
Ensemble Methods for Noise Elimination
in Classification Problems

Sofie Verbaeten and Anneleen Van Assche

Department of Computer Science
Katholieke Universiteit Leuven

Celestijnenlaan 200 A, B-3001 Heverlee, Belgium
{sofie.verbaeten,anneleen.vanassche}@cs.kuleuven.ac.be

Abstract. Ensemble methods combine a set of classifiers to construct
a new classifier that is (often) more accurate than any of its compo-
nent classifiers. In this paper, we use ensemble methods to identify noisy
training examples. More precisely, we consider the problem of misla-
beled training examples in classification tasks, and address this problem
by pre-processing the training set, i.e. by identifying and removing out-
liers from the training set. We study a number of filter techniques that
are based on well-known ensemble methods like cross-validated commit-
tees, bagging and boosting. We evaluate these techniques in an Inductive
Logic Programming setting and use a first order decision tree algorithm
to construct the ensembles.

1 Introduction

In many applications of machine learning the data to learn from is imperfect.
Different kinds of imperfect information exist, and several classifications are
given in the literature (see e.g. [9]). In this paper, we consider the problem of
noise or random errors in training examples.

One of the problems created by learning from noisy data is overfitting, that
is, the induction of an overly specific hypothesis which fits the (noisy) train-
ing data well but performs poor on the entire distribution of examples. Clas-
sical noise-handling mechanisms modify the learning algorithm itself to make
it more noise-tolerant. Another approach, which we explore in this paper, is to
pre-process the input data before learning. This approach consists of filtering
the training examples (hopefully removing the noisy examples), and applying
a learning algorithm on the reduced training set. As pointed out in [7], this
separation of noise detection and hypothesis formation has the advantage that
noisy examples do not influence the hypothesis construction, making the induced
hypothesis less complex and more accurate.

Many of the methods for filtering training data are in fact removing outliers
from the training data. An outlier is a case that does not follow the same model
as the rest of the data1. For instance in [3], the basic idea is to use a set of
1 Note that, as such, an outlier does not only include erroneous data but also surprising

correct data.

T. Windeatt and F. Roli (Eds.): MCS 2003, LNCS 2709, pp. 317–325, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



318 Sofie Verbaeten and Anneleen Van Assche

classifiers (induced by a number of possibly different learning methods) formed
from part of the training data to test whether instances in the remaining part
of the training data are mislabeled. By taking a consensus or majority vote of
these classifiers, it is decided whether or not to remove a particular instance. The
noise detection algorithm of [7] is based on the observation that the elimination of
noisy examples, in contrast to the elimination of examples for which the target
theory is correct, reduces the CLCH value of the training set (CLCH stands
for the Complexity of the Least Complex correct Hypothesis). In [8] robust
decision trees are presented. Robust decision trees take the idea of pruning one
step further: training examples which are misclassified by the pruned tree are
removed from the training set and the tree is rebuilt using this reduced set.
This process is repeated until no more training examples are removed. In [12],
we presented filter techniques for Inductive Logic Programming (ILP) that are
based on the idea of [3]. We also applied the robust decision tree technique of
[8] to the ILP setting. We already obtained some good results with the filters
proposed in [12].

In this paper, we further explore a number of other, new techniques. We pro-
pose filter techniques that are based on well-known ensemble methods [4], namely
cross-validated committees, bagging and boosting. We present two approaches:
(1) filtering based on (unweighted) voting of classifiers that are built on different
subsets of the training set (obtained by either cross-validation or bagging), (2)
filtering based on removing training examples that obtain high weights in the
boosting process. We introduce these filter techniques in the next section, and
evaluate them in an ILP setting in section 3. We conclude and discuss topics for
future research in section 4.

2 Filter Algorithms

2.1 Base Classification Algorithm

The filters that are presented below make use of a learning algorithm for classi-
fication. With L we denote this base classification algorithm.

In our experiments, we evaluate the different filters in an ILP setting, and
use Tilde [1] as the base learning algorithm L. Tilde (Top-down Induction of
Logical Decision Trees) is an ILP extension of the C4.5 decision tree algorithm
[11]. Instead of using attribute-value tests in the nodes of the tree, logical queries
(which may contain logical variables) are used. The test to select the best query
in each node is information gain ratio. After a tree is constructed, a post-pruning
algorithm, based on an estimate of the error on unseen cases, is used.

2.2 Voting Filters

Voting filters are (as many other filter methods) based on the idea of removing
outliers from a training set: an instance is removed if it can not be classified
correctly by all, or the majority of, the classifiers built on parts of the training



Ensemble Methods for Noise Elimination in Classification Problems 319

set. A motivation for using ensembles for filtering is pointed out in [3]: when we
assume that some instances in the data have been mislabeled and that the label
errors are independent of the particular model being fit to the data, collecting
information from different models will provide a better method for detecting
mislabeled instances than collecting information from a single model. As noted in
many articles (see e.g. [4]), constructing ensembles of classifiers by manipulating
the training examples works especially well for unstable learning algorithms.
Decision tree algorithms, like Tilde, are unstable. We expect that ensembles of
decision trees will act well as a filter for noisy data sets.

The general scheme of our voting filters is as follows:

1. L induces n classifiers on different subsets of the training set,
2. these n classifiers give labels to every example in the training set,
3. the filter compares the original class of each example with the n labels it

has, and decides whether or not to remove the example.

A variation of instances of this general scheme exists depending on the way
these n classifiers are induced, the value of n and the decision procedure in step 3.

Concerning step 3, we consider two possibilities: (1) a consensus filter (C
filter), where a training example is removed only if all the n labels it has differ
from its class; (2) a majority vote filter (M filter), where a training example is
removed if the majority of the labels it has differ from its class.

Concerning step 1, we present two approaches for building these n classifiers.
In the first approach, the training set is partitioned in n subsets of (approxi-
mately) equal size. L is trained n times, each time leaving out one of the sub-
sets from the training set. This results in n classifiers. Such a filter is called a
cross-validated committees filter (X filter). In the second approach, n bootstrap
replicates are taken from the training set, and L learns on these n sets. Such
a filter is called a bagging filter (Ba filter). In [5], a motivation is found for us-
ing bagging as a filter. In that paper, it is experimentally shown that bagged
C4.5 gains advantage over C4.5 when noise is added to the training sets. More
precisely, it is observed that for most data sets, noise improves the diversity of
bagging, which permits it to perform better.

We performed experiments with cross-validated committees - consensus (XC)
filters, cross-validated committees - majority vote (XM) filters, bagging consen-
sus (BaC) and bagging majority vote (BaM) filters. The parameter n was set to
5, 9, 15, and 25.

2.3 Boosting Filters

Boosting is known to perform poorly with respect to noise. According to [5] a
plausible explanation for the poor response of boosting to noise is that mislabeled
training examples will tend to receive very high weights in the boosting process.
Hence, after a few iterations, most of the training examples with high weights
will be mislabeled examples. This gives a good motivation to use boosting as a
noise filter.



320 Sofie Verbaeten and Anneleen Van Assche

The idea is to use Adaboost [6] and to remove, after a number of rounds
(n), the examples with the highest weights. Since the filter has no idea what the
exact percentage of noise is, we chose to give this as input to the filter2. Note
that there might be several examples with the same weight (especially in the
first rounds of the boosting process), so the filter might remove more examples
than is given as input3.

We tested the boosting (Bo) filter with 3, 5, 10 and 17 rounds.

3 Experiments

We evaluate the different filters in an ILP setting. As opposed to propositional
or attribute-value learning systems that use a single table to represent the data
set, ILP systems use a first order representation. This makes ILP very suitable
for dealing with complex data structures.

We first describe the data sets that we used in the experiments. Then we
explain how the experiments were carried out, and finally we discuss the results.
For more details, we refer to [13].

3.1 Data Sets and Noise Introduction

We want to evaluate how well the different filter techniques perform on data sets
with different amounts of classification noise. We therefore considered noise-free
ILP data sets, and artificially introduced different levels of classification noise.

We considered the following noise-free data sets: an (artificial) Bongard data
set [2] (392 examples), three (artificial) eastbound/westbound trains data sets
[10] (200, 400, and 800 examples), and a (non-artificial) KRK data set for learn-
ing illegal positions in a chess endgame [9] (200 examples). These are all 2-class
problems.

We introduced different levels of classification noise in the data sets. A noise
level of x% means that for a randomly chosen subset of x% of the training
examples, the class-value of these examples was flipped4. We introduced noise
levels of 0%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, and 40%.

3.2 Experimental Method

In order to obtain a more reliable estimate of the performance of the filters,
all experiments were carried out in 10-fold cross-validation and the results were
averaged over the 10 folds. For each of the 10 runs, the data set was divided in
a training set (9 parts) and a test set (remaining 1 part). The training set was
then corrupted by introducing classification errors. Each of the above described
2 In a later stage, we will try to estimate this.
3 Another possibility is to remove less examples than is given as input; we chose the

greedy approach here.
4 Positive examples are made negative and vice versa.



Ensemble Methods for Noise Elimination in Classification Problems 321

XC(9) XM(9) BaC(9) BaM(9) Bo(3) Bo(10)
0

5

10

15

20

25

30

%

15.02% noise

% filtered
% noise and filtered
% noise

XC(9) XM(9) BaC(9) BaM(9) Bo(3) Bo(10)
0

5

10

15

20

25

30

%

20.07% noise

% filtered
% noise and filtered
% noise

Fig. 1. Filter precision on the Bongard data set.

filter techniques was then run on the (noisy5) training set. After filtering the
training set, Tilde was used to learn a decision tree on the reduced training set.
This decision tree was then validated on the (noise-free) test set. Results were
obtained by taking the mean of the results of the 10 runs. For each of the 9 noise
levels and each of the 10 runs, we also run Tilde directly on the (unfiltered)
training set.

In the next subsections, we report results concerning filter precision, tree size
and accuracy.

3.3 Filter Precision

We evaluate the different filters by looking at the percentage of examples that
are removed, as well as the percentage of examples that are removed and are
actually noisy6.

In Fig. 1, we show the precision of some of our filters on the Bongard data
set with 15% and 20% of noise.

In general, we observe the following. The BaC filters are the most conservative
filters: they remove the fewest examples. But, especially for the artificial data
sets, these filters are also very precise: almost no correct examples are removed.
One might choose to use a BaC filter when data is sparse. Also the XC filters are
rather conservative. The XM and BaM filters perform well. On the KRK data
set the Ba and X filters are not as precise as on the artificial data sets: relatively
more correct examples are also removed. The best results concerning precision
are obtained on the Bongard data sets. This can be explained by the fact that
Tilde reaches an accuracy of 100% on the noise-free Bongard data set, whereas
the other (noise-free) data sets, especially the KRK data set, are harder to learn
from.
5 For each noise level and each of the 10 training sets, the classification errors were

introduced only once (in a random way), and the different filter techniques were run
on the same noisy training sets.

6 For the detailed results, including an estimated probability of making type 1 and
type 2 errors for all filters, we refer to [13].



322 Sofie Verbaeten and Anneleen Van Assche

In general, the precision of the Bo filters is not very good: a great deal of
filtered examples is not noisy. This shows that in the boosting process, also
correct examples get high weights.

The influence of the number of classifiers n is as follows. For the XC(n) filters,
when there is not too much noise, the higher n, the higher the number of filtered
examples, and also the higher the number of filtered and noisy examples. Indeed,
when n increases, the training sets on which the n classifiers are built become
more similar, and hence the classifiers will obtain a consensus in more cases.
This is especially the case when there is not too much noise (up to 20%). For
the XM(n) filters, the parameter n does not have much influence.

For the BaC(n) filters, the higher n, the lower the number of filtered ex-
amples, and also the lower the number of filtered and noisy examples. This is
exactly the opposite behaviour as for the XC(n) filters. This is because with
bagging very diverse classifiers are built (especially when there is a lot of noise,
see [5]). When the number (n) of such diverse classifiers increases, it becomes
more difficult to obtain a consensus, hence less examples will be removed. The
BaM(n) filters seem to improve their precision when n is increased, meaning that
more noisy examples, and at the same time less correct examples, are removed.

Despite the fact that the exact percentage of noisy examples is given as input
to the Bo(n) filters, these filters will remove more examples. This is because there
might be examples that have the same weight. Since this is especially the case
in the first rounds of the boosting process, we observe that, the higher n, the
lower the number of filtered examples. At the same time we observe that, the
higher n, the less noisy examples are filtered. When we look at the ratio of noisy
examples in the set of examples that are filtered, we notice that, for noise levels
up to 15%, this ratio is smaller in the first rounds of the boosting process. For
higher noise levels however, the situation is completely reversed: when n is small,
there are relatively more noisy examples in the set of filtered examples. This can
be explained as follows. If there is a lot of noise in the training set, boosting will
first force the learning algorithm to concentrate on these noisy examples. But,
by doing this, the correct examples become harder to classify, and will receive
higher weights further on in the boosting process. So when n increases, more
correct examples will receive high weights and will be filtered.

Finally, by looking at the results on the three trains data sets, we observe
that the more training examples we have at our disposal, the more precise the
filters are.

3.4 Tree Size

A decision tree that is built from a noisy training set might be overly complex
due to overfitting of this set. Therefore, it can be expected that the sizes of the
trees induced from a filtered (and hopefully non-noisy) training set are smaller
than the sizes of the trees induced from the non-filtered, noisy training set.

In Fig. 2, we show the number of nodes in the decision trees induced from
(un)filtered Bongard training sets. More precisely, we report the results for the
XM(9), BaM(9) and Bo(10) filters.



Ensemble Methods for Noise Elimination in Classification Problems 323

0 5 10 15 20 25 30 35 40
% noise

8

10

12

14

16

18
tr

ee
si

ze

Bo(10)
BaM(9)
XM(9)
no filter

0 5 10 15 20 25 30 35 40
% noise

0.7

0.75

0.8

0.85

0.9

0.95

1.0

ac
cu

ra
cy

Bo(10)
BaM(9)
XM(9)
no filter

Fig. 2. Results concerning tree size (left) and accuracy (right) on the Bongard data
set.

For noise levels up to 15% it is indeed the case that the sizes of the trees
induced from a filtered training set are smaller than the sizes of the trees induced
from the unfiltered set. For higher noise levels however there is, for many of the
cases, no decrease in tree size if a filtered training set is used. One plausible
explanation is that, for high noise levels, the filters still leave some amount of
noise in the training sets. Also, we should note that Tilde with pruning is used
(both in the filter algorithms and for inducing decision trees from the (un)filtered
training sets), so the effect of overfitting is already largely reduced.

3.5 Accuracy

Decision trees built on a non-noisy training set will (in general) be more accurate
(on a separate test set) than trees induced from a noisy training set. We compare
the accuracies of the trees induced from the filtered sets (on the non-noisy test
sets) with the accuracies (also on the non-noisy test sets) of the trees induced
from the unfiltered, noisy sets.

In Fig. 2, we show our results for the XM(9), BaM(9) and Bo(10) filters on
the Bongard data set. For this data set and also for the trains data sets, we
observe that for noise levels up to 10%, Tilde still performs well on an unfiltered
training set. For higher noise levels, it seems better to first filter the training set.
No one filter outperforms the other filters in this respect. For the KRK data set,
it is better to also filter the training set for low noise levels.

A hypothesis of interest is whether a majority vote ensemble classifier can be
used instead of filtering, or whether the best method is to first filter the training
set and then use a majority vote ensemble classifier. This hypothesis was tested
in [3]. It was concluded that (for the filters proposed in [3]) a majority vote
ensemble classifier can not replace filtering. We did some initial experiments to
test this hypothesis in our setting. More experiments are needed to see if this
conclusion also holds in our setting.



324 Sofie Verbaeten and Anneleen Van Assche

4 Conclusions and Future Work

We addressed the problem of training sets with mislabeled examples in classi-
fication tasks. We proposed a number of filter techniques, based on ensemble
methods, for identifying and removing noisy examples. We experimentally eval-
uated these techniques on noise-free ILP data sets which we artificially corrupted
with different levels of classification noise. We reported results concerning filter
precision, tree size and accuracy.

Both the BaM and XM filters have a good precision. Surprisingly, the Bo
filters did not perform so well. We plan to investigate in more detail how the
boosting process can be used/modified to obtain a noise filter. We also plan to
evaluate the proposed filters on more data sets.

When the data set is small and the cost of finding new training examples
is high, one can choose to use a conservative filter, e.g. a BaC or XC filter. A
better solution would be to detect and also correct labelling errors (and thus not
removing any example). One way to do this is to present the suspicious data to
a human expert and ask what to do with it. Another way is to automatically
switch the class labels of the examples which are identified as noise. We will
evaluate the performance of such an extension.

Acknowledgements

Sofie Verbaeten is a Postdoctoral Fellow of the Fund for Scientific Research -
Flanders (Belgium) (F.W.O.- Vlaanderen). Anneleen Van Assche is supported
by the GOA/2003/08(B0516) on Inductive Knowledge Bases.

References

1. H. Blockeel and L. De Raedt. Top-down induction of first order logical decision
trees. Artificial Intelligence, 101(1-2):285–297, 1998.

2. M. Bongard. Pattern Recognition. Spartan Books, 1970.
3. C.E. Brodley and M.A. Friedl. Identifying mislabeled training data. Journal of

Artificial Intelligence Research, 11:131–167, 1999.
4. T.G. Dietterich. Ensemble methods in machine learning. In J. Kittler and F. Roli,

editors, Multiple Classifier Systems, First International Workshop, volume 1857 of
Lecture Notes in Computer Science, pages 1–15. Springer, 2000.

5. T.G. Dietterich. An experimental comparison of three methods for construct-
ing ensembles of decision trees: Bagging, boosting, and randomization. Machine
Learning, 40(2):139–157, 2000.

6. Y. Freund and R.E. Schapire. Experiments with a new boosting algorithm. In
L. Saitta, editor, Proceedings of the Thirteenth International Conference on Ma-
chine Learning, pages 148–156. Morgan Kaufmann, 1996.

7. D. Gamberger, N. Lavrač, and S. Džeroski. Noise detection and elimination in
data preprocessing: experiments in medical domains. Applied Artificial Intelligence,
14:205–223, 2000.



Ensemble Methods for Noise Elimination in Classification Problems 325

8. G.H. John. Robust decision trees: Removing outliers from databases. In U.M.
Fayyad and R. Uthurusamy, editors, Proceedings of the First International Con-
ference on Knowledge Discovery and Data Mining, pages 174–179. AAAI Press,
1995.

9. N. Lavrač and S. Džeroski. Inductive Logic Programming: Techniques and Appli-
cations. Ellis Horwood, 1994.

10. R.S. Michalski and J.B. Larson. Inductive inference of VL decision rules. Pa-
per presented at Workshop in Pattern-Directed Inference Systems, Hawaii, 1977.
SIGART Newsletter, ACM, 63, 38-44.

11. J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann series in
machine learning. Morgan Kaufmann, 1993.

12. S. Verbaeten. Identifying mislabeled training examples in ILP classification prob-
lems. In M. Wiering and W. de Back, editors, Twelfth Dutch-Belgian Conference
on Machine Learning, pages 1–8, 2002.

13. S. Verbaeten and A. Van Assche. Ensemble methods for noise elimination in classifi-
cation problems. Technical report, Department of Computer Science, K.U.Leuven,
Belgium,
http://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW358.abs.html, 2003.


	1 Introduction
	2 Filter Algorithms
	2.1 Base Classification Algorithm
	2.2 Voting Filters
	2.3 Boosting Filters

	3 Experiments
	3.1 Data Sets and Noise Introduction
	3.2 Experimental Method
	3.3 Filter Precision
	3.4 Tree Size
	3.5 Accuracy

	4 Conclusions and Future Work
	References

