Rule Discovery
with Particle Swarm Optimization

Yu Liu', Zheng Qin'2, Zhewen Shi', and Junying Chen'

! Department of Computer Science, Xian JiaoTong University,
Xian 710049, P.R. China
liuyu@mailst.xjtu.edu.cn
http://www.psodream.net
2 School of Software, Tsinghua University, Beijing 100084, P.R. China

Abstract. This paper proposes Particle Swarm Optimization (PSO) al-
gorithm to discover classification rules. The potential IF-THEN rules are
encoded into real-valued particles that contain all types of attributes in
data sets. Rule discovery task is formulized into an optimization problem
with the objective to get the high accuracy, generalization performance,
and comprehensibility, and then PSO algorithm is employed to resolve
it. The advantage of the proposed approach is that it can be applied
on both categorical data and continuous data. The experiments are con-
ducted on two benchmark data sets: Zoo data set, in which all attributes
are categorical, and Wine data set, in which all attributes except for the
classification attribute are continuous. The results show that there is on
average the small number of conditions per rule and a few rules per rule
set, and also show that the rules have good performance of predictive
accuracy and generalization ability.

1 Introduction

There has been a great interest in the area of data mining, in which the general
goal is to discover knowledge that is not only correct, but also comprehensible
and interesting for the user [1]. Hence, the user can understand the results pro-
duced by the system and combine them with their own knowledge to make a
well-informed decision, rather than blindly trusting on results produced by sys-
tem. Classification is an important topic in data mining research. The knowledge
in classification is often expressed as a set of rules. IF-THEN rules are high-level
symbolic knowledge representations and have the advantage of being intuitively
comprehensible for users. Evolutionary approaches like genetic algorithms (GA)
and genetic programming (GP) have been applied to discover classification rules.
Examples of GA for rule discovery can be found in [2-3], and examples of GP for
rule discovery can be found in [4-6]. Recently, Particle Swarm Optimizer (PSO)
has attracted researchers in optimization field. But using Swarm Intelligence in
data mining is a fairly new research area and needs much more work to do. So
using PSO for rule discovery is a quite new and challenging research area. Tiago
Sousa et al. in [7-8] proposed a binary-encoding way to discover classification

C.-H. Chi and K.-Y. Lam (Eds.): AWCC 2004, LNCS 3309, pp. 291-296, 2004.
© Springer-Verlag Berlin Heidelberg 2004

292 Yu Liu et al.

rules with PSO for categorical data. However, our PSO algorithm of rule discov-
ery adopts a real-encoding way, which can be applied to both categorical and
continuous attributes, as demonstrated in the experiment on Zoo (categorical
attributes) and Wine (continuous attributes) data sets.

2 Rule Discovery with PSO

Particle Swarm Optimization (PSO), a new population-based evolutionary com-
putation technique inspired by social behavior simulation, was first introduced
in 1995 by Eberhart and Kennedy [9]. PSO is an efficient and effective global
optimization algorithm, which has been widely applied to nonlinear function op-
timization, neural network training, and pattern recognition. In PSO, a swarm
consists of N particles moving around in a D-dimensional search space.The
position of the i-th particle at the t-th iteration is represented by Xi(t)
(41, %42, ..., x;p) that are used to evaluate the quality of the particle. During
the search process the particle successively adjusts its position toward the global
optimum according to the two factors: the best position encountered by itself
(pbest) denoted as P; = (pi1,Pi2, - - -, Pin) and the best position encountered by
the whole swarm (gbest) denoted as P; = (pg1,Pg2; - - -, Pgp)- Its velocity at the
t-th iteration is represented by Vi(t) = (vi1,Vi2,--.,vip). The position at next
iteration is calculated according to the following equations:

I/;(t) =)\(w*Vi(t*l)—i—cl *rand()*(P,»—Xi(t*l))—l—cz*rand()*(Pg—Xl-(t*l))) (1)

x® Z x4y (2)

where ¢; and cy are two positive constants, called cognitive learning rate and
social learning rate respectively; rand() is a random function in the range [0, 1] ;
w is inertia factor; and A is constriction factor. In addition, the velocities of the
particles are confined within [Vmin, Vmaz]P. If an element of velocities exceeds
the threshold Vmin or Vmax, it is set equal to the corresponding threshold.

In this paper, our PSO algorithm for rule discovery follows Michigan ap-
proach where an individual encodes a single prediction rule. Each run only one
rule can be discovered. In order to get a set of rules, the algorithm must be run
several times. All possible values of classification attributes are assigned one by
one to PSO algorithm. Each run of PSO algorithm has a fixed value of classifi-
cation attribute. So to get a rule set, the algorithm must be run at least K times
if we want to predict K different classes.

2.1 Rule Presentation

The particle is concatenation of real-valued elements in the range [0, 1], which is
divided into three parts as shown in Figure 1. If there are m decision attributes,
each part has m elements respectively. So the size of a particle is 3m. In order to
form a rule according to a particle, three parts are translated into the original

Rule Discovery with Particle Swarm Optimization 293

‘ Attribute-existence-array ‘ Operator-array ‘ Attribute-array

Fig. 1. Structure of a particle

information: (1) presence of attributes, (2) operators between attributes and
their values, and (3) original values of attributes based on their types in the
data set. If the i-th elements in Attribute-existence-array is greater than 0,
then the i-th attribute is present in rule antecedent, else the ¢-th attribute is
absent. Attributes in data mining tasks are often of several types: categorical
or continuous types. So PSO algorithm for rule discovery must provide a way
to encode these two types of attributes. For Operator-array, first the types
of attributes must be considered. When the attribute is continuous, if the i-th
elements in Operator-array is great than 0, then the operator is ‘>’ else it is
‘<’; when the attribute is categorical (integer or nominal), if the i-th element is
greater than 0, then the operator is ‘=’ else it is ‘! =’. While the translation of
Attribute-array is relatively complex because the different types of the attributes
must be considered.

— For integer type, the translation is as follows:
Vorgli] = ceil(v; * (Vimax — Vymin) + Vimin) (3)
— For real type, the translation is as follows:
Vorgli] = vi * (Vimax — Vimin) + Vymin (4)
— For nominal type, the translation is as follows:
Vorgli] = Val Arr;(ceil (v; * Count;)) (5)

Where V,,,4[i] means the value translated from the particle for the i-th attribute,
v; is the i-th value in the particle which is a real value. In Equations (3) and
(4), the type of the i-th attribute is of integer or real, here V;maz means the
maximum of the i-th attribute, and V;min the minimum. In Equation (5), the
type of the i-th attribute is nominal, here ValArr; means the array that stored
every different nominal values of the i-th attribute and Count; means the total
number of different values of the i-th attribute. ceil() is a function that returns
the value round towards plus infinity.

2.2 Rule Evaluation (Fitness Function Design)

Let a rule be of such form: IF A THEN C

Where A is a rule antecedent, which is a conjunction of conditions, and C
is a rule consequent which is the prediction class. The accuracy of classification
rule is defined in Equation (6) to measure the degree of confidence for rules. The
coverage of a rule is defined in Equation (7) to interpret the proportion of the
examples that satisfy the rule in all examples that are of C class.

Accuracy = TP/(TP + FP) (6)

294 Yu Liu et al.

Coverage =TP/(TP+ FN) (7)

TP = Number of examples satisfying A and C

FP = Number of examples satisfying A but not C.

F'N = Number of examples not satisfying A but satisfying C.
TN = Number of examples not satisfying A nor C.

The comprehensibility of a rule set is often presented by less number of condi-
tions in the rule antecedent and less rules in the rule set. In the process of rule
discovery, we use Equation (8) to assure the shortness of a rule at the same time.

Succinctness = 1 — (countAnt — 1) /attributeCount (8)

Where countAnt means the number of the conditions in the rule antecedent,
attributeCount means the number of decision attributes in the data set. To
present the three criterions, as a result, we define our fitness function as follows:

Fitness = wy x(AccuracyxCoverage)+wqxSuccinctness+ws*Interesting (9)

Where wy, we, and w3 are constants used to balance the weights of the three
criterions in the rule discovery process. Since Interesting is highly dependent
on users, in this paper we did not consider this criterion. In our experiment,
w1 ,we,and ws were set to 0.8, 0.2, and 0, respectively.

3 Experiments

3.1 Data Sets and Experiments Setup

The data sets, Zoo and Wine, were obtained from UCI repository of Machine
Learning databases [10]. The Zoo data set with 18 categorical attributes was
divided into 7 classes. The Wine data set with 13 continuous attributes was
divided into 3 classes. To evaluate both the accuracy and generalization of the
discovered rules, two different kinds of experiments were conducted on each data
set. In the first kind of experiment, the data set was divided into two parts: 2/3
as training set and 1/3 as test set. The division was randomly generated. The
experiment was run 5 times, each time on a different division. Then the average
results were generated based on the 5 independent runs. The purpose of the first
kind of experiment was to evaluate the generalization ability, measured as the
classification accuracy on test set. In the second kind of experiment, the full data
set was used to discover the final rules reported to users. The purpose of this
experiment was to evaluate the classification accuracy and comprehensibility by
the number of rules in the data set, and the average number of rule conditions
per rule. Here, Linearly Decreasing Weight PSO (LDW-PSO) [11] was employed,
where a weight w decreased linearly between 0.9 and 0.4; A = 1; Vmin =
Xmin = 0; Vmax = Xmax = 1. The learning rates were cl = ¢2 = 2.

Rule Discovery with Particle Swarm Optimization 295

3.2 Results and Discussion

The results in the first kind of experiment were as follows. The accuracy values
averaged over 5 runs on training set for 7 classes were 1, 1, 1, 1, 1, 1, 0.9131,
while corresponding accuracy values on test set were 0.9548, 1, 0.6000, 0.9667,
0.7000, 0.7150, 0.8767. For Wine, the accuracy values on training set for 3 classes
were 0.9705, 0.9448, 0.9707, while corresponding accuracy values on test set were
0.9378, 0.6559, 1. From the results, it seems that the algorithm has good perfor-
mance of predictive accuracy and generalization ability not only on categorical
attributes of Zoo data set but also continuous attributes of Wine data set. In
the second kind of experiment, the final rules discovered from full Zoo and Wine
data sets were listed in Tables 1 and 2 respectively. The best rules for each class,
the number of examples covered by rule antecedent | A |, and the number of
correctly predicted examples | A&C' | were showed in the tables. The results in-
dicate that not only the predictive accuracy is pretty good, but also the number
of rule conditions is relatively short and there are a small number of rules in the
rule set, so the rules are competitively comprehensible.

Table 1. The results of learning from the full Zoo data set (rules with less coverage
are removed from the table)

Class | Rule | A&C | | | A

1 if milk = 1 then type = 1 41 41

2 if feathers =1 toothed = 0 then type = 2 20 20

3 if hair =0 feathers = 0 aquatic =0 4 4
backbone =1 legs! = 8 then type = 3

4 if milk =0 fins = 1 then type = 4 13 13

5 if milk = 0 aquatic = 1 breathes = 1 4 4
legs =2 catsize =0 then type =5

6 if aquatic = 0 legs = 6 then type = 6 8 8

7 if airborne = 0 backbone = 0 then type =7 10 12

Table 2. The results of learning from the full Wine data set (rules with less coverage
are removed from the table)

Class | Rule | A&C | | | A
1 If A7 > 2.29 A13 > 723 then Class =1 57 58
2 If A1 < 12.81 A12 > 1.81 then Class = 2 60 62
2 If A2 < 2.35 A11 > 0.81 A13 < 758 8 8
then Class = 2
3 If A7 < 1.51 A10 > 3.97 then Class = 3 46 47

4 Conclusions

We proposed a real-encoding way for rule discovery using PSO algorithm. The
experiments show that this encoding way is effective and efficient. The rules dis-
covered in the two datasets are generally with high accuracy, generalization and

296 Yu Liu et al.

comprehensibility. Furthermore, the real-encoding way is competitive in discov-
ering rules not only from categorical data, but also from continuous data. The
results on the Wine data set show that our approach has good performance for
rule discovery on continuous data.

References

1. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge
discovery in databases: An overview. Advances in Knowledge Discovery and Data
Mining (1996) 1-34

2. Noda, E., Freitas, A.A., Lopes, H.S.: Discovering interesting prediction rules with
a genetic algorithm. In Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao,
X., Zalzala, A., eds.: Proceedings of the Congress on Evolutionary Computation.
Volume 2., Mayflower Hotel, Washington D.C., USA, IEEE Press (1999) 1322-1329

3. Jong, K.A.D., Spears, W.M., Gordon, G.: Using genetic algorithms for concept
learning. Machine Learning 13 (1993) 161-188

4. Bojarczuk, C.C., Lopes, H.S., Freitas, F.: Discovering comprehensible classification
rules using genetic programming: a cas study in a medical domain. In Banzhaf,
W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E.,
eds.: Proc. of the Genetic and Evolutionary Computation Conf. GECCO-99, San
Francisco, CA, Morgan Kaufmann (1999) 953-958

5. Freitas, A.A.: A genetic programming framework for two data mining tasks: Clas-
sification and generalized rule induction. In Koza, J.R., Deb, K., Dorigo, M., Fogel,
D.B., Garzon, M., Iba, H., Riolo, R.L., eds.: Genetic Programming 1997: Proceed-
ings of the Second Annual Conference, Stanford University, CA, USA, Morgan
Kaufmann (1997) 96-101

6. De Falco, 1., Della Cioppa, A., Tarantino, E.: Discovering interesting classification
rules with genetic programming. Applied Soft Computing 1 (2001) 257269

7. Sousa, T., Neves, A., Silva, A.: Swarm optimisation as a new tool for data mining.
In: 17th International Parallel and Distributed Processing Symposium (IPDPS-
2003), Los Alamitos, CA, IEEE Computer Society (2003) 144-144

8. Sousa, T., Neves, A., Silva, A.: A particle swarm data miner. In: 11th Portuguese
Conference on Artificial Intelligence, Workshop on Artificial Life and Evolutionary
Algorithms. (2003) 43-53

9. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceeding of
IEEE International Conference on Neural Networks (ICNN’95). Volume 4., Perth,
Western Australia, IEEE (1995) 1942-1947

10. Blake, C., Merz, C.J.: UCI repository of machine learning databases,
http://www.ics.uci.edu/~mlearn/MLRepository.html (1998)

11. Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: IEEE Congress
on Evolutionary Computation (CEC 1998), Piscataway, NJ, IEEE (1998) 69-73

	1 Introduction
	2 Rule Discovery with PSO
	2.1 Rule Presentation
	2.2 Rule Evaluation (Fitness Function Design)

	3 Experiments
	3.1 Data Sets and Experiments Setup
	3.2 Results and Discussion

	4 Conclusions
	References

