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Abstract

The paper presents a series of noise detection
experiments in a medical problem of coronary
artery disease diagnosis. The following algo-
rithms for noise detection and elimination are
tested: a saturation filter, a classification fil-
ter, a combined classification-saturation fil-
ter, and a consensus saturation filter. The
distinguishing feature of the novel consensus
saturation filter is its high reliability which is
due to the multiple detection of potentially
noisy examples. Reliable detection of noisy
examples is important for the analysis of pa-
tient records in medical databases, as well as
for the induction of rules from filtered data,
representing genuine characteristics of the di-
agnostic domain. Medical evaluation in the
problem of coronary artery disease diagnosis
shows that the detected noisy examples are
indeed noisy or non-typical class representa-
tives.

1 INTRODUCTION

Effective noise handling is one of the most difficult
problems in inductive machine learning. The predic-
tion accuracy and applicability of induced rules signif-
icantly depend on appropriate noise handling proce-
dures. Noise usually means random errors in training
examples (erroneous attribute values and/or erroneous
classification). In this work we use the term noise in
a broader sense of outliers [17] denoting all examples
that do not follow the same model as the rest of the
data. This definition “includes not only erroneous data
but also surprising veridical data” [10], including non-
typical class representatives.
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A target concept of a given problem domain is defined
as the source of all possible correct examples. An in-
ductive learning task is to find a good representation
of the target concept in a selected hypothesis language.
This representation is called a target theory. The main
property of a target theory is that it should be correct
for all the correct domain examples. A domain may
consist of instances of a single concept, a set of sub-
concepts, a main concept and some subconcepts, etc.
These domain characteristics together with the restric-
tions of the used hypothesis language may cause that
in some cases a target theory may have the form of a
single theory description, a set of subtheory descrip-
tions or a main theory description and its exceptions
[6].

In an ideal inductive learning problem, the induced hy-
pothesis H is indeed a target theory that will ‘agree’
with the classifications of training examples £ and will
thus perform as a perfect classifier on yet unseen in-
stances. In practice, however, it frequently happens
that data given to the learner contain various kinds of
errors, either random or systematic. Random errors
are usually referred to as noise. Therefore, in most
real-life problems the success of machine learning very
much depends on the learner’s noise-handling capabil-
ity, i.e., its ability of appropriately dealing with noisy
data. Although noise in training examples may be
due to erroneous attribute values and erroneous class
labels, machine learning algorithms usually treat noisy
examples as being mislabeled.

It should be noted again that the term noise used in
this work does not refer only to errors in the data. As
opposed to the standard terminology, the term noise is
here used as a synonym for outliers: it refers to errors
(incorrect examples) as well as exceptions (correct ex-
amples representing some relatively rare subconcept of
the target concept). The reasoning behind this deci-



sion is that, from the point of view of induction, excep-
tions have the same effect on the induction process as
erroneous examples themselves. Distinguishing excep-
tions from noise and hypothesis generation including
the representation of exceptions have been studied also
by other authors, for example [16, 3].

Detection and elimination of noisy examples from the
training set helps in the induction of the target hypoth-
esis - a hypothesis induced from noiseless data will be
less complex and more accurate when classifying un-
seen cases. In contrast to the so-called noise tolerant
procedures for noise handling, such as rule truncation
and tree pruning [14, 15], this work is concerned with
the explicit detection and elimination of noisy data in
data preprocessing. This work upgrades the earlier
work of the authors on Occam’s razor applicability for
noise detection and elimination [7, 8]. The approach
is based on the observation that the elimination of
noisy examples, in contrast to the elimination of ex-
amples for which the target theory is correct, reduces
the CLCH value of the training set (CLCH stands for
the Complexity of the Least Complex correct Hypoth-
esis). This noise detection algorithm is called the sat-
uration filter, since it employs the CLCH measure to
test whether the training set is saturated, i.e., whether
it, can be used to induce a stable target theory. Re-
cently, an alternative approach to explicit noise de-
tection and elimination has been suggested [1]. The
basic idea of this noise elimination algorithm, called a
classification filter in this paper, is to use one or more
learning algorithms (that may but do not have to in-
clude explicit noise handling) to create classifiers that
serve as filters for the training data. The experimental
results published in [1] provide evidence that classifi-
cation filters can successfully deal with noisy data.

In this work, a problem of diagnosis of coronary artery
disease [9] is used to perform a series of noise detec-
tion experiments. Included are the experiments with
our rule learner ILLM (Inductive Learning by Logic
Minimization) [5] used without its noise handling ca-
pability, the saturation filter used with ILLM, the clas-
sification filter with ILLM as the incorporated clas-
sifier, and two novel approaches: a combination of
noise filtering approaches called the combined classi-
fication-saturation filter and the consensus saturation
filter with various consensus levels which employ dif-
ferent ways of n-fold saturation filtering, aimed at in-
creasing the reliably of noisy example detection.

2 NOISE FILTERING
ALGORITHMS

Four noise filtering algorithms are presented, aimed
at the detection and elimination of noisy training ex-
amples: our noise filtering algorithm (here called the
saturation filter, [7, 8]), the noise filtering algorithm
by Brodley and Friedl (here called the classification
filter, [1]) and two new algorithms that combine the
two approaches to noise filtering.

2.1 SATURATION FILTER

Our approach to noise filtering has its theoretical foun-
dation in the saturation property of training data [8].
The algorithm, described in detail in [7], is outlined
here for the sake of completeness.

Suppose that a complexity measure c¢ is defined and
that for any hypothesis H its complexity ¢(H) can be
determined. Based on this complexity measure, for a
training set E one can determine the complexity of
the least complex hypothesis correct for all the exam-
ples in F; this complexity, denoted by g(F) is called
the CLCH value (Complexity of the Least Complex
Hypothesis, correct for all the examples in E).

In [8] we have shown that if E is noiseless and satu-
rated (containing enough training examples to find a
correct target hypothesis), then g(E) < g(E,), where
E, = EU{e,} and e, is a noisy example for which
the target hypothesis is not correct. The property
9(E) < g(E,) means that noisy examples can be de-
tected as those that enable CLCH value reduction.
The approach in an iterative form is applicable also
when F,, includes more than one noisy example.

It must be noted that the saturation property of a
training set is the main theoretical condition for the
presented filter. In practice many domains have a re-
stricted number of training examples and hence we
may assume that these domains do not satisfy the
saturation condition. Notice, however, that the de-
scribed algorithm is applicable without changes also
in this case. The reason is that for some subcon-
cept of the domain there may still be enough training
examples so that this subpart of the domain is sat-
urated; hence, a subtheory description is induced by
the learner whereas all other examples are eliminated
since the learner will treat them as being erroneous or
expections of the subtheory description being learned

[6].

The greatest practical problem of the saturation fil-



ter is the computation of the CLCH value g(E) for a
training set E. In rule-based induction, the hypoth-
esis complexity measure ¢(H) can be defined as the
number of attribute value tests (literals) used in the
hypothesis H. In this case, the corresponding g(E)
value can be defined as the minimal number of literals
that are necessary to build a hypothesis that is correct
for all the examples in E.

Suppose that the training set is contradiction free
(there are no examples that differ only in their class
value), and that the set of literals L defined in the hy-
pothesis language is sufficient for finding a hypothesis
H which is correct for all examples in E. Then the
necessary and sufficient condition for a subset L' C L
to have this same property is that for every possible
example pair, such that the first example in the pair
is a positive example from FE and the second one is
negative, there must be at least one literal in L' which
covers the pair. A literal covers a pair if it is true for
the positive and false for the negative example in the
pair. This fact enables that the g(E) value defined by
the minimal number of literals can be computed by
any minimal covering algorithm over the set of exam-
ple pairs. In this work, the ILLM heuristic minimal
covering algorithm, presented here as Procedure 1 in
Figure 1, is used. The advantages of this approach
are: ¢g(F) computation does not require the actual
construction of a hypothesis and the g(E) value can
be determined relatively fast. This approach presents
the heart of the saturation noise filtering method used
in this work.

The procedure starts with the empty set of selected
literals L' (step 1) and the set U’ of yet uncovered
example pairs equal to all possible pairs of one positive
and one negative example from the training set (step
3), for which in (step 2) weights v(e;, e;) have been
computed. The weight of a pair is high if the pair
is covered by a small number of distinct literals from
L. The meaning of this measure is that for a pair
with a high weight it will be more difficult to find an
appropriate literal which will cover this pair than for
a pair with a small weight.

Each iteration of the main algorithm loop (steps 4 —
11) adds one literal to the minimal set L' (step 9).
At the same time, all example pairs covered by the
selected literal are eliminated from U’ (step 10). The
algorithm terminates when U’ remains empty. In each
iteration we try to select the literal which covers a
maximal number of ‘heavy’ example pairs (pairs with
high weight). This is achieved so that a pair (e,,ep)
is detected which is covered by the least number of

Procedure 1: MINIMAL COVER

Input: U (set of example pairs), L (set of literals)

Output: L' (minimal set of literals)

(1) L'+«

(2)  for every (e;,e;) € U compute weights
v(ei,ej) = 1/z, where z is the number of
literals [ € L that cover (e;, e;)

U +U

while U’ # () do
select (eq, ep)

(easep) € U': (eq,ep) = arg maz v(e;, €;)
where maz is over all (e;,e;) € U’

(6) Loy < {l |1 € L covering (e, ep)}

(7) for every | € L,, compute
w(l) =Y v(ei,ej), where sum is over all
(ei,e;) € U’ covered by [

(8) select literal Is: 15 = arg maz w(l),
where max is over all [ € Ly

(9) L'« L'u{l}

(10) U' « U'"\ {all (e;,e;) covered by I5}

end while

Figure 1: Heuristic minimal covering algorithm.

literals (step 5). At least one of the literals from the
set Lqp with literals that cover this pair (step 6), must
be included into the minimal set L'. To determine
this literal, for each of them weight w(l) is computed
(step 7) and the literal with the maximal weight is
selected (step 8). The weight of a literal is the sum of
the weights of example pairs that are covered by the
literal.

Algorithm 1 in Figure 2 presents the saturation fil-
ter. It begins with the reduced training set E’' equal
the input training set E (step 1) and an empty set of
detected noisy examples A (step 2). The algorithm
supposes that the set of all appropriate literals L for
the domain is defined. U represents a set of all possi-
ble example pairs where the first example in the pair
is from the set of all positive training examples P’ in
the reduced set E’, and the second example is from the
set N' of all negative examples in the reduced train-
ing set E'. The algorithm detects one noisy example
per iteration. The base for noise detection are weights
w(e) which are computed for each example e from E'.
Initially all w(e) values are initialized to 0 (step 6). At
the end, the example with maximum weight w(e) is se-
lected (step 17). If the maximum w(e) value is greater
than the parameter e, predefined value then the cor-
responding training example is included into the set A



Algorithm 1: SaturationFilter(FE)
Input: E (training set), L (set of literals)

Parameter: 5, (noise sensitivity parameter)
Output: A (detected noisy subset of E)

(1) E«E

(2) A<«

(3) while E' # () do

(4) find U, set of all possible example pairs

for examples in B’

so that V(e;,e;) €U 3 1€ L'
with the property [ covers (e;, €;)
initialize w(e) < 0 for all e € E'
for every [ € L' do
P*«(, N* <0
for every (e;,e;) € U
) if (e;, e;) covered by I and
no other literal from L' then
P* + P*U{e;}, N* «+ N* U{ej}
end for
if P* =0 then L' + L'\ {l}
and goto step 6

where max is computed over all e € E’

(18) if w(es) > ep, then

(19) A+ AU{es}

(20) E' +— E'\ {es}

(21) else exit with generated sets A and E'
(22) end while

Figure 2: Saturation filter.

(step 19) and eliminated from the reduced training set
E' (step 20). The new iteration of noise detection be-
gins with this reduced training set (steps 3 22). The
algorithm terminates when in the last iteration no ex-
ample has w(e) greater than £;,. Noisy examples in A
and the noiseless E' are the output of the algorithm.

Computations in each iteration begin with the search
for the minimal set of literals L' that cover all exam-
ple pairs in U (calling Procedure 1 in step 5). A pair
of examples is covered by a literal [ if the literal is
evaluated true for the positive example and evaluated
false for the negative example in the pair. This step
represents the computation of the g(FE’) value. Next,
a heuristic approach is used to compute weights w(e)

call Procedure 1 to find minimal L', L' C L

(14) for every e € P* do w(e) «+ w(e) + ‘P]*‘
(15) for every e € N* do w(e) < w(e) + \1\}*\
(16) end for

(17) select example es: es = arg maz w(e),

that measure the possibility that the elimination of
an example e would enable g(E’) reduction. Weights
w(e) are computed so that for every literal I from L',
minimal sets of positive (P*) and negative examples
(N*) are determined, such that if P* or N* are elimi-
nated from E' then | becomes unnecessary in L'. This
is done in a loop (steps 9-12) in which every exam-
ple pair is tested if it is covered by a single literal [.
If such a pair is detected (step 10) then its positive
example is included into the set P* and its negative
example into the set N* (step 11). Literal elimination
from L' presents the reduction of the g(E') value. If
a literal can be made unnecessary by the elimination
of a very small subset of training examples, then this
indicates that these examples might be noisy. In steps
14 and 15, the w(e) weights are incremented only for
the examples which are the members of the P* and
N* sets. The weights are incremented by the inverse
of the total number of examples in these sets. Weights
are summed over all literals in L'. Step 13 is necessary
because of the imperfectness of the heuristic minimal
cover algorithm. Namely, if some | € L' exists for
which there is no example pair that is covered only by
this literal (i.e., for which either P* = () or N* = 0),
this means that L' is actually not the minimal set be-
cause L'\ {I} also covers all example pairs in U. In
such case L' is substituted by L'\ {l}.

The presented saturation filter uses the parameter ey
that determines noise sensitivity of the algorithm. The
parameter can be adjusted by the user in order to
tune the algorithm to the domain characteristics. Rea-
sonable values are between 0.25 and 2. For instance,
the value 1.0 guarantees the elimination of every such
example by whose elimination the set L' will be re-
duced for at least one literal. Lower ¢, values mean
greater sensitivity of the algorithm (i.e., elimination of
more examples): lower €, values should be used when
the domain noise is not completely random, and when
dealing with large training sets (since statistical prop-
erties of noise distribution in large training sets can
have similar effects). In ILLM the default values of ¢,
are between 0.5 and 1.5, depending on the number of
training examples in the smaller of the two subsets of
E: the set of positive examples P or the set of negative
examples N. Default values for the saturation filter’s
noise sensitivity parameter € are: 1.5 for training sets
with 2 50 examples, 1.0 for 51 100 examples, 0.75 for
101-200 examples, and 0.5 for more than 200 exam-
ples.



Algorithm 2: ClassificationFilter(E)

Input: E (training set)

Parameter: n (number of subsets, typically 10)

Output: A (detected noisy subset of E)

) form n disjoint almost equally sized
subsets E;, where U;E; = F

—~
—

(2) A+
(3) fori=1,...,n do
(4) form E, «+ E\ E;
(5) induce H, based on examples in E,
(using some inductive learning system)
(6) for every e € E; do
(7) if H, incorrectly classifies e
then A < AU {e}
(8) end for
(9)  end for

Figure 3: Classification filter.

2.2 CLASSIFICATION FILTER

The n-fold cross-validation method is a substantial
part of this filtering algorithm. The classification fil-
ter (Algorithm 2, shown in Figure 3) begins with n
equal-sized disjoint subsets of the training set E (step
1) and the empty output set A of detected noisy exam-
ples (step 2). The main loop (steps 3-9) is repeated for
each training subset F;. In step 4, subset F, is formed
which includes all examples from E except those in E;.
Set E, is used as the input for an arbitrary inductive
learning algorithm that induces a hypothesis (a classi-
fier) H, (step 5). Those examples from E; for which
the hypothesis H, does not give the correct classifi-
cation are added to A as potentially noisy examples
(step 7).

2.3 COMBINED
CLASSIFICATION-SATURATION
FILTER

A combined classification-saturation algorithm is very
similar to the original classification filtering approach.
The only difference is that saturation filtering is used
for every subset FE, in order to eliminate noise from
E,. The intention of this modification is the induc-
tion of more appropriate hypotheses H, and more re-
liable noise detection based on these. The combined
classification-saturation filter algorithm is the same as
the classification filter with added saturation-based fil-
tering between its steps 4 and 5.

Algorithm 3: ConsensusSaturationFilter(FE)

Input: E (training set)

Parameter: n (number of subsets, typically 10)

Parameter: v (consensus level, typically n — 1)

Output: A (detected noisy subset of E)

(1)  form n disjoint almost equally sized
subsets F;, where U; F; = F

(2) A+

(3) fori=1,...,ndo

(4) form E, «+ E\ E;

(5) A; < SaturationFilter(E,)

(6) end for

(7) for every e € E do

(8) c+ 0

(9) fori=1,...,n if e€ A;,c+c+1
(10) ife>v, A+« AU{e}

(11) end for

Figure 4: Consensus saturation filter.

2.4 CONSENSUS SATURATION FILTER

The n-fold cross-validation method is also a substan-
tial part of the consensus saturation filtering algo-
rithm (Algorithm 3, shown in Figure 4). Like in
the combined classification-saturation filter, subset F,
is constructed (step 4) and noise eliminated from it
by a saturation filter. In contrast to the combined
classification-saturation filter, this reduced E, is not
used for hypothesis induction. Instead, detected noise
is simply saved in the set A; (step 5). When the pro-
cedure is performed for all E; subsets, then n gener-
ated A; sets are used to determine the elements of the
output set A (steps 7 11). Since the same example e
occurs in n—1 of F, subsets, in an ideal case the same
noisy example may occur in n — 1 sets A;. In this sit-
uation, detected by counter ¢ (steps 9 11), example e
is added to the output noisy set A (step 10), since the
consensus of all A; sets is reached. In practice we may
allow that an example is detected as noisy and added
to A also in cases when it is included in less than n—1
sets A;. Parameter v with values less than n — 1(e.g.,
n — 2, n — 3) enables this possibility.



3 EXPERIMENTAL EVALUATION

3.1 DOMAIN DESCRIPTION: DIAGNOSIS
OF CORONARY ARTERY DISEASE

Coronary artery disease (CAD) is a result of dimin-
ished blood flow through coronary arteries due to
stenosis or occlusion. The consequence of CAD is an
impaired function of the heart and possible necrosis of
the myocardium (myocardial infarction).

The dataset, collected at the University Medical Cen-
ter, Ljubljana, Slovenia, includes 327 patients (250
men and 77 women, mean age 55 years). Each patient
had performed clinical and laboratory examinations
including ECG during rest and exercise, myocardial
perfusion scintigraphy and finally the coronary angiog-
raphy that provides for the actual diagnosis of coro-
nary artery disease. In 229 patients, CAD was con-
firmed by angiography, and for 98 patients it was not
confirmed. The patients’ clinical and laboratory data
are described by 77 attributes. This dataset was pre-
viously used for inducing diagnostic rules by a number
of machine learning algorithms [9, 11].

3.2 EXPERIMENTAL DESIGN AND
RESULTS

According to the standard 10-fold cross-validation pro-
cedure, the original data set was partitioned into 10
folds with 32 or 33 examples each. Training sets are
built from 9 folds, leaving one fold is a test set. Let
G denote the entire set of training examples, T; is an
individual test set (consisting of one fold), and G; the
corresponding training set (G; < G\ T;, composed on
nine folds). In this way, 10 training sets Gy - Gy, and
10 corresponding test sets, Ty - Ty, were constructed.
Every example occurs exactly once in a test set, and 9
times in training sets.

Different noise detection procedures were used on the
training sets and after the elimination of potentially
noisy examples and hypothesis generation the predic-
tion accuracy was measured on the test sets. The hy-
pothesis was always constructed with the same algo-
rithm so that the differences in the obtained prediction
accuracy reflect only the differences in noise detection.
The used rule construction algorithm was the ILLM
(Inductive Learning by Logic Minimization) system
used without its noise handling capability. The ILLM
rule learning algorithm is similar to the AQ15 and CN2
covering algorithms for rule construction [2, 4].

In the first test we used ILLM (without its noise han-

dling capability) to induce rules on complete Gy - Gy
training sets. On the test sets Ty - Ty we measured the
number of prediction errors: on the average, there were
5.5 prediction errors per test set. This corresponds to
the 83.1% average prediction accuracy. This result,
presented in the first row (A) of Table 1, presents the
baseline for comparing the quality of different noise
elimination algorithms. The average number of elimi-
nated training examples is 0 because no noise elimina-
tion has been used. Generated rules are complete and
consistent with all training examples in corresponding
training sets.

In all other experiments instead of Gg - Gy, reduced
training sets Gy - G were used as the input to induc-
tive learning. Reduced training sets G} were obtained
by the elimination of noisy examples, G + G; \ A,
where A represent noisy set outputs of different filter-
ing algorithms for G; as input training sets.

3.2.1 Saturation Filter

By using the saturation filter presented in Section 2.1
with the e, parameter set to 1.0, the average predic-
tion error was 3.6 examples per test set, which corre-
sponds to the 89.0% average prediction accuracy. The
result is presented in the second row (S) of Table 1.
Compared to the results in row A this is a substantial
improvement. This result was obtained by an average
elimination of 30.2 examples per iteration, which rep-
resents about 10% of the training sets. A comparison
to prediction results obtained by other authors, using
very different machine learning methods, which are all
between 86.6% and 89.7% [11], indicates that 10% of
detected and eliminated noise seems to be realistic.
Both the prediction accuracy and the number of elim-
inated examples demonstrate that saturation filtering
can be used as an effective noise handling mechanism.

3.2.2 Classification Filter

Using the classification filter, described in Section 2.2,
with parameter n = 10 for noise detection, in aver-
age 4.7 prediction errors per test set were made. This
corresponds to the 85.6% average prediction accuracy.
This result, presented in the third row (C) of Table
1, represents an improvement in accuracy when com-
pared to the result of row A although it is not as good
as the result obtained by the saturation filter (row S).
Nevertheless, this result is important because the clas-
sification filter is computationally much simpler than
the saturation filter. Additionally, according to [1], the
use of simple voting mechanisms based on the results
of filtering by different learning approaches (not neces-



Algorithm | Predict. err. | Accuracy | Elimin. ex.
A 5.5  (3.03) 831 % 0
S 3.6 (1.96) 89.0 % 30.2  (2.78)
C 4.7  (1.64) 85.6 % 52.6  (4.58)
CS 3.6 (1.71) 89.0 % 36.5 (4.34)
S9 42  (1.48) 87.2 % 12.5  (2.46)
S8 3.6 (1.17) 89.0 % 175 (2.12)
S7 3.6 (1.35) 89.0 % 19.8 (2.20)

Table 1: Average number of prediction errors (with
standard deviation in parentheses), average prediction
accuracy, and average number of eliminated examples
(with standard deviation in parentheses) for different
noise detection algorithms: A - ILLM without noise
handling, S - saturation filter, C - classification filter,
CS - combined classification-saturation filter, S9,5S8,57
- consensus saturation filters with varied levels of con-
sensus.

sarily only inductive learning approaches) can further
improve the reliability of this noise detection process.
This possibility was not investigated in this work.

The average number of eliminated examples per train-
ing set was 52.6. This means that the classification
filter practically detected every fifth training example
as potentially noisy. This shows a weakness of the clas-
sification filter: it is non-selective. Too many examples
are detected as being potentially noisy.

3.2.3 Combined Classification-Saturation
Filter

Results obtained with noise filtering performed by
the combined classification-saturation filter (see Sec-
tion 2.3, n=10, g5, = 1.0) are presented in CS row of
Table 1. The measured average error was 3.6 exam-
ples representing the 89.0% average accuracy. It can
be concluded that the combination of the two differ-
ent noise detection algorithms is advantageous only in
comparison with the classification filtering approach.
The combined approach namely resulted in the aver-
age of 36.5 detected and eliminated potentially noisy
examples per training set. Although this number is
smaller than the one for the classification filter (row
C with 52.6 examples) it seems that non-selectiveness
is an inherent characteristic of classification filtering
when a single classifier is used.

3.2.4 Consensus Saturation Filter

The relative success of the classification filter, which
enables significant prediction accuracy improvement
using a learning algorithm without noise handling,

stimulated a series of experiments in which we tried
to test if a mechanism similar to the one used in the
classification filter could improve the results of satura-
tion filtering. In all the experiments parameter n was
set to 10 and €,=1.0, while changing the consensus
level v. With a default value v = 9 the average num-
ber of eliminated examples per training set was only
12.5 and the average number of prediction errors on
test sets was 4.2 (presented in S9 row of Table 1).

This result is important since a satisfactory predic-
tion accuracy was achieved by the elimination of a
very small number of training examples. When com-
pared with saturation filtering itself (row S) we see
that by requiring the consensus of filtering in 10-fold
validation, lower prediction accuracy (87.2% instead of
89.0%) was achieved by a significantly smaller average
number of eliminated examples (12.5 instead of 30.2).

The described consensus filtering approach seems to
be a reliable noise detection algorithm. A further
proof of this claim is the following: from the total of
125 examples eliminated by the consensus filter (row
S9), 124 of them were detected also by the combined
classification-saturation filter (row CS) which, how-
ever, eliminated 365 examples in total.

Requiring consensus in 10-fold validation results in
noise detection of high specificity. However, the de-
creased prediction accuracy indicates that the algo-
rithm’s sensitivity is too low. This can be the conse-
quence of a too high consensus level (in order to declare
an example to be potentially noisy, the example had to
be tagged as potentially noisy in all subsets in which
it occurs, i.e., in 9 subsets).

The algorithm’s noise sensitivity can easily be in-
creased by decreasing the consensus level v. In this
way, relaxed consensus filters can be constructed.
Rows S8 and S7 present results obtained by setting
the consensus levels to 8 and 7, respectively. In both
cases the increase in sensitivity resulted in the increase
of the achieved prediction accuracy. Good prediction
accuracy of 89.0%, as in cases S and CS, is obtained by
relaxed consensus filtering but with significantly fewer
potentially noisy examples eliminated.

3.3 MEDICAL EVALUATION

The results of described experiments suggest that con-
sensus saturation filtering (with consensus level 9, row
S9 of Table 1) presents a reliable tool for the detection
of examples that are indeed noisy. In order to test the
practical usefulness of noise detection by the consensus
saturation filter, we applied the described approach to



the whole coronary artery disease dataset of 327 exam-
ples. In this case the training sets Gy - Gy were used
as 10 training subsets for the consensus filter. In total
15 potentially noisy examples were detected. This is
in accordance with the result obtained for G - Gg sets
for which the average value of eliminated examples was
12.5.

The detected examples were shown to a domain expert
for evaluation. In order to make the task more difficult
to the expert, we formed a set of 20 examples consist-
ing of 15 examples detected as noisy by the consensus
saturation filter, and additional 5 randomly selected
non-noisy examples. The expert analyzed the group
of these 20 examples as a whole. Out of these 20 ex-
amples, 13 were of class non-confirmed (11 detected
potentially noisy and 2 other examples of class non-
confirmed), and 7 were of class confirmed (4 detected
potentially noisy examples and 3 other examples of
class confirmed).

In the class non-confirmed the expert recognized 11
cases as being outliers, and these examples were ex-
actly those selected by the noise detection algorithm.
For 8 of these 11 cases the problem was a high grade
of stenosis of coronary arteries, very close to the pre-
defined value that distinguishes between patients with
confirmed and non-confirmed coronary artery disease.
Other 3 cases represented patients who did not have
actual coronary heart disease problems but rather
problems due to recent miocardial infarction, function-
ally malfunctioning by-pass, and valve disease.

For the class confirmed the expert detected 4 poten-
tially noisy cases three of which were selected also by
the noise detection algorithm and one of the randomly
selected cases of this class. For all 4 cases the detected
grade of stenosis was very close to the border line be-
tween the two classes. Additionally, for one patient
the values of measured parameters were detected as
non-typical due to the improper level of stress during
measurements.

The expert has also analyzed four diagnostic parame-
ters MAIN (main coronary artery), LAD (left anterior
descendens), LCX (left circumflex) and RCA (right
coronary artery). Each of these parameters has val-
ues between 0 and 3 and denotes the level of stenosis
or occlusion in the corresponding artery. The value 0
denotes no stenosis, value 1 up to 50%, value 2 cor-
responds to 50%—-75%, and value 3 represents more
than 75% of stenosis or occlusion. Average values of
these parameters are computed for all non-confirmed
class cases and 11 non-confirmed class cases selected

non-confirmed cases | confirmed cases

all 11 noisy all 4 noisy
MAIN | 0.01 0.09 1.53 0.50
LAD 0.29 0.73 2.15 0.75
LCX 0.10 0.45 1.31 0
RCA | 0.15 0.18 1.38 0

Table 2: Average values for 4 diagnostic parameters.

as noise, as well as for all confirmed class cases and
4 confirmed class cases selected as noise. Results are
presented in Table 2. It can be noticed that for all four
parameters, noisy non-confirmed cases have higher av-
erage values than those computed for the whole class.
On the contrary, for the confirmed class, for all four
parameters noisy examples have lower average values
than average values for the whole class of 229 cases.

The analysis shows that, except for a few patients
who did not have actual coronary heart disease prob-
lems, most of cases detected as noise represent a spe-
cial group of patients whose coronary angiography re-
sults are very close to the border line between the two
classes CAD confirmed and not-confirmed. By a slight
change of the definition of class confirmed these cases
can change their class value, therefore it is clear that
they are non-typical training cases. Their elimination
from the training set, as well as the elimination of pa-
tients who did not have actual coronary heart disease
problems and patients with improperly measured pa-
rameters, is reasonable if one wants to induce diag-
nostic rules uncovering characteristic properties of pa-
tients with CAD.

4 CONCLUSION

be a very useful and important step in data prepro-
cessing for any inductive learning algorithm. Namely,
the detection and filtering of potentially noisy exam-
ples is itself an important result that may be useful in
practice for data cleansing.

Standard deviations, presented as parenthesized num-
bers in Table 1, show that the differences of achieved
prediction accuracies by different noise filtering algo-
rithms are not significant. On the other hand, most
of the differences in the numbers of eliminated noisy
examples are significant and represent genuine charac-
teristics of the presented noise filtering algorithms.

It is interesting that a simple classification filtering
approach, based on an iterative application of a ma-



chine learning algorithm (without noise handling) by
itself enables an improvement of the prediction accu-
racy. However, in the coronary artery disease diagnos-
tic domain, best prediction accuracies were achieved
by the approaches which include saturation filtering.
The proposed consensus saturation filter is an inter-
esting combination: it eliminates only a small number
of potentially noisy examples, with a very high proba-
bility of actually being noisy. This property may turn
out to be decisive for a broader applicability of noise
detection algorithms. The experiments suggest that a
relaxed consensus saturation filter (see row S8 in Table
1) represents a very good solution to the problem of
noise filtering.
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