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Abstract. Many real world data mining applications 
involve learning from imbalanced data sets, where the 
particular events of interest may be very few when 
compared to the other classes. Learning from data sets 
that contain rare events usually produces biased 
classifiers that have a higher predictive accuracy over the 
majority class(es), but poorer predictive accuracy over 
the minority class of interest. SMOTE (Synthetic 
Minority Over-sampling Technique) is a recent approach 
that is specifically designed for learning with minority 
classes. Boosting is a promising ensemble-based learning 
algorithm that can improve the classification 
performance of any weak classifier. This paper presents a 
novel approach for learning from rare classes, based on a 
combination of the SMOTE algorithm and the boosting 
procedure. Unlike standard boosting where all 
misclassified examples are given equal weights, the 
novel SMOTEBoost approach creates synthetic examples 
from the minority class, thus indirectly changing the 
updating weights and compensating for skewed 
distributions. The SMOTEBoost algorithm applied to 
several highly and moderately imbalanced data sets 
shows improvement in prediction performance on the 
rare class compared to standard boosting and to the 
SMOTE algorithm used with a single classifier. 
 
1. Motivation and Introduction 
 
The recent, explosive growth of information available on 
the Web, and in business and scientific fields, has 
resulted in an unprecedented opportunity to develop 
automated data mining techniques for extracting useful 
knowledge from massive data sets. Despite the enormous 
amount of data, particular events of interest can still be 
quite rare. Classification of rare events is a common 
problem in many domains, such as fraudulent 
transactions, network intrusion detection, Web mining, 
direct marketing domains and medical diagnostics. For 
example, in the network intrusion detection domain, the 
goal is to detect illegitimate use that deviates 
significantly from normal behavior through constantly 
monitoring unusual user activity. The number of 
intrusions on the network is typically a very small 

fraction of the total traffic. The crucial step in 
successfully detecting intrusions is to develop a model 
that describes most known as well as novel unseen 
attacks, while keeping a low false alarm rate. The 
challenge of detecting future attacks has led to an 
increasing interest in intrusion detection techniques 
based upon data mining [1, 2, 3, 4]. In the example of 
Web mining applications, it is important to predict those 
web sessions that are of particular interest from the 
revenue standpoint. However, these sessions usually 
occur in a relatively small proportion of the sea of 
thousands of sessions occurring at a web site on a given 
day. In medical databases, when classifying the pixels in 
mammogram images as cancerous or not [5, 6], 
abnormal (cancerous) pixels represent only a very small 
fraction of the entire image. The nature of the application 
requires a fairly high detection rate of the minority class 
and allows for a small error rate in the majority class 
since the cost of misclassifying a cancerous patient as 
non-cancerous can be very high. 
 
In all these scenarios when the majority class typically 
represents 98-99% of the entire population, a trivial 
classifier that labels everything with the majority class 
can achieve 98-99% accuracy. It is apparent that for 
domains with imbalanced and/or skewed distributions, 
classification accuracy is not sufficient as a standard 
performance measure. ROC analysis [7] and metrics 
such as precision, recall and F-value [8, 9] have been 
used to understand the performance of the learning 
algorithm on the minority class.  
 
A confusion matrix as shown in Table 1 is typically used 
to evaluate performance of a machine learning algorithm. 
In classification problems, assuming class C as the 
minority/rare class of the interest, and NC as a 
conjunction of all the other classes, there are four 
possible outcomes when detecting class C. 
 
From Table 1, recall, precision and F-value may be 
defined as follows: 

   Precision =  TP / (TP + FP) 
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where β corresponds to relative importance of precision 
vs. recall and it is usually set to 1. The main focus of all 
learning algorithms is to improve the recall, without 
sacrificing the precision. However, the recall and 
precision goals are often conflicting and attacking them 
simultaneously may not work well, especially when one 
class is rare.  The F-value incorporates both precision 
and recall, and the “goodness” of a learning algorithm 
for the minority class can be measured by the F-value. 
While ROC curves represent the trade-off between 
values of TP and FP, the F-value basically incorporates 
the relative effects/costs of recall and precision into a 
single number. 
 
Table 1. Confusion matrix defines four possible 
scenarios when classifying class “C” 

 Predicted  
Class “C” 

Predicted  
Class “NC” 

Actual 
class “C” 

True Positives 
(TP) 

False Negatives  
(FN) 

Actual  
class “NC” 

False Positives 
(FP) 

True Negatives  
(TN) 

 
It is now well known in machine learning that a 
combination of classifiers can be an effective technique 
for improving prediction accuracy. As one of the most 
popular combining techniques, boosting [10] uses 
adaptive sampling of instances to generate a highly 
accurate ensemble of classifiers whose individual global 
accuracy is only moderate. In boosting, the classifiers in 
the ensemble are trained serially, with the weights on the 
training instances adjusted adaptively according to the 
performance of the previous classifiers. The main idea is 
that the classification algorithm should concentrate on 
the instances that are difficult to learn. Boosting has 
received extensive theoretical and empirical study [11, 
12], but most of the published work focuses on 
improving the accuracy of a weak classifier on data sets 
with well-balanced class distributions. There has been 
significant interest in the recent literature for embedding 
cost-sensitivities in the boosting algorithm. CSB [13] and 
AdaCost boosting algorithms [14] update the weights of 
examples according to the misclassification costs. 
Karakoulas and Shawe-Taylor’s ThetaBoost adjusts the 
margins in the presence of unequal loss functions [15]. 
On the other side, Rare-Boost [9, 16] updates the weights 
of the examples differently for all four entries shown in 
Table 1. One of our goals outlined in future research is to 
have a comprehensive comparison of SMOTEBoost with 
some of the aforementioned cost-sensitive boosting 
approaches. 

 
The prevalence of class imbalance in various scenarios 
has caused a surge in research dealing with rare classes. 
Several approaches for dealing with rare classes were 
recently introduced [5, 7, 16, 17, 18, 19, 20, 21, 22]. 
SMOTE [5] is an algorithm that tackles the problem by 
generating synthetic minority class examples. It has been 
shown that in conjunction with an inductive learner, 
SMOTE may be a very successful technique in modeling 
the rare or minority classes in a data set.  In this paper we 
propose a novel approach for learning from rare classes, 
SMOTEBoost, that embeds SMOTE in the boosting 
algorithm. After each boosting round, we apply the 
SMOTE algorithm in order to create synthetic examples 
from the minority class. Experiments performed on data 
sets from several domains (network intrusion detection, 
medical applications, etc.) have shown that 
SMOTEBoost is able to achieve a higher F-value than 
either SMOTE applied to a classifier or just the standard 
boosting algorithm for all the datasets. While on the 
other hand both SMOTE applied to a classifier and 
SMOTEBoost achieve higher F-value than a single 
classifier. We also provide a precision-recall analysis of 
the approaches.  
 
2. Synthetic Minority Oversampling 
Technique - SMOTE 
 
Researchers have dealt with class imbalance by over-
sampling the minority class samples with replacement, 
and/or under-sampling the majority class [19, 20, 21, 
22].  However, the effect of over-sampling is to identify 
similar but more specific regions in the feature space as 
the decision region of the minority class [5].  This can 
lead to over-fitting, with the minority class decision 
region becoming very specific.  
 
SMOTE (Synthetic Minority Oversampling Technique) 
was proposed to counter the effect of having few 
instances of the minority class in a data set [5]. Operating 
in the “feature space” rather than the “data space” creates 
synthetic instances of the minority class. By synthetically 
generating more instances of the minority class, the 
inductive learners, such as decision trees (e.g. C4.5 [23]) 
or rule-learners (e.g. RIPPER [24]), are able to broaden 
their decision regions for the minority class. We deal 
with nominal (or discrete) and continuous attributes 
differently in SMOTE. In the nearest neighbor 
computations for the minority classes we use Euclidean 
distance for the continuous features and the Value 
Distance Metric (with the Euclidean assumption) for the 
nominal features [5, 25, 26]. The new synthetic minority 
samples are created as follows: 
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• For the continuous features 
o Take the difference between a feature 

vector (minority class sample) and one 
of its k nearest neighbors (minority 
class samples). 

o Multiply this difference by a random 
number between 0 and 1. 

o Add this difference to the feature 
value of the original feature vector, 
thus creating a new feature vector 

• For the nominal features 
o Take majority vote between the 

feature vector in consideration and its 
k nearest neighbors for the nominal 
feature value. In the case of a tie, 
choose at random.  

o Assign that value to the new synthetic 
minority class sample. 

 
Using this technique, a new minority class sample is 
created along the line segment joining a minority class 
sample and its nearest neighbor. Hence, using SMOTE, 
more general regions are learned for the minority class, 
allowing the classifiers to better predict unseen examples 
belonging to the minority class. A combination of 
SMOTE and under-sampling creates potentially optimal 
classifiers as a majority of points from the SMOTE and 
under-sampling combination lie on the convex hull of the 
family of ROC curves [5, 7].  

3. SMOTEBoost algorithm 
 
In this paper, we propose a SMOTEBoost algorithm that 
combines the Synthetic Minority Oversampling 
Technique (SMOTE) and the standard boosting 
procedure. We want to utilize SMOTE for improving the 
accuracy over the minority classes, and we want to 
utilize boosting to not sacrifice accuracy over the entire 
data set. The major goal is to better model the minority 
class in the data set, by providing the learner not only 
with the minority class instances that were misclassified 
in previous boosting iterations, but also with a broader 
representation of those instances. We want to improve 
the overall accuracy of the ensemble by focusing on the 
difficult minority (positive) class cases, as we want to 
model this class better. The goal is to improve our True 
Positives (TP).  
 
The standard boosting procedure gives equal weights to 
all misclassified examples. Since boosting samples from 
a pool of data that predominantly consists of the majority 
class, subsequent samplings of the training set may still 
be skewed towards the majority class. Although boosting 
reduces the variance and the bias in the final ensemble 
Algorithm SMOTE(T, N, k)  
Input:   Number of minority class samples T ; 

Amount of SMOTE N%; Number of nearest 
neighbors k  

Output:  (N/100) * T synthetic minority class samples  
1. (* If N is less than 100%, randomize the minority 

class samples as only a random percent of them will 
be SMOTEd. *)  

2.  if N < 100 
3.   then  Randomize the T minority class samples  
4.       T = (N/100) * T  
5.       N = 100  
6.  end if  
7.  N = (int)(N/100) (* The amount of SMOTE is 
assumed to be in integral multiples of 100 *)  
8.  k = Number of nearest neighbors  
9.  numattrs = Number of attributes  
10.  Sample[ ][ ]:   array for original minority class 
samples  
11.  newindex:    keeps a count of number of synthetic 
generated samples; it is initialized to 0  
12.  Synthetic[ ][ ]: array for synthetic samples  

(* Compute k nearest neighbors for each minority 
class sample only. *)  

13.  for i ← 1 to T  
14.    Compute k nearest neighbors for i, and save the 
indices in the nnarray  
15.    Populate(N, i, nnarray)  
16.  end for  

Populate(N, i, nnarray) (* Function to generate the 
synthetic samples. *)  
17.  while N ≠ 0  do  
18.  Choose a random number between 1 and k, call it 

nn. This step chooses one of the k nearest 
neighbors of i. 

19. for attr ← 1 to numattrs  
20. if attr == Continuous feature 
21.     Compute:  

dif = Sample[nnarray[nn]][attr] - Sample[i][attr] 
22.     Compute:gap = random number between 0 & 1 
23.     Synthetic[newindex][attr] =  

    Sample[i][attr] + gap * dif  
24. else 
25.      attr_value = majority vote for the attr values 

between i and nn. If no majority then     
choose at random.  
26.     Synthetic[newindex][attr] = attr_value 
23. end for  
24.    newindex++  
25.    N = N - 1  
26.  end while  
27.  return (* End of Populate. *)  

End of Pseudo-Code. 
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Figure 1. The Synthetic Minority Oversampling 
Technique (SMOTE) 

[11], it might not hold for data sets with skewed class 



distributions. There is a very strong learning bias towards 
the majority class cases in a skewed data set, and 
subsequent iterations of boosting can lead to a broader 
sampling from the majority class. Boosting (Adaboost) 
treats both kinds of errors (FP and FN) in a similar 
fashion. Our goal is to reduce the bias inherent in the 
learning procedure due to the class imbalance, and 
increase the sampling weights for the minority class. 
Introducing SMOTE in each round of boosting will 
enable each learner to be able to sample more of the 
minority class cases, and also learn better and broader 
decision regions for the minority class. By introducing 
SMOTE in each round of boosting, we are particularly 
enhancing the probability of selection for the difficult 
minority class cases that are dominated by the majority 
class points.  
 
We also conjecture that introducing the SMOTE 
procedure also increases the diversity amongst the 
classifiers in the ensemble, as in each iteration we 
produce a different set of synthetic examples. The 
amount of SMOTE is a parameter that can vary for each 
data sets. It will be useful to know a priori the amount of 
SMOTE to be introduced for each data set. We observe 
that it is not really a feature of the class imbalance, and is 
more dependent on the distribution in the feature space. 
We believe that utilizing a validation set to set the 
amount of SMOTE before the boosting iterations can be 
useful.  
 
The combination of SMOTE and the boosting procedure 
that we present here is a variant of the AdaBoost.M2 
procedure [10]. The proposed SMOTEBoost algorithm, 
shown in Figure 3, proceeds in a series of T rounds. In 
every round a weak learning algorithm is called and 
presented with a different distribution Dt altered by 
emphasizing particular training examples. The 
distribution is updated to give wrong classifications 
higher weights than correct classifications. Unlike 
standard boosting, where the distribution Dt is updated 
uniformly for examples from both the majority and 
minority classes, in the SMOTEBoost technique the 
distribution Dt is updated such that the examples from 
the minority class are oversampled by creating synthetic 
minority class examples (step 1). The entire weighted 
training set is given to the weak learner to compute the 
weak hypothesis ht. At the end, the different hypotheses 
are combined into a final hypothesis hfn. 
 
We used RIPPER [24], a learning algorithm that builds a 
set of rules for identifying the classes while minimizing 
the amount of error, as the classifier in our SMOTEBoost 
experiments. RIPPER is a noise-tolerant rule-learning 
algorithm based on the separate-and-conquer strategy. It 
gives comparable results to a decision tree learning 
algorithm while being more efficient. The Synthetic 

Minority Oversampling Technique (SMOTE) was 
employed with different values for the parameter N that 
specifies the amount of synthetically generated 
examples. As mentioned earlier, one of the goals 
outlined in the future work of this paper is identifying a 
priori the amount of SMOTE applicable for each data 
set, before initiating the boosting procedure.  
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Given: Set S {(x1, y1), … , (xm, ym)} xi ∈X, with 
labels yi ∈Y = {1, …, C}, where Cm, Cm < C, 
corresponds to a minority class. 
Let B = {(i, y): i = 1,…,m, y ≠ yi} 

Initialize the distribution D1 over the 
examples, such that D1(i) = 1/m. 
For t = 1, 2, 3, 4, … T 
 Modify distribution Dt by creating N synthetic 

examples from minority class Cm using SMOTE 
algorithm 

 Train a weak learner using distribution Dt  
 Compute weak hypothesis ht: X × Y → [0, 1] 
 Compute the pseudo-loss of hypothesis ht:   

εt = ∑
∈

+−
B)y,i(

itiitt ))y,x(h)y,x(h)(y,i(D 1  

 Set βt = εt / (1 - εt) and  
wt = (1/2)⋅(1-ht(xi,y)+ht(xi,yi)) 

 Update Dt :  Dt+1 (i, y) =  tw
ttt )Z/)y,i(D( β⋅

where Zt is a normalization constant chosen 
such that Dt+1 is a distribution. 

Output the final hypothesis: 
e 3. The SMOTEBoost algorithm 

)y,x(h)(logmaxargh t
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ata sets 

experiments were performed on the four data sets 
arized in Table 2. For all data sets, except for the 

 Cup-99 intrusion detection data set, the reported 
s for recall, precision and F-value were obtained by 
rming 10-fold cross-validation. For the KDDCup-
ta set however, the separate intrusion detection test 
as used to evaluate the performance of proposed 
ithms. Unlike the KDDCup-99 intrusion data set 
has a mixture of both nominal and continuous 
res, the remaining data sets (mammography, 
age, phoneme) have all continuous features. 

first data set that we used in our experiments was 
 the KDD Cup 1999 competition [27]. The com-
on task was to build a network intrusion detector, a 



Table 2. Summary of data sets used in experiments 

Data set 
Number of 
majority  

class instances 

Number of 
minority 

class 
instances 

Number 
of classes

DoS 13027 U2R 136 
Probe 2445 

KDDCup-
99 Intrusion 

Normal 17400 R2L 1982 
5 

Mammo-
graphy 10923 260 2 

Satimage 5809 626 2 
Phoneme 3818 1586 2 
 
predictive model capable of distinguishing between 
“bad” connections, called intrusions or attacks, and 
“good” connections. The data set represents a 
modification of the DARPA 1998 Intrusion Detection 
Evaluation Data [28] prepared by MIT Lincoln Lab and 
it contains a wide variety of intrusions simulated in a 
military network environment [29]. The entire data set 
contains original training data and original test data. The 
original raw training data corresponds to seven weeks of 
network traffic and contains around five million network 
connections. A network connection is a sequence of TCP 
packets starting and ending at some well defined times, 
between which data flows to and from a source IP 
address to a target IP address under some well defined 
protocol.  Each connection is labeled as either normal, or 
as an attack, with exactly one specific attack type. The 
original test data corresponds to two weeks of network 
traffic and contains around 300,000 network 
connections. In addition to the normal network 
connections, the data contains four main categories of 
attacks:  

• DoS (Denial of Service), for example, 
ping-of-death, teardrop, smurf, SYN flood, etc.; 

• R2L (Remote to Local), unauthorized access 
from a remote machine, for example, guessing 
password; 

• U2R (User to Remote), unauthorized access to 
local super-user privileges by a local 
unprivileged user, for example, various buffer 
overflow attacks; 

• Probe, surveillance and probing, for example, 
port-scan, ping-sweep, etc. 

The original training and the original test data set have 
totally different distributions due to novel intrusions 
introduced in the test data. Thus, for the purposes of this 
paper, we modified the data sets in order to make similar 
distributions for the training and test data. Therefore, we 
first merged original training and test data sets and then 
sampled 69,980 network connections from this merged 
data set in order to reduce the size of the data set. The 
sampling was performed only from majority classes 

(normal background traffic and DoS attack category), 
while other classes remained intact. Finally, the new 
train and test data sets used in our experiments were 
obtained by randomly splitting the sampled data set into 
equal size subsets. The distribution of network 
connections in the new test data set is given in Table 2. 
 
The second data set used in our experiments is the 
mammography dataset [6] that contains 11,183 examples 
with six features and two classes representing 
calcifications (cancer) and non-calcifications (not-
cancer).  There are only 260 calcifications in the data set. 
If we look at predictive accuracy as a measure of 
goodness of the classifier for this case, the default 
accuracy would be 97.68% when every sample is labeled 
non-calcification. However in practice, it is highly 
desirable for the classifier to predict most of the 
calcifications correctly. 
 
The third data set is the satimage dataset [30] that 
contains 6435 examples with 36 features and originally 6 
classes. However, we chose the smallest class as the 
minority class and collapsed the remaining classes into 
one class as was done in [31]. This procedure gave us a 
skewed 2-class dataset, with 5809 majority class 
examples and 626 minority class examples. 
 
Finally, the fourth data set used in our evaluation is the 
phoneme dataset from the ELENA project [31]. The data 
set contains 5404 examples with 5 features. The aim of 
the dataset is to distinguish between nasal sounds 
(majority class) and oral sounds (minority class), where 
3,818 examples are from the majority “nasal” class and 
1,586 examples are from the minority “oral” class. 
 
4.2 Results 
 
When experimenting with SMOTE and the 
SMOTEBoost algorithm, different values for the 
SMOTE parameter N, ranging between 100 and 500, 
were used for the minority classes. Since the KDD 
Cup’99 data set has two minority classes U2R and R2L 
that are not equally represented in the data set, different 
combinations of SMOTE parameters were investigated 
for these two minority classes (values 100, 300, and 500 
were used for the U2R class while the values 100 and 
300 were used for the SMOTE parameter for the R2L 
class). The values of SMOTE parameters for U2R class 
were higher than the SMOTE parameter values for R2L 
class, since R2L class is better represented in KDD-Cup 
1999 data set than the U2R class (R2L has larger number 
of examples, and standard RIPPER achieves a high F-
value). Our experimental results also showed that the 
higher values of SMOTE parameters for R2L class could 
lead to over-fitting and decreasing the prediction 
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performance on that class. The precision, recall, and F-
value were reported for both classes separately. 
 
The experimental results for all four data sets are 
presented at Figures 3 to 6 and Tables 3 to 7. It is 
important to note that these figures and tables report only 
the prediction performance for the minority classes from 
four data sets, since prediction of majority class was not 
of interest in this study and no decrease in prediction 
performance of majority class was observed. Moreover, 
we report also precision, which captures the FP trend.  
In the figures we show precision and recall trends over 
the boosting iterations, alongside the F-value trends for 
the representative SMOTE parameter. Analyzing Figures 
3 to 6 and Tables 3 to 7, it is apparent that SMOTEBoost 
achieved higher F-values than the other presented 
methods including standard boosting, SMOTE with the 
RIPPER classifier and standard RIPPER classifier, 
although the improvement varied with different data sets.  
The figures also show that SMOTEBoost consistently 
gives a higher recall than standard boosting for all the 
data sets. It is SMOTEBoost’s apparent improvement in 
recall, while not causing a significant degradation in 
precision that improves the over-all F-value.  Tables 3 to 
7 include the precision, recall, and F-value for the 
various methods at different amounts of SMOTE (best 
values are given in bold). These reported values indicate 
that SMOTE applied with the RIPPER classifier has the 
effect of improving the recall of the minority class due to 
improved coverage of the minority class examples, while 
at the same time SMOTE causes the decrease in 
precision due to increased number of false positive 
examples. Thus, SMOTE is more targeted to the 
minority class than the standard boosting or RIPPER. On 
the other hand, the standard boosting is able to improve 
both recall and precision of a single classifier, since it 
gives all errors equal weights; false positives are as 
important as false negatives in boosting. Our goal is to 
embed SMOTE within the boosting procedure to 
additionally improve the recall achieved by the boosting 

procedure, not cause a significant degradation in 
precision, and thus increasing the F-value. SMOTEBoost 
can potentially reach a balance between precision and 
recall due to the utilization of both SMOTE and the 
boosting algorithm thus producing higher F-values. 
SMOTE as a part of SMOTEBoost allows the learners to 
broaden the minority class scope, while the boosting on 
the other hand aims at reducing the number of false 
positives.  
 
Tables 3 to 7 show the precision, recall, and F-values by 
varying the amount of SMOTE for each of the minority 
classes for all four data sets used in our experiments. We 
report the aggregated result of 25 boosting iterations in 
the tables. The improvement was generally higher for the 
data sets where the skew among the classes was also 
higher. Comparing SMOTEBoost and AdaBoost.M1, for 
KDD-Cup’99 data set, the (relative) improvement in F-
value for the U2R class (4.21%) was drastically higher 
than for the R2L class (0.61%). The U2R class was 
significantly less represented in the data set than the R2L 
class (the number of U2R examples was around 15 times 
smaller than he number of examples from R2L class). In 
addition, the (relative) improvements in F-value for the 
mammography (2.2%) and satimage (3.4%) data sets 
were better than for the phoneme data set (1.4%). The 
much lesser imbalance present in the phoneme data set 
causes the boosting and the SMOTEBoost to be 
comparable to each other, while for higher values of the 
SMOTE parameter N, boosting was even better than 
SMOTEBoost. Since the number of majority class 
examples is only twice the number of minority class 
examples in the phoneme data set, increasing the 
SMOTE parameter N to values larger than 200 causes 
that the minority class to become majority. Hence, the 
classifiers in the SMOTEBoost ensemble will now tend 
to over-learn the minority class, causing a higher 
degradation in precision for the minority class and 
therefore reduction in F-value. 
 

 
Table 3: Final values for recall, precision and F-value for minority U2R class when proposed methods are applied on 
KDDCup-99 intrusion data set. (Nu2r corresponds to the SMOTE parameter for U2R class, while Nr2l corresponds to the 
SMOTE parameter for R2L class) 

Method Recall Precision F-value Method Recall Precision F-value
Standard RIPPER 57.35 84.78 68.42 Standard Boosting 80.147 90.083 84.83 

Nu2r=100, Nr2l=100 80.15 88.62 84.17 Nu2r=100, Nr2l=100 83.8 93.4 88.4 
Nu2r=300, Nr2l=100 74.26 92.66 82.58 Nu2r=300, Nr2l=100 87.5 88.8 88.15 

SMOTE 
+ 

RIPPER Nu2r=500, Nr2l=100 68.38 86.11 71.32 

SMOTE-
Boost 

Nu2r=500, Nr2l=100 84.6 92.0 88.1 
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Table 4: Final values for recall, precision and F-value for minority R2L class when proposed methods are applied on 
KDDCup-99 data set. (Nu2r corresponds to the SMOTE parameter for U2R class, while Nr2l corresponds to the SMOTE 
parameter for R2L class) 

Method Recall Precision F-value Method Recall Precision F-value
Standard RIPPER 75.98 96.72 85.11 Standard Boosting 95.46 96.83 96.14 

Nu2r=100, Nr2l=100 94.50 97.45 95.95 Nu2r=100, Nr2l=100 96.1 96.4 96.21 
Nu2r=300, Nr2l=100 94.40 97.60 95.97 Nu2r=300, Nr2l=100 96.97 96.5 96.73 

SMOTE 
+ 

RIPPER Nu2r=500, Nr2l=100 92.99 97.62 95.25 

SMOTE-
Boost 

Nu2r=500, Nr2l=100 96.5 96.7 96.62 

Table 5: Final values for recall, precision and F-value for minority class when proposed methods are applied on 
mammography data set 

Method Recall Precision F-value Method Recall Precision F-value 
Standard RIPPER 48.12 74.68 58.11 Standard Boosting 59.09 77.05 66.89 

N = 100 58.04 64.96 61.31 N = 100 61.73 76.59 68.36 
N = 200 62.16 60.53 60.45 N = 200 62.63 74.54 68.07 
N = 300 62.55 56.57 58.41 N = 300 64.16 69.92 66.92 

SMOTE 
+ 

RIPPER 
N = 500 64.51 53.81 58.68 

SMOT
E-

Boost 
N = 500 61.37 70.41 65.58 

Table 6: Final values for recall, precision and F-value for minority class when proposed methods are applied on 
Satimage data set 

Method Recall Precision F-value Method Recall Precision F-value 
Standard RIPPER 47.43 67.92 55.50 Standard Boosting 58.74 80.12 67.78 

N = 100 65.17 55.88 59.97 N = 100 63.88 77.71 70.12 
N = 200 74.89 48.08 58.26 N = 200 65.35 73.17 69.04 
N = 300 76.32 47.17 57.72 N = 300 67.87 72.68 70.19 

SMOTE 
+ 

RIPPER 
N = 500 77.96 44.51 56.54 

SMOTE
-Boost 

N = 500 67.73 69.5 68.6 

Table 7: Final values for recall, precision and F-value for minority class when proposed methods are applied on 
phoneme data set 

Method Recall Precision F-value Method Recall Precision F-value 
Standard RIPPER 62.28 69.13 65.15 Standard Boosting 76.1 77.07 76.55 

N = 100 82.18 59.91 68.89 N = 100 81.86 73.66 77.37 
N = 200 85.88 58.51 69.59 N = 200 84.86 76.47 76.47 
N = 300 89.79 56.15 69.04 N = 300 86 66.76 75.16 

SMOTE 
+ 

RIPPER 
N = 500 94.2 50.22 65.49 

SMOTE
-Boost 

N = 500 88.46 65.16 75.04 
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Figure 5. Overall averaged F-values for minority class when the SMOTEBoost algorithm is applied on mammography 
data set 
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Figure 7. Overall averaged F-values for minority class when the SMOTEBoost algorithm is applied on phoneme data 
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5. Conclusions 
 
A novel approach for learning from the rare class is 
presented. The proposed SMOTEBoost algorithm is 
based on the integration of the SMOTE algorithm within 
the standard boosting procedure. Experimental results 
from several imbalanced data sets indicate that the 
proposed SMOTEBoost algorithm can result in better 
prediction of minority classes, without hurting the 
prediction performance of the majority class. Data sets 
used in our experiments contained different degrees of 
imbalance and different sizes, thus providing a diverse 
test bed. 
 
The SMOTEBoost algorithm successfully utilizes the 
benefits from both the boosting procedure and the 
SMOTE algorithm. While boosting improves the 
predictive accuracy of classifiers by focusing on difficult 
examples that belong to all the classes, the SMOTE 
algorithm improves the performance of a classifier only 
on the minority class examples. Therefore, introducing 
SMOTE in the boosting algorithm forces the boosting 
algorithm to focus more on difficult examples that 
belong to the minority class than to the majority class. 
SMOTEBoost implicitly increases the weights of the 
misclassified minority class instances (false negatives) in 
the distribution Dt by increasing the number of minority 
class instances using the SMOTE algorithm. Therefore, 
in the subsequent boosting iterations SMOTEBoost is 
able to create broader decision regions for the minority 
class compared to the standard boosting.  
 
We conclude that the SMOTEBoost can construct an 
ensemble of diverse classifiers and reduce the bias of the 
classifiers. SMOTEBoost combines the power of 
SMOTE in vastly improving the recall with the power of 
boosting in improving the precision. The overall effect is 
better F-value. As a part of future work, we would like to 
be able to dictate the amount of SMOTE for each data 
set. This will not only be useful when deploying SMOTE 
as an independent approach, but also for combining 
SMOTE and boosting. We would also like to compare 
SMOTEBoost with other cost and distribution sensitive 
boosting algorithms in the literature. Another open 
question we would like to address is performance of 
SMOTEBoost in the presence of mislabeling noise. 
Since, boosting is a weak procedure in the presence of 
noise, what is the effect of SMOTEBoost in that 
scenario? Does SMOTEBoost make boosting stronger or 
weaker? If we SMOTE between a noisy example (a 
negative example labeled as positive) and “correct” 
examples, will it lead to driving the noise towards the 
correctly labeled examples? However, in the presence of 
mislabeling of positive class examples as negative class 
examples, we believe that SMOTEBoost might mitigate 
the effect of that noise; it reduces the weights of the 

majority (negative) class cases by focusing more on the 
minority (positive) class cases.  
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