing 

discretisation techniques and widely used in other 

comparative studies. 

 
Table 1. Search-space pruning rules employed by RULES-6 

r′ is any specialisation of rule r and Prune (r) indicates that the children of r 

should not be searched. 

 

1.   If Covered_Positives (r) ≤ MinPositives Then Prune (r) 

2.   If Covered_Negatives (r) – Covered_Negatives (r′ ) ≤ MinNegatives  

      Then Prune (r′) 

3.   If Consistency (r) = 100% Then Prune (r) 

4.   If Optimistic_Score (r) ≤ Score (BestRule) Then Prune (r) 

The experimental results of many studies [22, 23] have 

indicated that the choice of a discretisation method depends 

on both the data to be discretised and the learning algorithm. 

The performance of the four discretisation methods 

mentioned above when used with the RULES-6 algorithm 

was evaluated empirically [17]. The evaluation was carried 

out on a large number of data sets and the results showed that 

the performance of the RULES-6 algorithm significantly 

improved when continuous-valued attributes were discretised 

using the entropy method. As a result, this discretisation 

method is adopted for use with RULES-6. 

 

4. EMPIRICAL EVALUATION OF RULES-6 

 

This section presents an empirical evaluation to assess the 

performance of the RULES-6 algorithm. RULES-6 was 

compared to its immediate predecessor RULES-3 Plus and to 

the well-known inductive learner C5.0 [24] which is 

probably the best performing induction algorithm 

commercially available. 

Three criteria were used to evaluate the performance of the 

tested algorithms, namely, classification accuracy, rule set 

complexity and execution time. All execution times were 

obtained on a Pentium IV computer with a 2.4 GHz 

processor, 512 MB of memory and the Windows NT 4.0 

operating system. 

In order to draw reliable conclusions about the behaviour 

of the learning algorithms, 40 data sets were considered. All 

data sets were obtained from the University of California at 

Irvine (UCI) repository of machine learning databases [25]. 

In the experiments conducted in this study, the hold-out 

approach was used to partition the data into training and test 

data [26]. For large data sets with more than 1000 instances, 

each set was randomly divided once into a training set with 

two-thirds of the data and a test set with the remaining one-

third. For small data sets with fewer than 1000 instances, the 

above procedure was repeated ten times, and the results were 

averaged. 

RULES-6 and C5.0 each has a number of parameters 

whose values determine the quality of their induced rule sets. 

RULES-6 was tested using values of 4, 2 and 1 for beam 

width, MinPositives and MinNegatives respectively. C5.0 

was run with the default settings. 

 

4.1. Comparison with RULES-3 Plus 

 

This section describes an empirical study to compare 

RULES-6 against RULES-3 Plus. Table 2 lists the results 

obtained. As can be seen from the table, the performance 

obtained by RULES-6 was impressive. There were 

considerable improvements in classification accuracy for 25 

data sets. For data sets Abalone, German-organisation, 

Glass2, Heart-Hungarian, Hepatitis, Horse-colic, 

Lymphography, Shuttle, Sick-euthyroid and Vehicle the 

improvements were more obvious. The accuracy degraded 

for 11 data sets. For the remaining 4 data sets, equivalent 

results were obtained. It can also be seen from the table that 

RULES-6 produced much more compact rule sets than  
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Table 2.  Results for RULES-3 Plus and RULES-6 

                             RULES-3 Plus                               RULES-6 

Data Set Name

Acc.    

(%)

#  

Rules

# 

Conditions

# Rules 

explored

CPU   

Time (s)

Acc.    

(%)

# 

Rules

# 

Conditions

# Rules 

explored

CPU   

Time (s)

Abalone 18.5 313 1947 26853 28 25.3 21 49 1012 1

Adult 77.5 6686 70144 1986685 29938 83.1 118 395 16193 415

Anneal 99.7 37 119 10119 3 93.3 16 45 1912 1

Australian 83.9 148 807 26301 4 85.2 29 115 2892 0

Auto 62.3 48 94 5534 0 62.3 14 44 1582 0

Balance-scale 77.0 213 691 3341 1 64.6 11 29 155 0

Breast 95.7 40 94 2023 1 92.3 10 20 257 0

Breast-cancer 68.4 86 284 5674 1 72.6 26 74 1311 0

Car 88.4 165 801 7826 2 84.2 44 137 1374 1

Chess 99.0 108 2164 176109 347 98.5 31 141 8728 19

Cleve 77.7 33 73 2214 0 82.2 17 48 913 0

Crx 80.0 142 863 30277 4 79.5 34 119 3624 1

Diabetes 66.8 190 739 12399 2 71.5 12 25 305 0

German 70.9 247 1043 57120 13 75.7 77 289 8402 3

German-organisation 66.4 252 1381 90770 29 76.6 58 286 9684 3

Glass2 69.1 46 154 2894 0 78.2 5 8 43 0

Heart-disease 81.1 60 158 4985 1 83.3 16 52 725 0

Heart-Hungarian 72.4 48 196 5611 1 79.6 11 28 396 0

Hepatitis 61.5 25 47 2023 0 82.7 11 29 519 0

Horse-colic 75.0 91 223 12526 1 80.9 31 105 3902 1

Hypothyroid 94.9 138 1743 88221 164 95.5 17 44 1000 2

Ionosphere 92.3 48 94 7654 2 94.0 15 38 1588 1

Iris 94.0 13 25 122 0 96.0 4 5 20 0

Lymphography 80.0 26 56 2431 0 86.0 15 37 882 0

Monk1 100.0 22 61 759 0 100.0 22 61 652 0

Monk2 98.8 262 1504 13709 1 83.6 47 174 1572 0

Monk3 95.1 12 23 270 0 95.1 12 23 263 0

Mushroom 100.0 25 37 1556 5 100.0 28 83 2779 14

Promoter 74.3 14 26 3481 1 77.1 9 14 1146 0

Satimage 82.0 915 7993 798350 1943 82.8 196 666 42926 155

Segment 90.5 172 1198 51880 35 89.6 42 112 3136 3

Shuttle 91.7 63 289 4689 87 99.7 55 108 1927 60

Sick-euthyroid 89.4 195 3119 154065 291 97.2 22 66 1678 3

Sonar 68.6 37 67 9293 1 70.0 13 39 921 0

Soybean-large 93.9 76 542 46253 13 82.0 29 82 3953 1

Splice 91.8 239 1127 209203 340 92.7 135 474 66354 118

Tic-tac-toe 94.7 89 374 7970 1 97.8 29 101 1757 0

Tokyo 91.3 83 478 48551 27 89.4 19 49 3673 2

Vehicle 59.6 214 875 42013 7 68.1 31 125 4032 1

Vote 97.0 33 134 4999 0 95.6 10 22 464 0

Total 3271.0 11654 101787 3966753 33294 3343.9 1342 4361 204652 805

 

RULES-3 Plus. The total number of rules decreased by 

88.5% from 11654 to 1342. Also, the total number of 

conditions dropped by 95.7% from 101787 to 4361. The 

reduction in the number of rules and number of conditions 

for the Adult data set is particularly notable. The fewer and 

more general rules created by the RULES-6 algorithm made 

it much faster than RULES-3 Plus as indicated in Table 8. 

The total number of evaluations fell by 94.8% from 3966753 

to 204652 and this was accompanied by a total 97.6% 

reduction in the execution time from 33294 seconds to 805 

seconds. These results confirm that RULES-6 is more robust 

to noise and more accurate than RULES-3 Plus. 

 

4.2. Comparison with C5.0 

 

C5.0 has a facility to generate a set of pruned production 

rules from a decision tree. Table 3 presents the performance 

results of RULES-6 and C5.0. In each case, the accuracy on 

the test data and the complexity of the resulting rule sets are 

given. The number of rules was taken as a measure of the 

complexity of the rule set. A complexity of one was assigned 

to the default rule. 

It is clear from Table 3 that the accuracy obtained by 

RULES-6 was in total higher than that of C5.0. In addition, 

RULES-6 achieved the higher accuracy for 19 out of 40 data 

sets, while C5.0 achieved better accuracy for 17 out of 40 

data sets. Both algorithms achieved similar accuracies for the 

remaining 4 data sets. It is also clear from the table that in 

total RULES-6 created fewer rules than C5.0. However, with 

RULES-6, the number of rules was lower for 10 data sets and 
 

Table 3. Results for C5.0 and RULES-6 

                     C5.0                   RULES-6

Data Set Name Accuracy (%) No. of Rules Accuracy (%) No. of Rules

Abalone 23.4 522 25.3 21

Adult 86.4 100 83.1 118

Anneal 93.3 11 93.3 16

Australian 87.4 20 85.2 29

Auto 62.3 23 62.3 14

Balance-Scale 81.3 19 64.6 11

Breast 95.0 9 92.3 10

Breast-cancer 75.8 17 72.6 26

Car 91.8 58 84.2 44

Chess 97.2 21 98.5 31

Cleve 77.2 13 82.2 17

Crx 84.5 23 79.5 34

Diabetes 70.7 14 71.5 12

German 72.7 15 75.7 77

German-organisation 71.8 17 76.6 58

Glass2 69.1 9 78.2 5

Heart 78.9 12 83.3 16

Heart-Hungarian 74.5 7 79.6 11

Hepatitis 76.9 5 82.7 11

Horse-colic 83.8 10 80.9 31

Hypothyroid 94.8 5 95.5 17

Ionosphere 89.7 6 94.0 15

Iris 92.0 5 96.0 4

Lymphography 76.0 7 86.0 15

Monk1 100.0 17 100.0 22

Monk2 65.7 1 83.6 47

Monk3 100.0 6 95.1 12

Mushroom 99.8 10 100.0 28

Promoter 74.3 7 77.1 9

Satimage 86.9 118 82.8 196

Segment 93.4 24 89.6 42

Shuttle 99.9 12 99.7 55

Sick-euthyroid 90.4 8 97.2 22

Sonar 74.3 11 70.0 13

Soybean-large 93.4 32 82.0 29

Splice 92.7 60 92.7 135

Tic-tac-toe 92.2 34 97.8 29

Tokyo 92.3 8 89.4 19

Vehicle 69.9 46 68.1 31

Vote 97.0 5 95.6 10

Total 3328.9 1347 3343.9 1342  
 

higher in 30 data sets. The smaller number of rules produced 

by C5.0 can be attributed to the rule set (decision tree) 

pruning techniques employed. Research is ongoing to 

develop pruning techniques for the RULES-6 algorithm. 

Overall, RULES-6 is very competitive compared with C5.0. 

 

5. CONCLUSIONS AND FUTURE WORK 

 

RULES-6 is an improved version of the RULES-3 Plus 

algorithm. The innovation in RULES-6 is that it has the 

ability to handle noise in the data, which is achieved by 

employing a search method that tolerates inconsistency in the 

rule specialisation process. This makes the rule sets extracted 

by RULES-6 both more accurate and substantially simpler 

than those produced using RULES-3 Plus. RULES-6 also 

employs appropriate search-space pruning rules to avoid 

useless specialisations and to terminate search during rule 

construction, which substantially increases the efficiency of 

the learning process. Finally, RULES-6 adopts a very simple 

criterion for evaluating the quality of rules and a robust 

method for handling attributes with continuous values, which 

further improves the performance of the algorithm. The new 

features of RULES-6 make it not only more robust and 

effective but also more efficient, thus enhancing the 

usefulness of the algorithm for applications involving very 

large data sets. 

More work could be carried out to improve the 

performance of RULES-6. Additional rule-space pruning 

strategies could be considered to increase the speed of the 

learning algorithm further. Post-pruning techniques could 

also be used to reduce the error and complexity of the learned 
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rule set in a post-processing phase. Finally, a method for 

discretisation of continuous-valued attributes during the 

learning process could be considered. Incorporating 

discretisation into the learning process has the advantage of 

taking into account the bias inherent in the learning system as 

well as the interactions between the different attributes. 
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