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Dragan GambergerRudjer Bo�skovi�c InstituteBijeni�cka 5410000 Zagreb, CroatiaDragan.Gamberger@irb.hr Nada Lavra�cJozef Stefan InstituteJamova 391000 Ljubljana, SloveniaNada.Lavrac@ijs.si Ciril Gro�seljUniversity Medical Centre LjubljanaZalo�ska 71000 Ljubljana, SloveniaAbstractThe paper presents a series of noise detectionexperiments in a medical problem of coronaryartery disease diagnosis. The following algo-rithms for noise detection and elimination aretested: a saturation �lter, a classi�cation �l-ter, a combined classi�cation-saturation �l-ter, and a consensus saturation �lter. Thedistinguishing feature of the novel consensussaturation �lter is its high reliability which isdue to the multiple detection of potentiallynoisy examples. Reliable detection of noisyexamples is important for the analysis of pa-tient records in medical databases, as well asfor the induction of rules from �ltered data,representing genuine characteristics of the di-agnostic domain. Medical evaluation in theproblem of coronary artery disease diagnosisshows that the detected noisy examples areindeed noisy or non-typical class representa-tives.1 INTRODUCTIONE�ective noise handling is one of the most di�cultproblems in inductive machine learning. The predic-tion accuracy and applicability of induced rules signif-icantly depend on appropriate noise handling proce-dures. Noise usually means random errors in trainingexamples (erroneous attribute values and/or erroneousclassi�cation). In this work we use the term noise ina broader sense of outliers [17] denoting all examplesthat do not follow the same model as the rest of thedata. This de�nition \includes not only erroneous databut also surprising veridical data" [10], including non-typical class representatives.

A target concept of a given problem domain is de�nedas the source of all possible correct examples. An in-ductive learning task is to �nd a good representationof the target concept in a selected hypothesis language.This representation is called a target theory. The mainproperty of a target theory is that it should be correctfor all the correct domain examples. A domain mayconsist of instances of a single concept, a set of sub-concepts, a main concept and some subconcepts, etc.These domain characteristics together with the restric-tions of the used hypothesis language may cause thatin some cases a target theory may have the form of asingle theory description, a set of subtheory descrip-tions or a main theory description and its exceptions[6].In an ideal inductive learning problem, the induced hy-pothesis H is indeed a target theory that will `agree'with the classi�cations of training examples E and willthus perform as a perfect classi�er on yet unseen in-stances. In practice, however, it frequently happensthat data given to the learner contain various kinds oferrors, either random or systematic. Random errorsare usually referred to as noise. Therefore, in mostreal-life problems the success of machine learning verymuch depends on the learner's noise-handling capabil-ity, i.e., its ability of appropriately dealing with noisydata. Although noise in training examples may bedue to erroneous attribute values and erroneous classlabels, machine learning algorithms usually treat noisyexamples as being mislabeled.It should be noted again that the term noise used inthis work does not refer only to errors in the data. Asopposed to the standard terminology, the term noise ishere used as a synonym for outliers: it refers to errors(incorrect examples) as well as exceptions (correct ex-amples representing some relatively rare subconcept ofthe target concept). The reasoning behind this deci-



sion is that, from the point of view of induction, excep-tions have the same e�ect on the induction process aserroneous examples themselves. Distinguishing excep-tions from noise and hypothesis generation includingthe representation of exceptions have been studied alsoby other authors, for example [16, 3].Detection and elimination of noisy examples from thetraining set helps in the induction of the target hypoth-esis - a hypothesis induced from noiseless data will beless complex and more accurate when classifying un-seen cases. In contrast to the so-called noise tolerantprocedures for noise handling, such as rule truncationand tree pruning [14, 15], this work is concerned withthe explicit detection and elimination of noisy data indata preprocessing. This work upgrades the earlierwork of the authors on Occam's razor applicability fornoise detection and elimination [7, 8]. The approachis based on the observation that the elimination ofnoisy examples, in contrast to the elimination of ex-amples for which the target theory is correct, reducesthe CLCH value of the training set (CLCH stands forthe Complexity of the Least Complex correct Hypoth-esis). This noise detection algorithm is called the sat-uration �lter, since it employs the CLCH measure totest whether the training set is saturated, i.e., whetherit can be used to induce a stable target theory. Re-cently, an alternative approach to explicit noise de-tection and elimination has been suggested [1]. Thebasic idea of this noise elimination algorithm, called aclassi�cation �lter in this paper, is to use one or morelearning algorithms (that may but do not have to in-clude explicit noise handling) to create classi�ers thatserve as �lters for the training data. The experimentalresults published in [1] provide evidence that classi�-cation �lters can successfully deal with noisy data.In this work, a problem of diagnosis of coronary arterydisease [9] is used to perform a series of noise detec-tion experiments. Included are the experiments withour rule learner ILLM (Inductive Learning by LogicMinimization) [5] used without its noise handling ca-pability, the saturation �lter used with ILLM, the clas-si�cation �lter with ILLM as the incorporated clas-si�er, and two novel approaches: a combination ofnoise �ltering approaches called the combined classi-�cation-saturation �lter and the consensus saturation�lter with various consensus levels which employ dif-ferent ways of n-fold saturation �ltering, aimed at in-creasing the reliably of noisy example detection.

2 NOISE FILTERINGALGORITHMSFour noise �ltering algorithms are presented, aimedat the detection and elimination of noisy training ex-amples: our noise �ltering algorithm (here called thesaturation �lter, [7, 8]), the noise �ltering algorithmby Brodley and Friedl (here called the classi�cation�lter, [1]) and two new algorithms that combine thetwo approaches to noise �ltering.2.1 SATURATION FILTEROur approach to noise �ltering has its theoretical foun-dation in the saturation property of training data [8].The algorithm, described in detail in [7], is outlinedhere for the sake of completeness.Suppose that a complexity measure c is de�ned andthat for any hypothesis H its complexity c(H) can bedetermined. Based on this complexity measure, for atraining set E one can determine the complexity ofthe least complex hypothesis correct for all the exam-ples in E; this complexity, denoted by g(E) is calledthe CLCH value (Complexity of the Least ComplexHypothesis, correct for all the examples in E).In [8] we have shown that if E is noiseless and satu-rated (containing enough training examples to �nd acorrect target hypothesis), then g(E) < g(En), whereEn = E [ feng and en is a noisy example for whichthe target hypothesis is not correct. The propertyg(E) < g(En) means that noisy examples can be de-tected as those that enable CLCH value reduction.The approach in an iterative form is applicable alsowhen En includes more than one noisy example.It must be noted that the saturation property of atraining set is the main theoretical condition for thepresented �lter. In practice many domains have a re-stricted number of training examples and hence wemay assume that these domains do not satisfy thesaturation condition. Notice, however, that the de-scribed algorithm is applicable without changes alsoin this case. The reason is that for some subcon-cept of the domain there may still be enough trainingexamples so that this subpart of the domain is sat-urated; hence, a subtheory description is induced bythe learner whereas all other examples are eliminatedsince the learner will treat them as being erroneous orexpections of the subtheory description being learned[6].The greatest practical problem of the saturation �l-



ter is the computation of the CLCH value g(E) for atraining set E. In rule-based induction, the hypoth-esis complexity measure c(H) can be de�ned as thenumber of attribute value tests (literals) used in thehypothesis H . In this case, the corresponding g(E)value can be de�ned as the minimal number of literalsthat are necessary to build a hypothesis that is correctfor all the examples in E.Suppose that the training set is contradiction free(there are no examples that di�er only in their classvalue), and that the set of literals L de�ned in the hy-pothesis language is su�cient for �nding a hypothesisH which is correct for all examples in E. Then thenecessary and su�cient condition for a subset L0 � Lto have this same property is that for every possibleexample pair, such that the �rst example in the pairis a positive example from E and the second one isnegative, there must be at least one literal in L0 whichcovers the pair. A literal covers a pair if it is true forthe positive and false for the negative example in thepair. This fact enables that the g(E) value de�ned bythe minimal number of literals can be computed byany minimal covering algorithm over the set of exam-ple pairs. In this work, the ILLM heuristic minimalcovering algorithm, presented here as Procedure 1 inFigure 1, is used. The advantages of this approachare: g(E) computation does not require the actualconstruction of a hypothesis and the g(E) value canbe determined relatively fast. This approach presentsthe heart of the saturation noise �ltering method usedin this work.The procedure starts with the empty set of selectedliterals L0 (step 1) and the set U 0 of yet uncoveredexample pairs equal to all possible pairs of one positiveand one negative example from the training set (step3), for which in (step 2) weights v(ei; ej) have beencomputed. The weight of a pair is high if the pairis covered by a small number of distinct literals fromL. The meaning of this measure is that for a pairwith a high weight it will be more di�cult to �nd anappropriate literal which will cover this pair than fora pair with a small weight.Each iteration of the main algorithm loop (steps 4 {11) adds one literal to the minimal set L0 (step 9).At the same time, all example pairs covered by theselected literal are eliminated from U 0 (step 10). Thealgorithm terminates when U 0 remains empty. In eachiteration we try to select the literal which covers amaximal number of `heavy' example pairs (pairs withhigh weight). This is achieved so that a pair (ea; eb)is detected which is covered by the least number of

Procedure 1: MINIMAL COVERInput: U (set of example pairs), L (set of literals)Output: L0 (minimal set of literals)(1) L0  ;(2) for every (ei; ej) 2 U compute weightsv(ei; ej) = 1=z, where z is the number ofliterals l 2 L that cover (ei; ej)(3) U 0  U(4) while U 0 6= ; do(5) select (ea; eb)(ea; eb) 2 U 0: (ea; eb) = arg max v(ei; ej),where max is over all (ei; ej) 2 U 0(6) Lab  fl j l 2 L covering (ea; eb)g(7) for every l 2 Lab computew(l) =P v(ei; ej), where sum is over all(ei; ej) 2 U 0 covered by l(8) select literal ls: ls = arg max w(l),where max is over all l 2 Lab(9) L0  L0 [ flsg(10) U 0  U 0 n fall (ei; ej) covered by lsg(11) end whileFigure 1: Heuristic minimal covering algorithm.literals (step 5). At least one of the literals from theset Lab with literals that cover this pair (step 6), mustbe included into the minimal set L0. To determinethis literal, for each of them weight w(l) is computed(step 7) and the literal with the maximal weight isselected (step 8). The weight of a literal is the sum ofthe weights of example pairs that are covered by theliteral.Algorithm 1 in Figure 2 presents the saturation �l-ter. It begins with the reduced training set E0 equalthe input training set E (step 1) and an empty set ofdetected noisy examples A (step 2). The algorithmsupposes that the set of all appropriate literals L forthe domain is de�ned. U represents a set of all possi-ble example pairs where the �rst example in the pairis from the set of all positive training examples P 0 inthe reduced set E0, and the second example is from theset N 0 of all negative examples in the reduced train-ing set E0. The algorithm detects one noisy exampleper iteration. The base for noise detection are weightsw(e) which are computed for each example e from E0.Initially all w(e) values are initialized to 0 (step 6). Atthe end, the example with maximum weight w(e) is se-lected (step 17). If the maximum w(e) value is greaterthan the parameter "h prede�ned value then the cor-responding training example is included into the set A



Algorithm 1: SaturationF ilter(E)Input: E (training set), L (set of literals)Parameter: "h (noise sensitivity parameter)Output: A (detected noisy subset of E)(1) E0  E(2) A ;(3) while E0 6= ; do(4) �nd U , set of all possible example pairsfor examples in E0(5) call Procedure 1 to �nd minimal L0, L0 � Lso that 8(ei; ej) 2 U 9 l 2 L0with the property l covers (ei; ej)(6) initialize w(e) 0 for all e 2 E0(7) for every l 2 L0 do(8) P �  ;, N�  ;(9) for every (ei; ej) 2 U(10) if (ei; ej) covered by l andno other literal from L0 then(11) P �  P � [ feig, N�  N� [ fejg(12) end for(13) if P � = ; then L0  L0 n flgand goto step 6(14) for every e 2 P � do w(e) w(e) + 1jP�j(15) for every e 2 N� do w(e) w(e) + 1jN�j(16) end for(17) select example es: es = arg max w(e),where max is computed over all e 2 E0(18) if w(es) > "h then(19) A A [ fesg(20) E0  E0 n fesg(21) else exit with generated sets A and E0(22) end whileFigure 2: Saturation �lter.(step 19) and eliminated from the reduced training setE0 (step 20). The new iteration of noise detection be-gins with this reduced training set (steps 3{22). Thealgorithm terminates when in the last iteration no ex-ample has w(e) greater than "h. Noisy examples in Aand the noiseless E0 are the output of the algorithm.Computations in each iteration begin with the searchfor the minimal set of literals L0 that cover all exam-ple pairs in U (calling Procedure 1 in step 5). A pairof examples is covered by a literal l if the literal isevaluated true for the positive example and evaluatedfalse for the negative example in the pair. This steprepresents the computation of the g(E0) value. Next,a heuristic approach is used to compute weights w(e)

that measure the possibility that the elimination ofan example e would enable g(E0) reduction. Weightsw(e) are computed so that for every literal l from L0,minimal sets of positive (P �) and negative examples(N�) are determined, such that if P � or N� are elimi-nated from E0 then l becomes unnecessary in L0. Thisis done in a loop (steps 9{12) in which every exam-ple pair is tested if it is covered by a single literal l.If such a pair is detected (step 10) then its positiveexample is included into the set P � and its negativeexample into the set N� (step 11). Literal eliminationfrom L0 presents the reduction of the g(E0) value. Ifa literal can be made unnecessary by the eliminationof a very small subset of training examples, then thisindicates that these examples might be noisy. In steps14 and 15, the w(e) weights are incremented only forthe examples which are the members of the P � andN� sets. The weights are incremented by the inverseof the total number of examples in these sets. Weightsare summed over all literals in L0. Step 13 is necessarybecause of the imperfectness of the heuristic minimalcover algorithm. Namely, if some l 2 L0 exists forwhich there is no example pair that is covered only bythis literal (i.e., for which either P � = ; or N� = ;),this means that L0 is actually not the minimal set be-cause L0 n flg also covers all example pairs in U . Insuch case L0 is substituted by L0 n flg.The presented saturation �lter uses the parameter "hthat determines noise sensitivity of the algorithm. Theparameter can be adjusted by the user in order totune the algorithm to the domain characteristics. Rea-sonable values are between 0.25 and 2. For instance,the value 1.0 guarantees the elimination of every suchexample by whose elimination the set L0 will be re-duced for at least one literal. Lower "h values meangreater sensitivity of the algorithm (i.e., elimination ofmore examples): lower "h values should be used whenthe domain noise is not completely random, and whendealing with large training sets (since statistical prop-erties of noise distribution in large training sets canhave similar e�ects). In ILLM the default values of "hare between 0.5 and 1.5, depending on the number oftraining examples in the smaller of the two subsets ofE: the set of positive examples P or the set of negativeexamples N . Default values for the saturation �lter'snoise sensitivity parameter "h are: 1.5 for training setswith 2{50 examples, 1.0 for 51{100 examples, 0.75 for101{200 examples, and 0.5 for more than 200 exam-ples.



Algorithm 2: ClassificationF ilter(E)Input: E (training set)Parameter: n (number of subsets, typically 10)Output: A (detected noisy subset of E)(1) form n disjoint almost equally sizedsubsets Ei, where [iEi = E(2) A ;(3) for i = 1; : : : ; n do(4) form Ey  E nEi(5) induce Hy based on examples in Ey(using some inductive learning system)(6) for every e 2 Ei do(7) if Hy incorrectly classi�es ethen A A [ feg(8) end for(9) end forFigure 3: Classi�cation �lter.2.2 CLASSIFICATION FILTERThe n-fold cross-validation method is a substantialpart of this �ltering algorithm. The classi�cation �l-ter (Algorithm 2, shown in Figure 3) begins with nequal-sized disjoint subsets of the training set E (step1) and the empty output set A of detected noisy exam-ples (step 2). The main loop (steps 3{9) is repeated foreach training subset Ei. In step 4, subset Ey is formedwhich includes all examples from E except those in Ei.Set Ey is used as the input for an arbitrary inductivelearning algorithm that induces a hypothesis (a classi-�er) Hy (step 5). Those examples from Ei for whichthe hypothesis Hy does not give the correct classi�-cation are added to A as potentially noisy examples(step 7).2.3 COMBINEDCLASSIFICATION-SATURATIONFILTERA combined classi�cation-saturation algorithm is verysimilar to the original classi�cation �ltering approach.The only di�erence is that saturation �ltering is usedfor every subset Ey in order to eliminate noise fromEy. The intention of this modi�cation is the induc-tion of more appropriate hypotheses Hy and more re-liable noise detection based on these. The combinedclassi�cation-saturation �lter algorithm is the same asthe classi�cation �lter with added saturation-based �l-tering between its steps 4 and 5.

Algorithm 3: ConsensusSaturationF ilter(E)Input: E (training set)Parameter: n (number of subsets, typically 10)Parameter: v (consensus level, typically n� 1)Output: A (detected noisy subset of E)(1) form n disjoint almost equally sizedsubsets Ei, where [iEi = E(2) A ;(3) for i = 1; : : : ; n do(4) form Ey  E nEi(5) Ai  SaturationF ilter(Ey)(6) end for(7) for every e 2 E do(8) c 0(9) for i = 1; : : : ; n if e 2 Ai, c c+ 1(10) if c � v, A A [ feg(11) end forFigure 4: Consensus saturation �lter.
2.4 CONSENSUS SATURATION FILTERThe n-fold cross-validation method is also a substan-tial part of the consensus saturation �ltering algo-rithm (Algorithm 3, shown in Figure 4). Like inthe combined classi�cation-saturation �lter, subset Eyis constructed (step 4) and noise eliminated from itby a saturation �lter. In contrast to the combinedclassi�cation-saturation �lter, this reduced Ey is notused for hypothesis induction. Instead, detected noiseis simply saved in the set Ai (step 5). When the pro-cedure is performed for all Ei subsets, then n gener-ated Ai sets are used to determine the elements of theoutput set A (steps 7{11). Since the same example eoccurs in n�1 of Ey subsets, in an ideal case the samenoisy example may occur in n� 1 sets Ai. In this sit-uation, detected by counter c (steps 9{11), example eis added to the output noisy set A (step 10), since theconsensus of all Ai sets is reached. In practice we mayallow that an example is detected as noisy and addedto A also in cases when it is included in less than n�1sets Ai. Parameter v with values less than n� 1(e.g.,n� 2, n� 3) enables this possibility.



3 EXPERIMENTAL EVALUATION3.1 DOMAIN DESCRIPTION: DIAGNOSISOF CORONARY ARTERY DISEASECoronary artery disease (CAD) is a result of dimin-ished blood ow through coronary arteries due tostenosis or occlusion. The consequence of CAD is animpaired function of the heart and possible necrosis ofthe myocardium (myocardial infarction).The dataset, collected at the University Medical Cen-ter, Ljubljana, Slovenia, includes 327 patients (250men and 77 women, mean age 55 years). Each patienthad performed clinical and laboratory examinationsincluding ECG during rest and exercise, myocardialperfusion scintigraphy and �nally the coronary angiog-raphy that provides for the actual diagnosis of coro-nary artery disease. In 229 patients, CAD was con-�rmed by angiography, and for 98 patients it was notcon�rmed. The patients' clinical and laboratory dataare described by 77 attributes. This dataset was pre-viously used for inducing diagnostic rules by a numberof machine learning algorithms [9, 11].3.2 EXPERIMENTAL DESIGN ANDRESULTSAccording to the standard 10-fold cross-validation pro-cedure, the original data set was partitioned into 10folds with 32 or 33 examples each. Training sets arebuilt from 9 folds, leaving one fold is a test set. LetG denote the entire set of training examples, Ti is anindividual test set (consisting of one fold), and Gi thecorresponding training set (Gi  G nTi, composed onnine folds). In this way, 10 training sets G0 - G9, and10 corresponding test sets, T0 - T9, were constructed.Every example occurs exactly once in a test set, and 9times in training sets.Di�erent noise detection procedures were used on thetraining sets and after the elimination of potentiallynoisy examples and hypothesis generation the predic-tion accuracy was measured on the test sets. The hy-pothesis was always constructed with the same algo-rithm so that the di�erences in the obtained predictionaccuracy reect only the di�erences in noise detection.The used rule construction algorithm was the ILLM(Inductive Learning by Logic Minimization) systemused without its noise handling capability. The ILLMrule learning algorithm is similar to the AQ15 and CN2covering algorithms for rule construction [2, 4].In the �rst test we used ILLM (without its noise han-

dling capability) to induce rules on complete G0 - G9training sets. On the test sets T0 - T9 we measured thenumber of prediction errors: on the average, there were5.5 prediction errors per test set. This corresponds tothe 83.1% average prediction accuracy. This result,presented in the �rst row (A) of Table 1, presents thebaseline for comparing the quality of di�erent noiseelimination algorithms. The average number of elimi-nated training examples is 0 because no noise elimina-tion has been used. Generated rules are complete andconsistent with all training examples in correspondingtraining sets.In all other experiments instead of G0 - G9, reducedtraining sets G00 - G09 were used as the input to induc-tive learning. Reduced training sets G0i were obtainedby the elimination of noisy examples, G0i  Gi n A,where A represent noisy set outputs of di�erent �lter-ing algorithms for Gi as input training sets.3.2.1 Saturation FilterBy using the saturation �lter presented in Section 2.1with the "h parameter set to 1.0, the average predic-tion error was 3.6 examples per test set, which corre-sponds to the 89.0% average prediction accuracy. Theresult is presented in the second row (S) of Table 1.Compared to the results in row A this is a substantialimprovement. This result was obtained by an averageelimination of 30.2 examples per iteration, which rep-resents about 10% of the training sets. A comparisonto prediction results obtained by other authors, usingvery di�erent machine learning methods, which are allbetween 86.6% and 89.7% [11], indicates that 10% ofdetected and eliminated noise seems to be realistic.Both the prediction accuracy and the number of elim-inated examples demonstrate that saturation �lteringcan be used as an e�ective noise handling mechanism.3.2.2 Classi�cation FilterUsing the classi�cation �lter, described in Section 2.2,with parameter n = 10 for noise detection, in aver-age 4.7 prediction errors per test set were made. Thiscorresponds to the 85.6% average prediction accuracy.This result, presented in the third row (C) of Table1, represents an improvement in accuracy when com-pared to the result of row A although it is not as goodas the result obtained by the saturation �lter (row S).Nevertheless, this result is important because the clas-si�cation �lter is computationally much simpler thanthe saturation �lter. Additionally, according to [1], theuse of simple voting mechanisms based on the resultsof �ltering by di�erent learning approaches (not neces-



Algorithm Predict. err. Accuracy Elimin. ex.A 5.5 (3.03) 83.1 % 0S 3.6 (1.96) 89.0 % 30.2 (2.78)C 4.7 (1.64) 85.6 % 52.6 (4.58)CS 3.6 (1.71) 89.0 % 36.5 (4.34)S9 4.2 (1.48) 87.2 % 12.5 (2.46)S8 3.6 (1.17) 89.0 % 17.5 (2.12)S7 3.6 (1.35) 89.0 % 19.8 (2.20)Table 1: Average number of prediction errors (withstandard deviation in parentheses), average predictionaccuracy, and average number of eliminated examples(with standard deviation in parentheses) for di�erentnoise detection algorithms: A - ILLM without noisehandling, S - saturation �lter, C - classi�cation �lter,CS - combined classi�cation-saturation �lter, S9,S8,S7- consensus saturation �lters with varied levels of con-sensus.sarily only inductive learning approaches) can furtherimprove the reliability of this noise detection process.This possibility was not investigated in this work.The average number of eliminated examples per train-ing set was 52.6. This means that the classi�cation�lter practically detected every �fth training exampleas potentially noisy. This shows a weakness of the clas-si�cation �lter: it is non-selective. Too many examplesare detected as being potentially noisy.3.2.3 Combined Classi�cation-SaturationFilterResults obtained with noise �ltering performed bythe combined classi�cation-saturation �lter (see Sec-tion 2.3, n=10, "h = 1.0) are presented in CS row ofTable 1. The measured average error was 3.6 exam-ples representing the 89.0% average accuracy. It canbe concluded that the combination of the two di�er-ent noise detection algorithms is advantageous only incomparison with the classi�cation �ltering approach.The combined approach namely resulted in the aver-age of 36.5 detected and eliminated potentially noisyexamples per training set. Although this number issmaller than the one for the classi�cation �lter (rowC with 52.6 examples) it seems that non-selectivenessis an inherent characteristic of classi�cation �lteringwhen a single classi�er is used.3.2.4 Consensus Saturation FilterThe relative success of the classi�cation �lter, whichenables signi�cant prediction accuracy improvementusing a learning algorithm without noise handling,

stimulated a series of experiments in which we triedto test if a mechanism similar to the one used in theclassi�cation �lter could improve the results of satura-tion �ltering. In all the experiments parameter n wasset to 10 and "h=1.0, while changing the consensuslevel v. With a default value v = 9 the average num-ber of eliminated examples per training set was only12.5 and the average number of prediction errors ontest sets was 4.2 (presented in S9 row of Table 1).This result is important since a satisfactory predic-tion accuracy was achieved by the elimination of avery small number of training examples. When com-pared with saturation �ltering itself (row S) we seethat by requiring the consensus of �ltering in 10-foldvalidation, lower prediction accuracy (87.2% instead of89.0%) was achieved by a signi�cantly smaller averagenumber of eliminated examples (12.5 instead of 30.2).The described consensus �ltering approach seems tobe a reliable noise detection algorithm. A furtherproof of this claim is the following: from the total of125 examples eliminated by the consensus �lter (rowS9), 124 of them were detected also by the combinedclassi�cation-saturation �lter (row CS) which, how-ever, eliminated 365 examples in total.Requiring consensus in 10-fold validation results innoise detection of high speci�city. However, the de-creased prediction accuracy indicates that the algo-rithm's sensitivity is too low. This can be the conse-quence of a too high consensus level (in order to declarean example to be potentially noisy, the example had tobe tagged as potentially noisy in all subsets in whichit occurs, i.e., in 9 subsets).The algorithm's noise sensitivity can easily be in-creased by decreasing the consensus level v. In thisway, relaxed consensus �lters can be constructed.Rows S8 and S7 present results obtained by settingthe consensus levels to 8 and 7, respectively. In bothcases the increase in sensitivity resulted in the increaseof the achieved prediction accuracy. Good predictionaccuracy of 89.0%, as in cases S and CS, is obtained byrelaxed consensus �ltering but with signi�cantly fewerpotentially noisy examples eliminated.3.3 MEDICAL EVALUATIONThe results of described experiments suggest that con-sensus saturation �ltering (with consensus level 9, rowS9 of Table 1) presents a reliable tool for the detectionof examples that are indeed noisy. In order to test thepractical usefulness of noise detection by the consensussaturation �lter, we applied the described approach to



the whole coronary artery disease dataset of 327 exam-ples. In this case the training sets G0 - G9 were usedas 10 training subsets for the consensus �lter. In total15 potentially noisy examples were detected. This isin accordance with the result obtained for G0 - G9 setsfor which the average value of eliminated examples was12.5.The detected examples were shown to a domain expertfor evaluation. In order to make the task more di�cultto the expert, we formed a set of 20 examples consist-ing of 15 examples detected as noisy by the consensussaturation �lter, and additional 5 randomly selectednon-noisy examples. The expert analyzed the groupof these 20 examples as a whole. Out of these 20 ex-amples, 13 were of class non-con�rmed (11 detectedpotentially noisy and 2 other examples of class non-con�rmed), and 7 were of class con�rmed (4 detectedpotentially noisy examples and 3 other examples ofclass con�rmed).In the class non-con�rmed the expert recognized 11cases as being outliers, and these examples were ex-actly those selected by the noise detection algorithm.For 8 of these 11 cases the problem was a high gradeof stenosis of coronary arteries, very close to the pre-de�ned value that distinguishes between patients withcon�rmed and non-con�rmed coronary artery disease.Other 3 cases represented patients who did not haveactual coronary heart disease problems but ratherproblems due to recent miocardial infarction, function-ally malfunctioning by-pass, and valve disease.For the class con�rmed the expert detected 4 poten-tially noisy cases three of which were selected also bythe noise detection algorithm and one of the randomlyselected cases of this class. For all 4 cases the detectedgrade of stenosis was very close to the border line be-tween the two classes. Additionally, for one patientthe values of measured parameters were detected asnon-typical due to the improper level of stress duringmeasurements.The expert has also analyzed four diagnostic parame-ters MAIN (main coronary artery), LAD (left anteriordescendens), LCX (left circumex) and RCA (rightcoronary artery). Each of these parameters has val-ues between 0 and 3 and denotes the level of stenosisor occlusion in the corresponding artery. The value 0denotes no stenosis, value 1 up to 50%, value 2 cor-responds to 50%{75%, and value 3 represents morethan 75% of stenosis or occlusion. Average values ofthese parameters are computed for all non-con�rmedclass cases and 11 non-con�rmed class cases selected

non-con�rmed cases con�rmed casesall 11 noisy all 4 noisyMAIN 0.01 0.09 1.53 0.50LAD 0.29 0.73 2.15 0.75LCX 0.10 0.45 1.31 0RCA 0.15 0.18 1.38 0Table 2: Average values for 4 diagnostic parameters.as noise, as well as for all con�rmed class cases and4 con�rmed class cases selected as noise. Results arepresented in Table 2. It can be noticed that for all fourparameters, noisy non-con�rmed cases have higher av-erage values than those computed for the whole class.On the contrary, for the con�rmed class, for all fourparameters noisy examples have lower average valuesthan average values for the whole class of 229 cases.The analysis shows that, except for a few patientswho did not have actual coronary heart disease prob-lems, most of cases detected as noise represent a spe-cial group of patients whose coronary angiography re-sults are very close to the border line between the twoclasses CAD con�rmed and not-con�rmed. By a slightchange of the de�nition of class con�rmed these casescan change their class value, therefore it is clear thatthey are non-typical training cases. Their eliminationfrom the training set, as well as the elimination of pa-tients who did not have actual coronary heart diseaseproblems and patients with improperly measured pa-rameters, is reasonable if one wants to induce diag-nostic rules uncovering characteristic properties of pa-tients with CAD.4 CONCLUSIONExplicit noise detection and elimination turns out tobe a very useful and important step in data prepro-cessing for any inductive learning algorithm. Namely,the detection and �ltering of potentially noisy exam-ples is itself an important result that may be useful inpractice for data cleansing.Standard deviations, presented as parenthesized num-bers in Table 1, show that the di�erences of achievedprediction accuracies by di�erent noise �ltering algo-rithms are not signi�cant. On the other hand, mostof the di�erences in the numbers of eliminated noisyexamples are signi�cant and represent genuine charac-teristics of the presented noise �ltering algorithms.It is interesting that a simple classi�cation �lteringapproach, based on an iterative application of a ma-



chine learning algorithm (without noise handling) byitself enables an improvement of the prediction accu-racy. However, in the coronary artery disease diagnos-tic domain, best prediction accuracies were achievedby the approaches which include saturation �ltering.The proposed consensus saturation �lter is an inter-esting combination: it eliminates only a small numberof potentially noisy examples, with a very high proba-bility of actually being noisy. This property may turnout to be decisive for a broader applicability of noisedetection algorithms. The experiments suggest that arelaxed consensus saturation �lter (see row S8 in Table1) represents a very good solution to the problem ofnoise �ltering.AcknowledgementWe are grateful to Matja�z Kukar from the Facultyof Computer and Information Sciences, University ofLjubljana, for his help and involvement in the evalua-tion of the results of this study.References[1] Brodley, C.E. & Friedl, M.A. (1996). Identifyingand eliminating mislabeled training instances. InProc. of the 13th National Conference on Arti�-cial Intelligence, 799{805. AAAI Press.[2] Clark, P. & Niblett, T. (1989). The CN2 inductionalgorithm. Machine Learning 3: 261{283.[3] Dimopoulos, Y. and Kakas, A (1995) Learn-ing non-monotonic logic programs: Learning ex-ceptions. In N. Lavra�c and S. Wrobel, editors,Proc. of the 8th European Conference on MachineLearning, volume 912 of Lecture Notes in Arti�-cial Intelligence, 122{137. Springer-Verlag, 1995.[4] F�urnkranz, J. (1999). Separate-and-conquer rulelearning. Arti�cial Intelligence Review 13(1): 3{54.[5] Gamberger, D. (1995). A minimization approachto propositional inductive learning. In Proc. of the8th European Conference on Machine Learning,151{160. Springer, Berlin.[6] Gamberger, D. & Lavra�c, N. (1996). Noise detec-tion and elimination applied to noise handling ina KRK chess endgame. In Proc. of the 6th Inter-national Workshop on Inductive Logic Program-ming, 59{75. Springer, Berlin.

[7] Gamberger, D., Lavra�c, N. & D�zeroski, S. (1996).Noise elimination in inductive concept learning:A case study in medical diagnosis. In Proc. ofthe 7th International Workshop on AlgorithmicLearning Theory, 199{212. Springer, Berlin.[8] Gamberger, D. & Lavra�c, N. (1997). Conditionsfor Occam's razor applicability and noise elimina-tion. In Proc. of the 9th European Conference onMachine Learning, 108{123. Springer, Berlin.[9] Gro�selj, C., Kukar, M., Fetich, J. & Kononenko,I. (1997). Machine learning improves the accu-racy of coronary artery disease diagnostic meth-ods. Computers in Cardiology 24: 57{60.[10] John, G.H. (1995). Robust decision trees: Remov-ing outliers from data. In Proc. of the 1st Int.Conference on Knowledge Discovery and DataMining, 174{179. AAI Press.[11] Kukar, M., Gro�selj, C., Kononenko, I. & Fetich,J. (1997). An application of machine learning inthe diagnosis of ischaemic heart disease. In Proc.of the 6th Conference on Arti�cial Intelligence inMedicine Europe, 461{464. Springer, Berlin.[12] Lavra�c, N., Gamberger, D. & D�zeroski, S. (1995).An approach to dimensionality reduction in learn-ing from deductive databases. In Proc. of the 5thInternational Workshop on Inductive Logic Pro-gramming (ILP-95), 337{354. Katholieke Univer-siteit Leuven Scienti�c Report.[13] Lavra�c, N., Gamberger, D. & Turney, P. (1998). Arelevancy �lter for constructive induction. IEEEIntelligent Systems 13: 50{56.[14] Mingers, J. (1989). An empirical comparison ofpruning methods for decision tree induction. Ma-chine Learning 4(2): 227{243.[15] Quinlan, J.R. (1993). C4.5: Programs for Ma-chine Learning. Morgan Kaufmann, San Mateo,CA.[16] Srinivasan, A., Muggleton, S. & Bain, M. (1992).Distinguishing exceptions from noise in non-monotonic learning. In Proc. of the 2nd Int.Workshop on Inductive Logic Programming.Tokyo, ICOT TM-1182.[17] Weisberg, S. (1985). Applied Linear Regression.John Wiley & Sons.


